A 1-hole $\mathrm{Cu}_{4} \mathrm{~S}$ cluster with $\mathrm{N}_{2} \mathrm{O}$ reductase activity: a structural and functional model for $\mathrm{Cu}_{\mathrm{Z}}{ }^{*}$

Brittany J. Johnson, William E. Antholine, Sergey V. Lindeman, Michael J. Graham, Neal P. Mankad*

* npm@uic.edu

Supporting Information

Contents:

Experimental and preparation of compounds S3
Reaction between 2 and $\mathrm{N}_{2} \mathrm{O}$ S7
Oxygen trapping experiments from reaction between 2 and $\mathrm{N}_{2} \mathrm{O}$ S8
Headspace Analysis by GC-MS of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and 2 S9
Computational methods S10
Figure S1. χT vs. temperature plots of $\mathbf{1}^{4}$ S12
Figure S2. X-ray crystal structure of $\mathrm{Cu}(\mathrm{II}) \mathrm{S}_{2} \mathrm{NCN}_{2}$ paramagnetic impurity S13
Figure S3. X-band EPR spectrum of $\mathrm{Cu}(\mathrm{II}) \mathrm{S}_{2} \mathrm{NCN}_{2}$ impurity S14
Figure S4. Q-band EPR spectrum of $\mathbf{2}$ S15
Figure S5. X-band EPR spectrum of 2 S16
Figure S6. ${ }^{1} \mathrm{H}$ NMR of 2 S16
Figure S7. Absorption spectra for 0.082 mM 2 and $0.085 \mathrm{mM} \mathbf{1}^{4}$ in THF S17
Figure S8. Infrared spectrum of 2 S18
Figure S9. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1}$ formed after exposure of $\mathrm{N}_{2} \mathrm{O}$ to 2 S19
Figure S10. ${ }^{1} \mathrm{H}$ NMR of control experiment between N_{2} and 2 S20
Figure S11. ${ }^{1} \mathrm{H}$ NMR of recovered 1 after reaction with $\mathrm{N}_{2} \mathrm{O}$ and 2 S21
Figure S12. ${ }^{1} \mathrm{H}$ NMR of recovered $\mathbf{1}$ after control between N_{2} and $\mathbf{2}$ S22
Figure S13. ${ }^{1} \mathrm{H}$ NMR of oxygen trapping using $\mathrm{Me}_{3} \mathrm{SiCl}$ after $\mathrm{N}_{2} \mathrm{O}$ and 2 S23
Figure S14. ${ }^{1} \mathrm{H}$ NMR of oxygen trapping using $\mathrm{Me}_{3} \mathrm{SiCl}$ after N_{2} and 2 S24

Figure S15. ${ }^{1} \mathrm{H}$ NMR of oxygen trapping using benzoyl chloride after $\mathrm{N}_{2} \mathrm{O}$ and $2 \quad \mathrm{~S} 25$

Figure S16. Comparison of ${ }^{1} \mathrm{H}$ NMR of oxygen trapping using benzoyl chloride to confirm formation of benzoic anhydride S26

Figure S17. Reaction headspace chromatogram from ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and 2 S27
Figure S18. ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ blank flask chromatogram S28
Figure S19. Mass spectrum of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and 2 after 48 hours S29
Table S1. Percent composition of species in Figure S19 S29
Figure S20. Mass spectrum of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ blank after 48 hours S30
Table S2. Percent composition of species in Figure S20 S30
Figure 21. Mass spectrum of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and $\mathbf{2}$ after 6 hours S31
Table S3. Percent composition of species in Figure S21 S31
Figure S22. Mass spectrum of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ blank S32
Table S4. Percent composition of species in Figure S22 S32
Figure S23. Mass spectrum of elude at 5.48 minutes in Figure S17 S33
Table S5. Integration values of ${ }^{15} \mathrm{~N}_{2}$ from reaction vs. blank headspace S33
Table S6: Comparison of calculated and experimental bond distances S34
Figure S24. Optimized structure of 2' S35
Figure S25. Calculated UV-Vis spectrum of 2' S35
Figure S26. Optimized structure of 1' S36
Figure S27. Calculated UV-Vis spectrum of 1', S36
Table S7. Optimized coordinates of 2, S37
Table S8. Optimized coordinates of 1' S39
Table S9. Excitation energies and oscillator strengths of 2' S41
Table S10. Excitation energies and oscillator strengths of 1', S45
Figures S28-29. Selected MO surfaces for 1' S52
Figures S30-31. Selected MO surfaces for 2' S53
References cited S54

EXPERIMENTAL

General Considerations. Unless otherwise specified, all reactions and manipulations were performed under purified N_{2} in a glovebox or using standard Schlenk line techniques. Glassware was oven-dried prior to use. Reaction solvents (diethyl ether, toluene, tetrahydrofuran, dichloromethane, acetonitrile, pentane) were sparged with argon and dried using a Glass Contour Solvent System built by Pure Process Technology, LLC. Deuterated solvents were degassed by repeated freeze-pump-thaw cycles and then stored over $3-\AA$ molecular sieves. Unless otherwise specified, all other chemicals were purchased from commercial sources and used without further purification. 1 L of Nitrous Oxide $\left({ }^{15} \mathrm{~N}_{2}, 98 \%+\right)$ was purchased from Cambridge Isotope Laboratories, Inc. A 460 mL Stainless Steel $1 / 4$ " NPT Stainless Steel Whitey Straight/Male adaptor was also purchased and assembled from Cambridge Isotope Laboratories packaging prior to shipment.

