Supporting Information for:

Organocatalytic Enantioselective Allylic Etherification of Morita-Baylis-Hillman Carbonates and Silanols

Hui-Li Liu, Ming-Sheng Xie*, Gui-Rong Qu, Hai-Ming Guo*

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China E-mail: ghm@htu.edu.cn; xiemingsheng@htu.edu.cn

Contents

1. Control experiments	.S2
2. X-Ray crystallographic analysis of 4a	.S3
3. X-Ray crystallographic analysis of 7ka	.85
4. Copies of HPLC spectra for racemic and enantiomerically enriched compounds	.S7
5. Copies of NMR spectra for the 3a , 4a , 5e , 5f , 7 , 9 , 10aa and 11aa	335

1. Control experiments ^a

Table S1

	Br	DBoc CO ₂ Me + Ph ₃ SiH	DABCO (10 mol %)	%) Br		
	2	2a 1a		4a		
entry	base	additive	atmosphere	time	yield (%) ^b	
1			air	7 h	trace	
2	NaH		air	7 h	18	
3	NaH		N_2	7 h	20	
4	NaH		O ₂	7 h	15	
5 ^c	NaH	H ₂ O	air	1 h	40	
6 ^d	NaH	H ₂ O	air	2 h	50	
7	NaOH		air	2 h	<5	

^a Unless otherwise noted, the reaction conditions were: **2a** (0.1 mmol), **1a** (2.5 equiv), DABCO (10 mol %), base (1.0 equiv), DCM (1.0 mL) at room temperature. ^b Isolated yield. ^c NaH (1.0 equiv) and H₂O (1.0 equiv) were used. ^d NaH (2.0 equiv) and H₂O (2.0 equiv) were used.

Scheme S1 Ph₃SiH transformed into Ph₃SiOH

When Ph₃SiH was used as the nucleophile, the reaction was conducted under the catalyst of DABCO (10 mol %) in DCM at room temperature, affording trace of the product **4a** (Table S1, entry 1). Then we conducted a series of control experiments to investigate the oxygen sources of **4a**. First, in order to remove the influence of O_2 , the reaction was conducted under the atmosphere of air, N_2 , or O_2 (Table S1, entries 2-4), giving the product of **4a** in 15-20% yields. So oxygen gas wasn't the oxygen source of the product **4a**. Then H₂O was added as the additive, which shorted the reaction time and improved the yield from 18% to 40% (Table S1, entries 2 vs 5). When NaOH was used to replace NaH and H₂O, trace of **4a** was obtained (Table S1, entry 7). Thus, H₂O

is the oxygen source of the product 4a. We assumed that Ph₃SiH transformed into Ph₃SiOH. In order to verify our conjecture, the substrate of 2a was removed, and 7% yield of Ph₃SiOH (3a) was obtained (Scheme S1).

2. X-Ray crystallographic analysis of 4a.

A single crystal of **4a** was obtained by recrystallized from hexane and DCM. The thermal ellipsoid was drawn at the 50% probability level.

Figure S1 X-ray crystal structure 4a.

Table S2 Crystal data and structure refinement for 4a.

Formula	C ₂₉ H ₂₅ BrO ₃ Si
Formula weight	529.49
Temperature (K)	296(2)
Crystal system	orthorhombic
Wavelength (Å)	0.71073
Space group	P b a c
a (Å)	19.289(4)
b (Å)	11.081(2)
c (Å)	23.943(5)
α (°)	90.00
β (°)	90.00
γ (°)	90.00
Volume (Å ³)	5117.7(18)
Ζ	8
Calculate density (Mg/m ³)	1.374
Absorption coefficient (mm ⁻¹)	1.681
F000	2176.0
Crystal size (mm)	0.35×0.25×0.15
Theta range for data collection (°)	2.11 to 25.00
Reflections collected	38908
Independent reflections	4500
Data/restraints/parameters	4500/0/307
Goodness-of-fit on F ²	1.085
Final R indices	$R_1 = 0.0403 \text{ w} R_2 = 0.1003$
R indices (all data)	$R_1 = 0.0749 \text{ w}R_2 = 0.1350$

3. X-Ray crystallographic analysis of 7ka.

A single crystal of **7ka** was obtained by recrystallized from hexane and DCM. The thermal ellipsoid was drawn at the 50% probability level.

Figure S2 X-ray crystal structure 7ka.

Tuble Se erystal auta stractare reinfentent for 7 Ra	Table S3	Crystal	data and	structure	refinement	for 7k	a
--	----------	---------	----------	-----------	------------	--------	---

Formula	C ₂₉ H ₂₅ BrO ₃ Si
Formula weight	529.49
Temperature	296(2)
Crystal system	orthorhombic
Wavelength (Å)	0.71073
a(Å)	10.545(2)
b(Å)	12.431(3)

c(Å)	19.567(4)
α(°)	90.00
β(°)	90.00
γ(°)	90.00
Volume (Å ³)	2565.1(9)
Z	4
Calculate density(Mg/m ³)	1.371
Absorption coefficient(mm ⁻¹)	1.677
F000	1088
Crystal size	0.35×0.30×0.25
Theta range for data collection	1.94-25.00
Reflections collected	18234
Independent reflections	4510
Data/restraints/parameters	4510/0/307
Goodness-of-fit on F ²	1.033
Final R indices	$R_1 = 0.0311 \text{ w} R_2 = 0.0645$
R indices (all data)	$R_1 = 0.0446 \text{ w}R_2 = 0.0695$
Flack parameter	0.006(7)
Space group	P2 ₁ 2 ₁ 2 ₁

