Structurally Simple Benzylidene-Type Photolabile Diol Protecting Groups

Xiong Ding, Dattatray A. Devalankar, and Pengfei Wang*

Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States

	Page
Table of content	S1
General procedure and materials	S2
Preparation of 5 and spectroscopic data	S2-3
Preparation of 1a and spectroscopic data	S3
Preparation of 1b and spectroscopic data	S3-4
Preparation of 1c and spectroscopic data	S4
Preparation of 1d and spectroscopic data	S5
Preparation of 1e and spectroscopic data	S5-6
Preparation of 1f and spectroscopic data	S6
Preparation of 1g and spectroscopic data	S6-7
Preparation of 7 and 8, and spectroscopic data	S7
Preparation of 15 and, 10, and spectroscopic data	S7-8
Preparation of 11e and spectroscopic data	S8-9
Preparation of 11g and 12g, and spectroscopic data	S9
General procedure for photolysis	S10
Quantum yield determination	S10
References	S10
¹ H and ¹³ C NMR spectra of 1a	S11-12
¹ H and ¹³ C NMR spectra of 1b	S13-14
¹ H and ¹³ C NMR spectra of 1c	S15-16
¹ H and ¹³ C NMR spectra of 1c'	S17-18
¹ H and ¹³ C NMR spectra of 1d	S19-20
¹ H and ¹³ C NMR spectra of 1e	S21-22
¹ H and ¹³ C NMR spectra of 1e '	S23-24
¹ H and ¹³ C NMR spectra of 1f	S25-26
¹ H and ¹³ C NMR spectra of 1f '	S27-28
¹ H and ¹³ C NMR spectra of 1g	S29-30
¹ H and ¹³ C NMR spectra of 5	S31-32
¹ H and ¹³ C NMR spectra of 7	S33-34
¹ H and ¹³ C NMR spectra of 8	S35-36
¹ H and ¹³ C NMR spectra of 10	S37-38
¹ H and ¹³ C NMR spectra of 11e	S39-40
¹ H and ¹³ C NMR spectra of 11e'	S41-42
¹ H and ¹³ C NMR spectra of 11g	843-44
¹ H and ¹³ C NMR spectra of 12g	S45-46
¹ H and ¹³ C NMR spectra of 15	S47-48
¹ H and ¹³ C NMR spectra of S1	\$49-50

Table of Content

Experimental Section

General. Organic solutions were concentrated by rotary evaporation at ca. 12 Torr. Flash column chromatography was performed employing 230-400 mesh silica gel. Thin-layer chromatography was performed using glass plates pre-coated to a depth of 0.25 mm with 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Infrared (IR) data are presented as frequency of absorption (cm⁻¹). Proton and carbon-13 nuclear magnetic resonance (¹H NMR or ¹³C NMR) spectra were recorded on 300, 400 and 700 MHz NMR spectrometers; Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃: δ 7.26). Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiple resonances), coupling constant in Hertz (Hz), integration.

Materials. Anhydrous solvents Tetrahydrofuran (THF), dimethylformamide (DMF), and dichloromethane (DCM) were used without distillation. Solvents for workup and column chromatography, such as petroleum ether (PE), hexanes (Hex), ethyl acetate (EA), methanol (MeOH), benzene, toluene (Tol) and triethylamine (TEA), camphor sulfonic acid (CAS), and other chemicals were obtained from commercial vendors and used without further purification.

To a solution of 3-dimethylaminobenzoic acid 4 (5 g, 30.3 mmol) in THF (100.0 mL), LiAlH₄ (1.7 g, 45.5 mmol) was added at room temperature under nitrogen atmosphere. The reaction mixture was stirred for 19 h, quenched with statured solution of NH₄Cl, and filtered through sintered crucible. The filtrate was concentrated to provide the corresponding 3-dimethylaminobenzyl alcohol (3.9 g, 87%) as a brown liquid which was used for next step without further purification.