Spectroscopic Measurements. NMR spectra for compound characterization were recorded at ambient temperature using Bruker Avance DPX-400 or Bruker Avance DRX-500 MHz spectrometers. ${ }^{1} \mathrm{H}$ NMR chemical shifts were referenced to residual solvent peaks. FT-IR spectra were recorded on solid samples in a glovebox using a Bruker ALPHA spectrometer fitted with a diamond-ATR detection unit. Elemental analyses were performed by the Midwest Microlab, LLC in Indianapolis, IN. UV-Vis absorbance spectra were taken at room temperature using a JASCO V-660 Spectrophotometer. Absorbance was measured at 0.5 nm intervals and with a continuous scan speed of $1000 \mathrm{~nm} / \mathrm{min}$. X-band spectra were obtained at 10 K with an Elexsys E500 spectrometer, Bruker, Billerica, MA located at the National Biomedical EPR Center at the Medical College of Wisconsin. Q-band spectra were obtained on a Varian E109 spectrometer at $-150^{\circ} \mathrm{C}$ located at the National Biomedical EPR Center at the Medical College of Wisconsin. Spectra were
simulated with EasySpin. ${ }^{1}$ The 1st harmonic spectra were obtained using SumSpec (a program available from the National Biomedical EPR Center) using pseudomodulation with a 1% or 3% Bessel function. Samples of $5 \mathrm{mM} \mathbf{1}^{4}$ (not shown), $\mathbf{2}$ and $\mathrm{Cu}(\mathrm{II}) \mathrm{S}_{2} \mathrm{NCN}_{2}$-containing impurity were glassed in 2-methyltetrahydrofuran.

Magnetic Measurements. Magnetic measurements were performed on polycrystalline samples in a sealed polyethylene bag or in a sealed quartz tube restrained with eicosane. All data were collected using a Quantum Design MPMS-XL SQUID magnetometer in a temperature range of 1.8 to 400 K at applied dc fields of 0.1 T and 7 T . A quartz tube was employed for high temperature measurements to avoid melting the polyethylene bag, and a high-field was employed with the quartz-tube sample to ensure sufficient signal-to-noise at high temperatures.

X-ray crystallography. X-ray crystallography data on dark violet tablets of $\mathbf{2}$ was collected at the X-ray Structural Laboratory at Marquette University (Milwaukee, WI). The X-ray singlecrystal diffraction data were collected with an Oxford Diffraction SuperNova diffractometer equipped with dual microfocus $\mathrm{Cu} / \mathrm{Mo}$ X-ray sources, X-ray mirror optics, Atlas CCD detector and low-temperature Cryojet device. Data was collected using $\mathrm{Cu}(\mathrm{K} \alpha)$ radiation at 100 K . The data was processed with CrysAlisPro program package (Oxford Diffraction Ltd., 2010) typically using a numerical Gaussian absorption correction (based on the real shape of the crystal) followed by an empirical multi-scan correction using SCALE3 ABSPACK routine. The structures were solved using SHELXS program and refined with SHELXL program ${ }^{2}$ within Olex2 crystallographic package. ${ }^{3}$ All computations were performed on an Intel PC computer under Windows 7 OS. Hydrogen atoms were localized in difference syntheses of electron density but were refined using appropriate geometric restrictions on the corresponding bond lengths and bond angles within a riding/rotating model (torsion angles of Me hydrogens were optimized to better fit
the residual electron density). The crystal was twinned: regular twins with 180° rotation around direct -101 vector. Because of quasi-rational cell dimensions, all reflections with $h+\models 2 n$ overlap exactly (but not with identical indexes - HKL transformation matrix -. $50-.50-10-1.50 .5$). Reflections with $\mathrm{h}+1=2 \mathrm{n}+1$ are separate. The structure contains two symmetrically independent tetranuclear units having a similar geometry. Two $\mathrm{K}^{+} / 18$-crown -6 counter ions are disordered to a different degree. The disorder affects as the position of K atom (swinging alternatively in axial direction to make K^{+}...Ar contacts with neighboring anions) as well as the crown-ether itself. The structure contains well-ordered 1 eq of solvate DCM solvent. It also contains large areas of highlydisordered solvent only partially localized/identified as diethyl ether. Because of the twinning, an application of a solvent mask procedure was prohibited.