4. Copies of HPLC spectra for racemic and enantiomerically enriched compounds.

Реак	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.312	VV	0.2694	1985.70154	109.69669	49.6342
2	12.442	VB	0.3008	2014.97046	99.89694	50.3658

1 11.288 VV 0.2780 5429.13672 292.04575 95.0004 2 12.522 VB 0.3122 285.72122 13.51119 4.9996

1 6.891 BB 0.1878 1.01709e4 806.84467 95.1659 2 8.453 MM 0.2433 516.64551 35.38952 4.8341

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	19.787	BV	0.6206	4315.40674	102.53961	50.3113
2	22.873	VB	0.8915	4262.00342	71.70576	49.6887

1	18.163	VV	0.9924	6.24351e4	884.54706	95.9442
2	22.970	VB	0.8068	2639.28589	46.98482	4.0558

S21

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	96
1	16.350	MM	0.4767	728.31909	25.46144	50.2882
2	18.541	MM	0.5643	719.97144	21.26294	49.7118

1	9.187	MM	0.1947	3.94259e4	3375.13135	90.5959
2	10.280	MM	0.1946	4092.52661	350.55713	9.4041

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	96
1	8.961	BB	0.1923	7624.82227	598.59155	49.4240
2	10.186	VB	0.2775	7802.53027	394.27710	50.5760

1	8.849	BB	0.2112	2103.70239	150.40987	8.3233
2	9.819	BV	0.3358	2.31712e4	944.29541	91.6767

#	[min]		[min]	[mAU*s]	[mAU]	8
-						
1	7.717	BB	0.2265	1.12556e4	748.08954	93.8115
2	9.852	BB	0.3103	742.50446	35.81837	6.1885

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
					I	
1	27.715	BB	1.0511	1767.05713	24.88709	50.0829
2	31.641	BB	1.1197	1761.20825	23.24776	49.9171

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	da	
1	26.129	BV	1.1878	3.36073e4	404.45731	92.4430	
2	30.892	VB	1.1780	2747.33618	34.60909	7.5570	

#	[min]		[min]	[mAU*s]	[mAU]	5	
1	13.578	VV	0.7102	3.60462e4	696.31445	95.7804	
2	17.299	VB	0.7179	1588.01416	30.29060	4.2196	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	96
					I	
1	5.808	BV	0.1361	3052.74707	332.89465	49.4522
2	6.288	MM	0.1798	3120.37939	289.28937	50.5478

-		.041	DV	0.100/	040.24240	00.01000	2.0020
2	6	.279	VV	0.1710	7895.98926	684.33173	90.3304

Ŧ	[min]		[min]	[mAU*s]	[mAU]	8	
1	11.640	BB	0.4203	7726.89795	267.25018	93.2903	
2	18.283	BB	0.5075	555.73975	16.15867	6.7097	

S33

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.077	BB	0.3894	3.91311e4	1556.31104	39.5461
2	22.792	VB	0.4779	1.01734e4	329.76599	10.2813
3	26.202	BB	0.6543	3.96553e4	912.04364	40.0758
4	31.308	BB	0.6974	9990.79590	219.34000	10.0967

 2
 22.479 BB
 0.4497 4505.53320
 155.04117
 20.1122

 3
 25.994 VB
 0.5926 1.70774e4
 441.45065
 76.2314

4 31.000 BB

S34	

0.6120 171.11867 4.13806 0.7639

5. Copies of NMR spectra for the 3a, 4a, 5e, 5f, 7, 9, 10aa and 11aa.

¹H-NMR for 3a

¹³C-NMR for 5f

¹³C-NMR for 7aa

¹³C-NMR for 7ba

¹H-NMR for 7ca

¹³C-NMR for 7ca

¹³C-NMR for 7da

¹³C-NMR for 7ea

¹³C-NMR for 7fa

¹³C-NMR for 7ga

¹H-NMR for 7ha

¹³C-NMR for 7ha

¹³C-NMR for 7ia

¹³C-NMR for 7ka

¹³C-NMR for 7la

¹³C-NMR for 7ma

¹H-NMR for 7na

¹³C-NMR for 7na

¹³C-NMR for 7pa

¹H-NMR for 7ra

¹³C-NMR for 7ra

¹³C-NMR for 7sa

¹³C-NMR for 7ta

¹³C-NMR for 7ua

¹³C-NMR for 7va

¹³C-NMR for 7wa

¹³C-NMR for 7xa

¹³C-NMR for 7ya

¹H-NMR for 7ab

¹³C-NMR for 8aa

¹³C-NMR for 9ca

¹³C-MR for 9ea

¹H-NMR for 9fa

¹³C-NMR for 9fa

¹³C-R for 9ya

¹H-NMR for 10aa

¹³C-NMR for 10aa

¹H-NMR for 11aa

¹³C-NMR for 11aa