To a stirred solution of oxalyl chloride (4.3 mL, 51.7 mmol) in dry DCM (150.0 mL), DMSO (5.5 mL, 77.5 mmol) was added at -78 °C under nitrogen atmosphere. The reaction mixture was stirred for 15 min. followed by the addition of dimethylaminobenzyl alcohol (3.9 g, 25.8 mmol). After stirring for 1 h at -78 °C, triethyl amine (14.4 mL, 103.3 mmol) was added and reaction mixture was stirred at room temperature for additional 15 min, after which it was quenched with H₂O (100 mL). The organic phase was separated and the aqueous phase was extracted with DCM (2 x 50 mL), the combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give the corresponding crude benzaldehyde. The crude product was purified by column chromatography (PE/EA 19:1) to afford the product as a yellow liquid (3.4 g, 89%): Rf = 0.5 (PE/EA 19:1); ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.19 (m, 2H), 6.69-6.99 (m, 2H), 3.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 193.2, 150.7,

137.2, 129.6, 118.9, 118.3, 111.5, 40.44; IR (neat) 2808, 1696, 1600, 1498, 1356, 1205; HRMS (ESI) m/e calcd for C₉H₁₂NO (M+H) 150.0919, found 150.0922.

To a solution of 3-dimethylaminobenzaldehyde (1.5 g, 10.1 mmol) and trimethylorthoformate (5.9 mL, 50.3 mmol) in methanol (25 mL) was added NH₄Cl (16 mg, 0.3 mmol) at room temperature. Reaction mixture was stirred at room temperature for 72 h and the reaction solution was concentrated. The crude mixture was purified by column chromatography (benzene/EA 95:5) to afford the acetal **5** (1.8 m, 87%) as a yellow liquid: Rf = 0.5 (benzene/EA 95:5); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 7.8 Hz, 1H), 6.83 (m, 2H), 6.69 (dd, *J* = 8.0, 2.5 Hz, 1H), 5.33 (s, 1H), 3.34 (s, 6H), 2.96 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.5, 138.7, 128.8, 115.0, 112.6, 110.6, 103.7, 52.7, 40.6; IR (neat) 2935, 2887, 2827, 1604, 1582, 1497, 1435, 1350; HRMS (ESI) m/e calcd for C₁₁H₁₈NO₂ (M+H) 196.1338, found 196.1342.

To a solution of the diol **3a** (134 mg, 0.75 mmol) and the PPG reagent **5** (293 mg, 1.50 mmol) in toluene (2 mL) was added a catalytic amount of CSA (35 mg, 0.15 mmol) and 4A molecular sieve (25 mg) at room temperature under N₂. The reaction mixture was refluxed for 24 h. After completion of reaction, the reaction solution was neutralized with TEA at room temperature and concentrated under reduced pressure. The crude reaction mixture was purified by column chromatography (PE/EA 10:1) to provide the desired product **1a** (165 mg, 71%) as a colorless liquid: Rf = 0.25 (PE/EA 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 7.8 Hz, 1H), 6.96 (s, 1H), 6.90 (d, *J* = 7.5 Hz, 1H), 6.77 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.11 (s, 1H), 4.98 (d, *J* = 4.0 Hz, 1H), 4.86 (d, J = 3.7 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 2.96 (s, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 170.2, 169.6, 150.7, 136.0, 129.2, 115.3, 114.2, 111.0, 107.3, 52.9, 40.6; IR (neat) 2954, 2905, 2803, 1754, 1677, 1609, 1585, 1503, 1438; HRMS (ESI) m/e calcd for C₁₅H₂₀NO₆ (M+H) 310.1291, found 310.1285.

To a solution of the diol **3b** (70 mg, 0.530 mmol) and the PPG reagent **5** (155 mg, 0.795 mmol) in CHCl₃(3 mL) was added a catalytic amount of CSA (25 mg, 0.106 mmol) and 4A molecular