Headspace Analysis by GC-MS. Headspace gas was analyzed by a JEOL GCMate II (JEOL USA, Peabody MA) gas chromatograph/mass spectrometer, the gas chromatograph was an Agile nt 6890Plus (Wilmington DE) equipped with a G1513A autoinjector with 100 vial sample tray connected to a G1512A controller. The gas chromatography column was a J\&W GS-CarbonPLOT (Agilent Tech), 60 m long, 0.320 mm diameter, $1.50 \mu \mathrm{~m}$ film thickness. The carrier gas was helium (99.999\% Ultra High Purity) run through a STG triple filter (Restek Corp.) at a constant flow rate of $2.5 \mathrm{~mL} / \mathrm{min}$. The inlet temperature was $250^{\circ} \mathrm{C}$ and was fitted with an Agilent 4 mm ID single taper split liner containing deactivated glass wool. The static headspace analysis was performed using $5 \mu \mathrm{~L}$ of the experimental gas mixture manually injected via syringe. The GC inlet split ratio was 20:1. The GC oven was run in isothermal mode at a temperature of $30^{\circ} \mathrm{C}$ for 5 minutes then ramped $10^{\circ} \mathrm{C} / \mathrm{min}$ to $80^{\circ} \mathrm{C}$. Total run time was approximately 10 min . The mass spectrometer was a benchtop magnetic sector operating at a nominal resolving power of 500 using an accelerating voltage of 2500 V . The spectrometer was operated in full scan EI mode (+Ve) with
the filament operating at 70 eV scanning from $\mathrm{m} / \mathrm{z} 10$ to $\mathrm{m} / \mathrm{z} 850$ using a linear magnet scan. The scan speed was $0.2 \mathrm{~s} /$ scan. Data analysis was performed using the TSSPro software (Shrader Analytical \& Consulting Laboratories, Inc., Detroit MI) provided with the spectrometer. Mass calibration was performed using perfluorokerosene (PFK).

Preparation of $\left[\mathrm{Cu}_{4}\left(\boldsymbol{\mu}_{\mathbf{4}}-\mathbf{S}\right)\left(\boldsymbol{\mu}_{\mathbf{2}}-\mathrm{NCN}\right)_{\mathbf{4}}\right][\mathrm{K}(\mathbf{1 8}-\mathrm{crown}-\mathbf{6})]$ (2). $\mathbf{1}^{4}(0.10 \mathrm{~g}, 0.079 \mathrm{mmol})$ was dissolved in approximately 60 mL of toluene using a magnetic stir bar. Solid [K(18-crown$\left.6)_{2}\right][\mathrm{Fp}]^{5}(0.057 \mathrm{~g}, 0.076 \mathrm{mmol})$ was added slowly to stirring solution at room temperature. The solution was stirred vigorously overnight. The next day the solution was filtered. The collected dark solid was washed with pentane to remove any Fp_{2} (cyclopentadienyliron dicarbonyl dimer) until filtrate was clear, and then washed with toluene to remove any unreacted $\mathbf{1}$ until filtrate was clear. The solid was collected and dried under vacuum. Yield of 2: $0.091 \mathrm{~g}, 75 \%$. Compound 2 was stored in a freezer $\left(-36^{\circ} \mathrm{C}\right)$ and is not stable in solution at room temperature for more than an hour. Note: Trace amounts (2-5\%) of $\mathrm{Cu}_{2}\left[\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}(\mathrm{H})\right]_{2}{ }^{4}$ were often detected by ${ }^{1} \mathrm{H}$ NMR regardless of multiple purification attempts. The best method for removing $\mathrm{Cu}_{2}[(2,4,6-$ $\left.\left.\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}(\mathrm{H})\right]_{2}$ is by adding a small amount of tetrahydrofuran (2 mL) to solid $2(0.091 \mathrm{~g})$ so that $\mathrm{Cu}_{2}\left[\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}(\mathrm{H})\right]_{2}$ dissolves but $\mathbf{2}$ is super-saturated and doesn't dissolve entirely. This solution is filtered, and the resulting purple solid is washed with a small amount of tetrahydrofuran (2 mL) and then pentane (2 mL) to remove any remaining tetrahydrofuran solvent. The purple solid can then be collected and dried under vacuum. Usually this purification method is done once to achieve experimental purity. Dark black crystals may be obtained by dissolving 2 in a minimum amount of dimethoxyethane, pipette-filtering through Celite, and leaving solution at $-36^{\circ} \mathrm{C}$ for four days. NMR samples were dissolved in acetone- d_{6} and pipette-filtered through Celite into NMR tube. ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta 3.66$ (s, $24 \mathrm{H}, 18$-crown-6). FT-IR (cm^{-}
${ }^{1}$): 2992, 2903, 2854, 2724, 1717, 1652, 1609, 1556, 1538, 1469, 1330, 1209, 1104, 959, 847, 738, 586, 504, 422. Anal. calcd. for $\mathrm{C}_{88} \mathrm{H}_{116} \mathrm{Cu}_{4} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{SK}: \mathrm{C}, 61.90 ; \mathrm{H}, 6.85$; N, 6.56. Found: C, 60.37; $\mathrm{H}, 6.50 ; \mathrm{N}, 6.57$. Repeated attempts at obtaining satisfactory combustion analysis results (with \%C within $\pm 0.4 \%$ of the calculated value) gave results with a large degree of variance, indicating either that the spectroscopically pure samples were compromised during shipping/handling or that the compound does not combust cleanly.