sieve (25 mg) at room temperature under N₂. The reaction mixture was refluxed for 4 h. After completion of the reaction, the reaction mixture was neutralized with TEA and then concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA 20:1) to provide the desired product **1b** (121 mg, 87%) as a colorless liquid: Rf =0.2 (PE/EA 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (m, 1H), 6.84 (m, 2H), 6.72 (m,1H), 5.78-5.94 (m, 2H), 5.30-5.33 (m, 1H), 5.16-5.22 (m, 1H), 4.38-4.46 (m, 1H), 3.98-4.26 (m, 4H), 3.52-3.67 (m, 2H), 2.96 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 138.6, 138.0, 134.4, 129.0, 117.3, 114.7, 114.5, 113.5, 113.3, 110.5, 110.2, 104.7, 104.1, 75.2, 74.8, 72.4, 70.9, 70.4, 67.9, 67.6, 40.6; IR (neat) 2872, 2804, 1680, 1607, 1584, 1500, 1440; HRMS (ESI) m/e calcd for C₁₅H₂₂NO₃ (M+H) 264.1600, found 264.1603.

To a solution of the diol 3c (69 mg, 0.50 mmol) and the PPG 5 (146 mg, 0.75 mmol) in CHCl₃ (3 mL) was added catalytic amount of CSA (23 mg, 0.10 mmol) and 4A MS (25 mg) at room temperature under N₂. The reaction mixture was refluxed for 5 h. After completion of reaction, the reaction solution was neutralized with TEA at room temperature and then concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA 100:1 to 20:1) to provide product 1c (29 mg) and its diastereomer 1c' (98 mg) as a colorless liquid with a combined 94% yield.

For **1c**, Rf = 0.5 (PE/EA 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.44 (m, 2H), 7.25-7.38 (m, 5H), 6.94 (m, 2H), 6.77 (m, 1H), 5.98 (s, 1H), 5.20 (t, *J* = 7.0 Hz, 1H), 4.37 (t, *J* = 7.0 Hz, 1H), 3.94 (t, *J* = 6.5 Hz, 1H), 2.96 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.7, 139.6, 139.0, 129.1, 128.6, 128.0, 126.1, 114.5, 113.4, 110.2, 104.9, 77.8, 72.7, 40.6; IR (neat) 3031, 2871, 2804, 1738, 1679, 1606, 1584, 1497; HRMS (ESI) m/e calcd for C₁₇H₂₀NO₂ (M+H) 270.1494, found 270.1495.

For **1c'**, Rf = 0.45 (PE/EA 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.43 (m. 6H), 6.90 (m, 2H), 6.75 (d, *J* = 7.3 Hz, 1H), 6.18 (s, 1H), 5.22 (t, *J* = 6.8 Hz, 1H), 4.52 (t, *J* = 7.0 Hz, 1H), 3.87 (t, *J* = 8.3 Hz, 1H), 2.97 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 139.3, 138.2, 129.1, 128.5, 128.1, 126.4, 114.8, 113.5, 110.6, 105.0, 78.7, 72.1, 40.6; IR (neat) 3031, 2879, 2805, 1679, 1607, 1583, 1500, 1453; HRMS (ESI) m/e calcd for C₁₇H₂₀NO₂ (M+H) 270.1494, found 270.1497.

To a solution of the diol **3d** (45mg, 0.591 mmol) and the PPG reagent **5** (173 mg, 0.887 mmol) in CHCl₃ (3 mL) was added a catalytic amount of CSA (27 mg, 0.118mmol) and 4A molecular sieve (25 mg) under N₂ at room temperature. The reaction mixture was refluxed for 2 h, and was then neutralized with TEA at room temperature. The solution was concentrated under reduced pressure and the crude reaction mixture was purified by column chromatography (PE/EA 10:1) to provide **1d** (109 mg, 89%) as a colorless liquid: Rf = 0.25 (PE/EA 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.8 Hz, 1H), 6.83 (m, 2H), 6.72 (dd, *J* = 8.0, 2.5 Hz, 1H), 5.46 (s, 1H), 4.26 (dd, *J* = 10.8, 5.0 Hz, 2H), 3.98 (dt, *J* = 11.8, 2.0 Hz, 2H), 2.94 (s, 6H), 2.17-2.29 (m, 1H), 1.45 (d, *J* = 13.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 139.4, 128.9, 114.3, 113.2, 109.9, 102.1, 67.3, 40.6, 25.7; IR (neat) 2985, 2922, 2850, 2802, 1680, 1608, 1584, 1499, 1438; HRMS (ESI) m/e calcd for C₁₂H₁₈NO₂ (M+H) 208.1338, found 208.1342.

To a solution of the diol 3e (99 mg, 0.650 mmol) and the PPG reagent 5 (190 mg, 0.975 mmol) in CH₃Cl (3 mL) was added a catalytic amount of CSA (30 mg, 0.130 mmol) and 4A MS (25 mg) at room temperature under N₂. The reaction mixture was refluxed for 2 h. After completion of reaction, the reaction mixture was neutralized with TEA at room temperature and then was concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA 50:1 to 20:1) to provide 1e (115 mg) and its diastereomer 1e' (42 mg) as colorless liquid in a combined 85% yield.

For **1e**, Rf = 0.4 (PE/EA 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 2H), 7.23-7.30 (m, 5 H), 6.93 (s, 1 H), 6.88 (d, *J* = 8.0 Hz, 1 H), 6.74 (dd, *J* = 8.0, 4.0 Hz, 1 H), 5.55 (s, 1H), 4.37 (dd, *J* = 12.0, 4.0 Hz, 2H), 4.04 (t, *J* = 12.0 Hz, 2H) 3.43-3.35 (m, 1H), 2.97 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.8, 139.0, 137.8, 129.1, 128.8, 127.7, 127.4, 114.5, 113.4, 110.1, 102.1, 72.4, 41.2, 40.7; IR (neat) 3029, 2959, 2917, 2850, 2802, 1679, 1605, 1583, 1495; HRMS (ESI) m/e calcd for C₁₈H₂₂NO₂ (M+H) 284.1651, found 284.1652.

For **1e**', Rf = 0.35 (PE/EA 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.7, 2 H), 7.33 (t, J = 7.7, 2 H), 7.26-7.24 (m, 2 H), 6.91 (s, 1 H), 6.89 (d, J = 7.7 Hz, 1 H), 6.73 (dd, J = 8.4, 2.1 Hz, 1 H), 5.63 (s, 1 H), 4.39-4.34 (m, 4 H), 2.95 (s, 6 H), 2.76 (s, 1 H); ¹³C NMR (176 MHz, CDCl₃)

δ 150.8, 142.9, 139.3, 129.1, 128.6, 128.3, 126.5, 114.5, 113.3, 110.4, 102.1, 71.1, 40.7, 39.4; IR (neat); HRMS (ESI) m/e calcd for C₁₈H₂₂NO₂ (M+H) 284.1651, found 284.1648.

To a solution of the diol **3f** (120 mg, 0.659 mmol) and the PPG reagent **5** (193 mg, 0.988 mmol) in toluene (2 mL) was added a catalytic amount of CSA (31 mg, 0.132 mmol) and 4A MS (25 mg) at room temperature under N₂. The reaction mixture was refluxed for 3.5 h. After completion of reaction, the reaction mixture was neutralized with TEA at room temperature and then was concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA 20:1 to 5:1) to provide **1g** (138 mg) and its isomer **1g'** (50 mg) as a colorless liquid in a combined 91% yield.

For **1f**, Rf = 0.2 (PE/EA 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.39 (m. 5H), 7.19-7.25 (t, *J* = 7.8 Hz, 1H), 6.81 (m, 2H), 6.70 (dd, *J* = 8.3, 2.7 Hz, 1H), 5.35 (s, 1H), 4.60 (s, 2H), 4.35 (dd, J = 10.6, 4.8 Hz, 2H), 3.79 (m, 1H), 3.62-3.67 (m, 2H), 2.94 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 136.3, 137.9, 128.9, 128.5, 128.0, 127.7, 114.3, 113.3, 109.9, 101.8, 71.7, 70.1, 67.9, 40.6; IR (neat) 2858, 1678, 1608, 1100; HRMS (ESI) m/e calcd for C₁₉H₂₄NO₃ (M+H) 314.1756, found 314.1755.