Detection of 1 after reaction between $\mathrm{N}_{2} \mathrm{O}$ and 2. Inside a N_{2} filled glovebox, to a Schlenk tube equipped with a Telfon screw cap and magnetic stir bar, $2(0.006 \mathrm{~g}, 0.0035 \mathrm{mmol})$ was added and dissolved in approximately 2.5 mL dichloromethane. The tube was sealed with the Teflon screw cap and taken out of the glovebox and connected to a Schlenk line streaming $\mathrm{N}_{2} \mathrm{O}$. The solution was cooled to $-78^{\circ} \mathrm{C}$ (dry ice and acetone bath) with stirring. The solution was then exposed to $\mathrm{N}_{2} \mathrm{O}$ for 6.5 hours while maintaining the cooling bath at $-78^{\circ} \mathrm{C}$. Once cooling bath was removed, solvent was removed by vacuum evaporation and Schlenk tube was closed and pumped back into the glovebox. Evaporated residue was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and pipette-filtered through Celite into an NMR tube for analysis. A control experiment was conducted by same procedure using $0.005 \mathrm{~g}(0.0029 \mathrm{mmol})$ of $\mathbf{2}$ in approximately 2 mL of dichloromethane while under N_{2}. Using integration of 18 -crown- 6 as an internal standard (24 H) in ${ }^{1} \mathrm{H}$ NMR reveals 45% NMR yield of $\mathbf{1}^{4}$ in the reaction with $\mathrm{N}_{2} \mathrm{O}$ (Figure S 9) with respect to any $\mathrm{Ar}-\mathrm{CH}_{3}$ peak of $\mathbf{1}(12 \mathrm{H})$ and 0% yield in N_{2} control experiment (Figure S10).

Recovery of 1 after reaction between $\mathrm{N}_{2} \mathrm{O}$ and 2. Inside a N_{2} filled glovebox, to a Schlenk tube equipped with a Teflon screw cap and magnet stir bar, $2(0.021 \mathrm{~g}, 0.012 \mathrm{mmol})$ was added and dissolved in dichloromethane $(10 \mathrm{~mL})$. The tube was sealed with the Teflon cap and taken out of the glovebox and connected to Schlenk line streaming with $\mathrm{N}_{2} \mathrm{O}$. The solution in the
flask was cooled to $-78^{\circ} \mathrm{C}$ (dry ice and acetone bath) with stirring, and then opened to $\mathrm{N}_{2} \mathrm{O}$ for 6 hours while maintaining the cooling bath at $-78^{\circ} \mathrm{C}$. Solvent was removed by vacuum evaporation and Schlenk tube was closed and pumped back into the glovebox. Purple evaporated residue inside Schlenk tube was washed with acetonitrile (approximately 20 mL), in which $\mathbf{1}$ is insoluble, and then pipette-filtering through Celite until filtrate became clear. Dark purple solid remaining was collected using dichloromethane and the solution was completely evaporated by vacuum. The same procedure was followed in a control experiment using $0.021 \mathrm{~g}(0.012 \mathrm{mmol})$ of $\mathbf{2}$ in 10 mL of dichloromethane under N_{2}. Amount of $\mathbf{1}$ isolated from $\mathrm{N}_{2} \mathrm{O}$ reaction residue: $0.015 \mathrm{~g}(0.010$ mmol, 88% yield, Figure S 11); amount of $\mathbf{1}$ isolated from N_{2} control reaction residue: 0.0052 g ($0.0035 \mathrm{mmol}, 30 \%$ decomposition, Figure S12).

Oxygen Trapping Experiment with $\mathbf{M e}_{3} \mathbf{S i C l}$. Inside a N_{2} filled glovebox, to a Schlenk tube equipped with a Teflon screw cap and magnet stir bar, $2(0.003 \mathrm{~g}, 0.0017 \mathrm{mmol})$ was added and dissolved in dichloromethane (3 mL). The tube was sealed with the Teflon cap and taken out of the glovebox and connected to Schlenk line streaming with $\mathrm{N}_{2} \mathrm{O}$. The solution in the flask was cooled to $-78^{\circ} \mathrm{C}$ (dry ice and acetone bath) with stirring, and then opened to $\mathrm{N}_{2} \mathrm{O}$ for 3.5 hours while maintaining the temperature at $-78^{\circ} \mathrm{C}$. Solvent was removed by vacuum evaporation and Schlenk tube was closed and pumped back into the glovebox. Purple evaporated residue inside Schlenk tube was dissolved in approximately 1 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and $95 \mu \mathrm{~L}$ of a 0.092 M solution of TMS-Cl $(0.0087 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added. Contents were stirred for 1 hour at room temperature and were then pipette-filtered through Celite into an NMR tube for analysis (Figure S13). The same procedure was followed in a control experiment using $0.006 \mathrm{~g}(0.0035 \mathrm{mmol})$ of $\mathbf{2}$ in 3 mL of dichloromethane, under N_{2}, followed by addition of $190 \mu \mathrm{~L}$ of $0.092 \mathrm{M} \mathrm{TMS}-\mathrm{Cl}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution (0.017 mmol) in the same manner as described in the $\mathrm{N}_{2} \mathrm{O}$ experiment (Figure

S14). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 0.07\left(\mathrm{~s},\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{O}\right), 0.43$ (s, unreacted TMS-Cl), $1.31(\mathrm{~s}, \mathbf{1}$ $\left.\mathrm{Ar}-\mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.15\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.17\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.77(\mathrm{~s}$, $\mathbf{1}$ Ar- CH_{3}), 3.63 (s, 18-crown-6), 6.10 (s, $\left.\mathbf{1} \mathrm{NC}(\mathrm{H}) \mathrm{N}\right), 6.25$ (s, $\left.\mathbf{1} \mathrm{Ar}-\mathrm{CH}\right), 6.31$ ($\mathrm{s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}$), 6.61 (s, $1 \mathrm{NC}(\mathrm{H}) \mathrm{N}), 6.71$ (s, $\mathbf{1}$ Ar-CH).

Oxygen Trapping Experiment with Benzoyl Chloride. Inside a N_{2} filled glovebox, to a Schlenk tube equipped with a Teflon screw cap and magnet stir bar, $2(0.010 \mathrm{~g}, 0.0058 \mathrm{mmol})$ was added and dissolved in dichloromethane (5 mL). The tube was sealed with the Teflon cap and taken out of the glovebox and connected to Schlenk line streaming with $\mathrm{N}_{2} \mathrm{O}$. The solution in the flask was cooled to $-78^{\circ} \mathrm{C}$ (dry ice and acetone bath) with stirring, and then opened to $\mathrm{N}_{2} \mathrm{O}$ for 3 hours while maintaining the temperature at $-78^{\circ} \mathrm{C}$. Solvent was removed by vacuum evaporation and Schlenk tube was closed and pumped back into the glovebox. Purple evaporated residue inside Schlenk tube was mixed with approximately 8 mL of diethyl ether and $20 \mu \mathrm{~L}$ of a 0.287 M solution of cold $\left(-32^{\circ} \mathrm{C}\right)$ benzoyl chloride (0.0057 mmol) in diethyl ether was added. Contents stirred for 1 hour at room temperature, pipette-filtered through Celite and solvent was removed by vacuum evaporation. Resulting residue was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ and pipette-filtered through Celite into an NMR tube for analysis (Figure S15-S16). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.46\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}^{\mathrm{Ar}} \mathrm{CH}_{3}\right), 1.57$ (s, $\left.\mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.83\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.97\left(\mathrm{~s}, \mathbf{1} \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.52$ (s, 18-crown-6), 6.37 (s, $\mathbf{1}$ Ar-CH), 6.44 (s, $\mathbf{1}$ Ar-CH), 6.94 (m, benzoic anhydride Ar-CH), 7.07 (m , benzoic anhydride $\mathrm{Ar}-\mathrm{CH}$), 7.96 (m, benzoic anhydride Ar-CH).

Reaction Headspace Analysis of ${ }^{15} \mathbf{N}_{2}$ Produced from the Reaction between ${ }^{15} \mathbf{N}_{2} \mathrm{O}$ and