For **1f**^{*}, Rf = 0.5 (PE/EA 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.42 (m, 6H), 6.91 (s, 1H), 6.86 (d, J = 7.3 Hz, 1H), 6.71 (dd, J = 8.0, 2.2 Hz, 1H), 5.52 (s, 1h), 4.71 (s, 2H), 4.35 (d, J = 12.3 Hz, 2H), 4.02 (d, J = 12.6 Hz, 2H), 3.34 (s, 1H), 2.95 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 138.8, 138.2, 128.8, 128.4, 127.7, 127.6, 114.6, 113.3, 110.2, 101.9, 70.2, 69.3, 68.9, 40.7; IR (neat) 2969; 2852, 1607, 14981343; HRMS (ESI) m/e calcd for C₁₉H₂₄NO₃ (M+H) 314.1756, found 314.1757.

To a solution of the methyl glucoside **3g** (97 mg, 0.5 mmol) and the PPG reagent **5** (146 mg, 0.75 mmol) in DMF (2 mL) was added a catalytic amount of CSA (23 mg, 0.1mmol) and 4A molecular sieve (25 mg) at room temperature under N_2 . The reaction mixture was stirred at 60 °C for 2 h. After completion of reaction, the reaction mixture was neutralized with TEA and purified

with column chromatography (DCM/MeOH 20:1) to produce **1g** as a colorless liquid which solidifies at 0 °C (138 mg, 85%). Rf = 0.4 (DCM/MeOH = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 8.0 Hz, 1H), 6.82 (m, 2H), 6.72 (dd, J = 8.0, 2.5 Hz, 1H), 5.47 (s, 1H), 4.78 (d, *J* = 3.7 Hz, 1H), 4.29 (dd, *J* = 10.1, 4.8 Hz, 1H), 3.94 (t, *J* = 9.3 Hz, 1H), 3.80 (m, 1H), 3.72 (m, 1H), 3.63 (m, 1H), 3.46 (s, 3H), 2.95 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 137.7, 129.0, 114.5, 113.6, 110.2, 102.6, 99.7, 81.0, 72.7, 71.7, 68.9, 62.3, 55.5, 40.6; IR (neat) 3433, 2912, 1608, 1501, 1073; HRMS (ESI) m/e calcd for C₁₆H₂₄NO₆ (M+H) 326.1604, found 326.1607.

To a solution of the benzaldehyde **6** (2.0 g, 12.0 mmol) and and trimethylorthoformate (7.0 mL, 60.2 mmol) in methanol (20 mL) was added NH₄Cl (64.0 mg, 1.2 mmol). The reaction mixture was stirred for 24 h. After completion, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (PE/EA 19:1) to provide the desired acetal **7** (2.4 g, 98%) as a colorless oil. Rf = 0.5 (PE/EA = 19:1); ¹H NMR (700 MHz, CDCl₃) δ 6.62 (s, 2H), 6.43 (s, 1H), 5.31 (s, 1H), 3.80 (s, 6H), 3.34 (s, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 160.8, 140.5, 104.5, 103.1, 100.7, 55.4, 52.8; IR (neat) 2943, 2833, 1599, 1460, 1356, 1298; HRMS (ESI) m/e calcd for C₁₁H₁₆O₄Na (M+Na) 235.0946, found 235.0936.

To a solution of the diol **3e** (100.0 mg, 0.66 mmol) and the PPG reagent **7** (278.0 mg, 1.31 mmol) in DCM (2 mL) was added a catalytic amount of *p*-TsOH (25 mg, 0.13 mmol) at room temperature under N₂. The reaction mixture was stirred for 7 h. After completion of reaction, the reaction mixture was concentrated and purified with column chromatography (PE/EA 39:1) to produce **8** (178 mg, 90%) as a white solid. Rf = 0.2 (PE/EA = 39:1); ¹H NMR (700 MHz, CDCl₃) δ 7.36 (t, *J* = 7.4 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 2H), 6.72 (s, 2H), 6.46 (s, 1H), 5.53 (s, 1H), 4.37 (dd, *J* = 11.3, 4.5 Hz, 2H), 4.04 (t, *J* = 11.3 Hz, 1H), 3.82 (s, 6H), 3.38 (m, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 160.8, 140.4, 137.6, 128.9, 127.7, 127.5, 103.9, 101.6, 101.4, 72.4, 55.4, 41.1; IR (neat) 3007, 2964, 2940, 2854, 1597, 1461, 1378,1201; HRMS (ESI) m/e calcd for C₁₈H₂₁O₄ (M+H) 301.1440, found 301.1435.

To a stirred solution of oxalyl chloride (0.68 mL, 7.5 mmol) in dry DCM (50 mL) at -78 °C under nitrogen atmosphere, DMSO (1.065mL, 15 mmol) was added. The reaction mixture was stirred for 30 min before addition of the alcohol **9** (0.523 g, 2.5 mmol). After stirring for 1 h at -78 °C, DIPEA (3.48 mL, 20 mmol) was added and the reaction mixture was stirred for another 30 min. The reaction mixture was then gradually warmed up to 0 °C and was quenched with H₂O (25 mL). The organic phase was separated and the aqueous phase was extracted with DCM (1x25 mL). The combined organic phase was washed with water (3x15mL) and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA 30:1) to provide the desired dialdehyde **15** (418 mg, 81%) as a yellow solid. Rf = 0.2 (PE/EA 30:1); ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 2H), 7.58 (s, 1H), 7.37 (s, 2H), 3.46 (q, *J* = 7.1 Hz, 4H), 1.22 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 192.2, 148.6, 138.0, 119.4, 116.0, 44.6, 12.3; IR (neat) 2972, 2833, 1687, 1592; HRMS (ESI) m/e calcd for C₁₂H₁₆NO₂ (M+H) 206.1181, found 206.1178.

To a solution of the dialdehyde (250 mg, 1.22 mmol) and trimethylorthoformate (1.1 mL, 9.736 mmol) in methanol (5 mL) was added NH₄Cl (13 mg, 0.24 mmol) at room temperature under N₂. The reaction mixture was refluxed and stirred for 24 h. After completion, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (Hex/Tol/EA 15:15:1) to provide the desired diacetal **10** (319 mg, 88%) as a yellow solid. Rf = 0.2 (Hex/Tol/EA 15:15:1); ¹H NMR (400 MHz, CDCl₃) δ 6.79 (s, 1H), 6.73 (s, 2H), 5.29 (s, 2H), 3.40-3.34 (m, 16H), 1.14 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 147.9, 138.9, 112.6, 110.0, 103.8, 52.9, 44.3, 12.6; IR (neat) 2967, 2933, 2894, 2827, 1602, 1465; HRMS (ESI) m/e calcd for C₁₆H₂₈NO₄ (M+H) 298.2018, found 298.2020.

To a solution of diol 3e (202 mg, 1.33 mmol) and the PPG reagent 10 (158 mg, 0.53 mmol) in CH₃Cl (3 mL) was added a catalytic amount of CSA (25 mg, 0.11 mmol) and 4A MS (25 mg) at room temperature under N₂. The reaction mixture was refluxed for 3 h. After completion of reaction, the reaction solution was neutralized with TEA at room temperature and then concentrated under reduced pressure. The crude product was purified by column chromatography (PE/EA 30:1 to 10:1) to provide the pure diacetal **11e** (95 mg), **11e'** (62mg), and a mixture of **11e** and **11e'** (58 mg) in a combined 86% yield.

For **11e**, Rf = 0.3 (PE/EA 10:1); ¹H NMR (700 MHz, CDCl₃) δ 7.35 (t, *J* = 7.5 Hz, 4H), 7.28 (t, *J* = 7.3 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 4H), 6.99 (s, 1H), 6.85 (s, 2H), 5.54 (s, 2H), 4.36 (dd, *J* = 11.5, 4.6 Hz, 4H), 4.02 (t, *J* = 11.5 Hz, 4H), 3.41-3.36 (m, 6H), 1.17 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 148.1, 139.3, 137.9, 128.8, 127.7, 111.2, 110.0, 101.9, 72.3, 44.2,

41.1, 12.7; IR (neat) 2966, 2921, 2872, 1598,1488, 1089; HRMS (ESI) m/e calcd for $C_{30}H_{36}NO_4$ (M+H) 474.2644, found 474.2635.