2. Inside a N_{2} filled glovebox, to a 100 mL round bottom Schlenk flask with a magnetic stir bar, $\mathbf{2}$ $(0.125 \mathrm{~g}, 0.0732 \mathrm{mmol})$ was added and dissolved in THF (60 mL). The flask was sealed with a fresh septum secured with copper wire and a Keck clip. The flask was taken out of the glovebox
and connected to a T-shaped stopcock connected to a Schlenk line streaming both N_{2} and ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ gases. After five freeze-pump-thaw cycles, the flask was cooled to $-78^{\circ} \mathrm{C}$ (dry ice and acetone bath) and headspace was backfilled quickly with ${ }^{15} \mathrm{~N}_{2} \mathrm{O}(\sim 3$ seconds) and then the flask was closed. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for three hours, and then the cooling bath was removed. The reaction was then stirred for 3 hours at room temperature to equilibrate the gases in the reaction headspace and dissolved in the solution. The gases in the reaction headspace were then analyzed by $5 \mu \mathrm{~L}$ injections into GC-MS (Figure S21). After the 6 hour GC-MS headspace measurement, the reaction flask sat for 48 hours at room temperature, without stirring to prevent high pressure build-up within the flask. After 48 hours, the gases in the headspace were again analyzed by $5 \mu \mathrm{~L}$ injections into the GC-MS (Figures S17 and S19). To serve as a blank, a 50 mL round bottom Schlenk flask was sealed using a fresh septum secured with copper wire and a Keck clip. The blank flask was evacuated by vacuum and refilled with ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and then closed. Gases in blank flask were analyzed by a $5 \mu \mathrm{~L}$ injection (Figure S22). Blank flask then sat alongside the reaction flask for 48 hours at room temperature and was re-analyzed by GC-MS (Figure S18 and S20).

Computational Methods. All calculations were performed using Gaussian09, Revision B.01. ${ }^{6}$ Density functional theory (DFT) calculations were carried out using the B3LYP functional. ${ }^{7}$ Mixed basis sets were employed: the LANL2TZ(f) triple- ζ basis set ${ }^{8}$ with effective core potential ${ }^{9}$ was used for Cu , the Gaussian09 internal $6-311+\mathrm{G}(\mathrm{d})$ basis set was used for S , and the Gaussian09 internal $6-31+\mathrm{G}(\mathrm{d})$ basis set was used for C, H, and N . All calculations included a polarizable continuum model for dichloromethane solvation. ${ }^{10}$ The optimized coordinates for model 1' (where the mesityl groups of $\mathbf{1}$ were replaced with methyls) at a slightly different level of theory were reported previously ${ }^{4}$ and were used as the starting point for obtaining optimized coordinates for neutral 1' and anion 2' (where the mesityl groups of $\mathbf{2}$ were replaced with methyls). Optimized
coordinates for both structures are enclosed below (Tables S2 and S3), along with comparisons of $\mathbf{1}^{\prime}$ and $\mathbf{2}^{\prime}$ to the experimental structures of $\mathbf{1}$ and $\mathbf{2}$ (Table S1). These optimized coordinates were used for single-point TD-DFT calculations (35 states for $\mathbf{1}^{\prime}, 25$ states for $\mathbf{2}^{\prime}$) at the same level of theory (see Figures S18-19). Lists of these transitions are included as Tables S4 and S5 below. Natural transition orbital analysis ${ }^{11}$ was used to examine the nature of the dominant transition (State $9,578 \mathrm{~nm}, 6000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) in the predicted electronic spectrum of 2 . The broken-symmetry $S=0$ and $S=1$ states of $\mathbf{1}^{\prime}$ were found to be higher energy than the closed-shell $S=0$ state presented here, although all three states were within $\pm 2 \mathrm{kcal} / \mathrm{mol}$ of each other, indicating that high-le vel calculations are in order to accurately model $\mathbf{1}$. Orbital surfaces and Mulliken spin density were plotted using Gaussview 4.1^{12} and are presented with isovalues indicated in figure captions.

Figure S1. χT vs. temperature plots of $\mathbf{1}^{4}$ in a polyethylene bag at a field of 0.1 T (left) and a separate sample of $\mathbf{1}$ in a sealed quartz tube at a field of 7 T (right). Both depict a downward sloping, linear curve, indicative of a diamagnetic sample. The significantly larger diamagne tic moment exhibited by the quartz-tube sample (right) is attributable to the additional mass of the quartz and eicosane.

Figure S2. Solid state structure of $\mathrm{Cu}(\mathrm{II}) \mathrm{S}_{2} \mathrm{NCN}_{2}$ paramagnetic impurity determined by singlecrystal X-ray diffraction. Mesityl groups are shown as wireframes and other atoms are displayed as 50% probability thermal ellipsoids. Hydrogen atoms have been omitted. $\mathrm{Cu}(\mathrm{II}) \mathrm{S}_{2} \mathrm{NCN}_{2}$ was isolated following the procedure published for $\mathbf{1}^{4}$ by S_{8} with the following modifications: the reaction mixture was stirred for two days at r.t. The crude reaction solution was filtered through Celite and the filtrate was completely evaporated by vacuum. Recrystallization by vapor diffusion of the filtrate residue in CHCl_{3} and pentane vapors leads to formation of maroon crystals.

Figure S3. X-band EPR spectrum of the $\mathrm{Cu}(\mathrm{II}) \mathrm{S}_{2} \mathrm{NCN}_{2}$ species from Figure S 2 at 34 K (black trace) and 24 K (red trace), power 46 dB .