For **11e'**, Rf = 0.28 (PE/EA 10:1); ¹H NMR (700 MHz, CDCl₃) δ 7.64 (d, *J* = 7.0 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.5 Hz, 3H), 6.97 (s, 1H), 6.90 (s, 1H), 6.87 (s, 1H), 5.68 (s, 1H), 5.56 (s, 1H), 4.39-4.36 (m, 6H), 4.04 (t, *J* = 11.0 Hz, 2H), 3.43-3.40 (m, 5H), 1.19 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 148.1, 142.9, 139.5, 139.2, 137.9, 128.8, 128.6, 128.3, 127.7, 127.4, 126.5, 111.4, 110.1, 109.8, 102.0, 101.7, 72.4, 70.9, 44.4, 41.2, 39.6, 12.7; IR (neat) 2968, 2922, 2865, 1600, 1488, 1404; HRMS (ESI) m/e calcd for C₃₀H₃₆NO₄ (M+H) 474.2644, found 474.2633.

To a solution of **3g** (158 mg, 0.81 mmol) and the PPG reagent **10** (97 mg, 0.33 mmol) in DMF (3 mL) was added a catalytic amount of CSA (15 mg, 0.065mmol) and 4A molecular sieve (25 mg) at room temperature under N₂. The reaction mixture was heated at 60°C for 4 h. After completion, the reaction mixture was neutralized with TEA and directly purified with column chromatography (DCM/MeOH 50:1) to provide **11g** (66 mg, 29%) and **12g** (54 mg, 35%).

For **11g**, Rf = 0.25 (DCM/MeOH 50:1); ¹H NMR (700 MHz, CDCl₃/CD₃CN 5:2) δ 6.85 (s, 1H), 6.74 (s, 2H), 5.44 (s, 2H), 4.74 (d, *J* = 3.8 Hz, 2H); 4.22 (dd, *J* = 10.2, 4.8 Hz, 2H); 3.80 (td, *J* = 9.1, 3.5 Hz, 2H); 3.74 (td, *J* = 9.8, 4.2 Hz, 2H); 3.69 (t, *J* = 9.2 Hz, 2H); 3.53 (td, *J* = 9.2, 4.2 Hz, 2H); 3.43 (s, 6H), 3.42 (t, *J* = 9.1 Hz, 2H); 3.38-3.35 (m, 6H), 2.88 (d, *J* = 8.4 Hz, 2H); 1.13 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (700 MHz, CDCl₃/CD₃CN 5:2) δ 152.9, 143.9, 116.8, 115.8, 107.54, 107.52, 105.5, 86.5, 78.2, 76.4, 74.1, 67.8, 60.6, 49.5, 17.6; IR (neat) 3347, 2926, 2867, 1606, 1364; HRMS (ESI) m/e calcd for C₂₆H₄₀NO₁₂ (M+H) 558.2551, found 558.2548.

For **12g**, Rf = 0.35 (DCM/MeOH 15:1); ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 7.27 (s, 1H), 7.12 (s, 1H), 7.00 (s, 1H), 5.52 (s, 1H), 4.81 (s, 1H), 4.31 (dd, *J* = 10.1, 4.8 Hz, 1H); 3.94 (t, *J* = 8.2 Hz, 1H); 3.83 (m, 1H), 3.75 (t, *J* = 10.3 Hz, 1H); 3.64 (m, 1H), 3.51 (t, *J* = 9.4 Hz, 1H); 3.47 (s, 3H), 3.44-3.36 (m, 5H), 2.88 (s, 1H), 2.39 (d, *J* = 14 Hz, 1H); 1.69 (s, 1H); 1.17 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (700 MHz, CDCl₃) δ 193.1, 148.2, 139.0, 137.6, 116.0, 115.5, 111.5, 101.8, 99.8, 81.0, 72.9, 71.8, 69.0, 62.3, 55.7, 44.4, 12.6; IR (neat) 3385, 3246, 2935, 2869, 1699, 1600, 1075; HRMS (ESI) m/e calcd for C₁₉H₂₈NO₇ (M+H) 382.1866, found 382.1859.

General procedure of photoreaction in NMR tubes: A 5.0 mM solution of **1g** (39 mg in 24 mL of MeOH) was equally distributed into 16 of 5 mm NMR tubes (1.5 mL x 16) in order to be irradiated under the same optimal conditions. (Typically, we first conducted photoreactions in NMR tubes to optimize the reaction conditions because we use ¹H NMR to monitor the reactions. Photo-deprotection reactions can also be carried out in other reaction vessels, for example, in a 250 mL reaction vessel in the regular setting of a Hanovia photoreactor.^[1]) The NMR tubes were sealed and bound to the immersion well condenser of a Hanovia photoreactor with a 450 W medium pressure UV lamp. The reaction solution was irradiated with the UV light filtered through a Pyrex filter sleeve for 30 min. The reaction solutions in all NMR tubes were combined, concentrated and purified with column chromatography (DCM/MeOH 15:1 to 10:1) to provide the methyl glucoside **3g** (22 mg, 94%).

For the photo deprotection reaction of **1b**, the product **3b** was derivatized with TBSOTf/Et₃N, and isolated as the corresponding TBS-protected diol **S1** in 81% yield. Rf = 0.80 (PE/EA 19:1); ¹H NMR (400 MHz, CDCl₃) δ 5.81 (m, 1H), 5.18 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.08 (dd, *J* = 10.4, 1.4 Hz, 1H), 3.91 (m, 2H), 3.75 (m, 1H), 3.50-3.41 (m, 3H), 3.30 (m, 1H), 0.8 (s, 18H), -0.03 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 135.0, 116.5, 72.7, 72.3, 65.1, 25.9, 18.3, 18.2; IR (neat) 2954, 2929, 2885, 2857, 1472, 1253; HRMS (ESI) m/e calcd for C₁₈H₄₁O₃Si₂ (M+H) 361.2594, found 361.2594.

Quantum yield determination: A 5.0 mM solution of **1** (in methanol) and a 5.0 mM solution of DEABnprotected ethylene glycol monoallyl ether (with known quantum yield of 0.26)^[2] (CD₃CN/D₂O 4:1) in NMR tube were placed behind a standard 1 cm quartz UV cuvette contain the filter solution. Filtered light centered at 312 nm was obtained by passing light from the 450 W medium pressure mercury lamp through a solution of 2.0 mM K₂CrO₄ in a 5% K₂CO₃ aqueous solution.^[3] The yields of photo reactions were determined by ¹H NMR analysis.

References:

[1] Wang, P.; Devalankar, D.; Lu, W. J. Org. Chem. 2016, 81, 6195.

[2] Wang, P.; Lu, W.; Devalankar, D. A.; Ding, Z. Org. Lett. 2015, 17, 2114.

[3] Filter solutions: (a) Zimmerman, H.; Nuss, J.; Tantillo, A. J. Org. Chem. **1988**, 53, 3792. (b) Zimmerman, H. Mol. Photochem. **1971**, 3, 281.

Ĥ

S11

()

Ê

200		والمتعارية والمستعمل والمتعارية والمتعارية والمتعارية والمتعارية والمتعارية والمتعارية والمتعارية والمتعارية والمتعارية				
180		nil : to o fa historia da statuta tida na				
160	مانیا برای می از می می از می	Like bill 1 - shows it is not a fit				
140						139.46
120	المعادية والمحادثة المحادثة ال	مرید اور				114.40
100	میں اور					
- 08						77.51 77.08 76.66
60 -						67.41
40 -	المراجع المراجع مناطقة المراجع ا مناطقة المراجع ا					40.72
20						25.82
ppm 1.40	GB C	F2 - Processing parameters SI 32768 75.4048860 MHz	======================================	====== CHANNEL fl ======= NUC1 13C Pl 8.00 usec PL1 -1.80 dB SFO1 75.4124265 MHz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Current Data Parameters NAME EXPNO PROCNO 1

Ì

S21

S27

OBn

 NMe_2

Ì

Įd

0

Ì

(7

Ĥ

Ì

s 1

OTBS