Figure S4. Q-band EPR spectrum for 2 (black scan): $34.99 \mathrm{GHz},-150{ }^{\circ} \mathrm{C}, 9$ scans, power $22 \mathrm{~dB}, 10 \mathrm{G}$, mod.; time constant $0.1 \mathrm{sec} ; 2 \mathrm{~min}$ scans; Simulation (EasySpin, red scan): $\mathrm{g}=2.09,2.043$; four Cu's (both isotopes), $\mathrm{A}=100,15$ MHz ; lwpp=0.5; HStrain=100 90. $\mathrm{P}_{1 / 2}$, the power for which the X-band EPR signal is one-half of the expected signal if unsaturated, is 22.5 dB at 10 K and 26.5 dB at 5 K . The spin-lattice relaxation time is faster for mixed valence complexes in both $\mathbf{2}$ and Cu_{z} than for monomeric cupric complexes. The difference in the EPR spectra between $\mathbf{2}$ and Cu_{Z} is most easily seen in the Q-band spectrum, where $\mathrm{gl}>\mathrm{gll}$ for $\mathbf{2}$, but $\mathrm{gl}<\mathrm{gll}$ for Cu_{Z} (P. Cheng...E.J. Solomon, J. Am. Chem. Soc., $124(5), 744,2002$) suggesting that the unpaired electron in $\mathbf{2}$ is not a pure $\mathrm{dx} 2-\mathrm{y} 2$ orbital. The line width for gll in the Q -band spectrum and simulations are used to approximate All . Al is obtained from resolved lines in the X -band spectrum and from simulations. Another difference between $\mathbf{2}$ and $\mathrm{Cuz}_{\mathrm{z}}$ is that the spectra for $\mathbf{2}$ are simulated with four equivalent coppers and the spectra for Cu_{Z} are simulated with two sets of inequivalent coppers.

Figure S5. X-band EPR spectrum of 2 (black scan): $9.632 \mathrm{GHz}, 9.9 \mathrm{~K}, 9$ scans, power 46 dB ; Simulation (red scan, EasySpin): $g=2.09,2.043$; both 63 and 65 isotopes, $A=100,15 \mathrm{MHz}$, lwpp=0.5; Hstrain:100 20.

Figure S6. ${ }^{1} \mathrm{H}$ NMR (500 MHz) of $\mathbf{2}$ in Acetone-d 6 .

Figure S7. Absorption Spectra for 0.082 mM 2 (blue trace; absorption maxima at $565.5 \mathrm{~nm} ; \varepsilon=$ $8601 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}$) and $0.085 \mathrm{mM} \mathbf{1}^{4}$ (orange trace; absorption maxima at $561 \mathrm{~nm} ; \varepsilon=18132 \mathrm{M}^{-1} \cdot \mathrm{~cm}^{-}$ ${ }^{1}$) in THF at room temperature.

Figure S8. Infrared Spectrum of 2.

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of reaction products from $\mathbf{2}+\mathrm{N}_{2} \mathrm{O}$ with appearance of $\mathbf{1}$ in 45% yield compared to integration of 18 -crown- 6 as the internal standard. Residual solvents in spectra are not peak picked. Peak appearing at 2.29 ppm is a decomposition product of 2, $\mathrm{Cu}_{2}\left[\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}(\mathrm{H})\right]_{2}{ }^{4}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of control experiment between 2 and N_{2}. Residual solvents in spectra are not peak picked. Peaks appearing at 2.17-2.29 ppm and 6.78-6.96 ppm are decomposition products of $\mathbf{2}$; $\mathrm{Cu}_{2}\left[\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}(\mathrm{H})\right]_{2}{ }^{4}$ and free ligand (bis(2,4,6trimethylphenyl)formamidine) $)^{4}$. No presence of $\mathbf{1}$ is evident.

Figure S11. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1}$ isolated after reaction between $\mathbf{2}$ and $\mathrm{N}_{2} \mathrm{O}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (88% yield). Residual solvents in spectra are not peak picked. Peaks observed at 2.29, 6.78 and 6.95 ppm are the decomposition product of $\mathbf{2}, \mathrm{Cu}_{2}\left[\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}(\mathrm{H})\right]_{2}{ }^{4}$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of $\mathbf{1}$ recovered after control experiment between $\mathbf{2}$ and N_{2} (30\% decomposition). Residual solvents in spectra are not peak picked. Peak observed at 2.29 ppm is the decomposition product of $\mathbf{2}, \mathrm{Cu}_{2}\left[\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}(\mathrm{H})\right]_{2}{ }^{4}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of reaction products from $2+\mathrm{N}_{2} \mathrm{O}$, using 5 equivalents of TMS-Cl as an oxygen trap. Hexamethyldisiloxane appearing at 0.07 ppm is the major product and some unreacted TMS-Cl appears at 0.43 ppm . Residual solvents in spectra are not peak picked.

Figure S14. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of resulting control experiment between 2 and N_{2} and 5 equivalents of TMS-Cl. Residual solvents in spectra are not peak picked.

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of reaction products from $2+\mathrm{N}_{2} \mathrm{O}$ using benzoyl chloride as an oxygen trap to form benzoic anhydride. Residual solvents in spectra are not peak picked.

Figure S16. Comparison of ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of reaction products from $\mathbf{2}+\mathrm{N}_{2} \mathrm{O}$ using benzoyl chloride as an oxygen trap to form benzoic anhydride (A); authentic sample of benzoic anhydride (B); authentic sample of benzoyl chloride (C).

Figure S17. Total chromatogram (top) and extracted ion chromatogram for $\mathrm{m} / \mathrm{z} 30$ (bottom) from the reaction headspace after 48 hours of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and $\mathbf{2}$.

Figure S18. Total chromatogram (top) and extracted ion chromatogram for $\mathrm{m} / \mathrm{z} 30$ (bottom) from flask containing ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ for 48 hours.

Scan: 405 R.T.: 2.68
Base: m/z 28; 100\%FS \#Ions: 28 TIC: 5173296 (Max Inten : 4193876)

Figure S19. Mass spectrum of species at 2.68 minutes from the reaction headspace of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and 2 after 48 hours.

Table S1. Percent composition of species in Figure S19.
Scan: $\mathbf{4 0 5}$
Base: $\mathbf{m} / \mathrm{z} 28 ; 100 \%$ FS\#Ions: 28 TIC: $\mathbf{5 1 7 3 2 9 6}$ (Max Inten : $\mathbf{4 1 9 3 8 7 6}$)

Threshold: . 1% of Base

Mass	\%Base	\%TIC	Intensity
13.9815	4.3	3.519	182,036
15.9851	.2	0.182	9,428
17.0069	.5	0.428	22,164
18.0212	2.4	1.961	101,460

Displayed TIC: 5173296

Mass	\%Base	\%TIC	Intensity
30.0124	1.5	$\mathbf{1 . 2 0 9}$	62,548
31.9988	9.1	7.405	383,060
39.9675	2.0	1.596	82,580

Scan: 405 R.T.: 2.68
Base: m/z 28; 58.7\%FS \#Ions: 18 TIC: 3112296 (Max Inten : 2461140)

Figure S20. Mass spectrum of species at 2.68 minutes from a flask containing ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ after 48 hours.

Table S2. Percent composition of species in Figure S20.

Scan: $\mathbf{4 0 6}$ R.T.: 2.68
Base: $\mathbf{m} / \mathrm{z} \mathrm{28;} \mathrm{100} \mathrm{\% FS} \mathrm{\# Ions:} 26$ TIC: 4968712 (Max Inten : 4193876)

Threshold: . 1% of Base
Displayed TIC: 4968712

Mass	\%Base	\%TIC	Intensity
13.9815	2.9	2.468	122,644
15.9924	.2	0.195	9,684
17.0069	.5	0.432	21,460

Mass	\%Base	\%TIC	Intensity
18.0212	2.5	2.132	105,940
27.8293	.2	0.196	9,748
28.0121	100.0	84.406	$4,193,876$

Mass	\%Base	\%TIC	Intensity
29.0135	1.1	0.965	47,956
31.9988	9.2	7.794	$\mathbf{3 8 7 , 2 8 4}$
39.9790	.8	0.715	35,540

Scan: 406 R.T.: 2.68
Base: \mathbf{m} / \mathbf{z} 28; 100\%FS \#Ions: 24 TIC: 5072672 (Max Inten : 4193876)

Figure S21. Mass spectrum of species at 2.68 minutes from the reaction headspace of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and 2 after 6 hours.

Table S3. Percent composition of species in Figure S21.
Scan: $\mathbf{4 0 6}$ R.T.: 2.68
Base: $\mathbf{m} / \mathrm{z} 28 ; 100 \%$ FS\#Ions: 24 TIC: 5072672 (Max Inten : 4193876)

Threshold: . $\mathbf{1 \%}$ of Base
Displayed TIC: 5072672

Mass	\%Base	\%TIC	Intensity
13.9855	5.1	4.175	211,796
15.9969	.2	0.158	8,020
17.0115	.6	0.484	24,532
18.0261	2.7	2.273	115,284

Mass	\%Base	\%TIC	Intensity
$\mathbf{2 7 . 8 2 5 7}$.3	0.259	13,140
28.0085	100.0	$\mathbf{8 2 . 6 7 6}$	$4,193,876$
29.0195	1.6	$\mathbf{1 . 3 0 4}$	$\mathbf{6 6 , 1 3 2}$
$\mathbf{3 0 . 0 1 8 5}$.9	0.756	$\mathbf{3 8 , 3 5 6}$

Mass	\%Base	\%TIC	Intensity
$\mathbf{3 2 . 0 1 5 6}$	7.7	6.338	$\mathbf{3 2 1 , 4 9 2}$
39.9904	1.3	$\mathbf{1 . 0 3 4}$	$\mathbf{5 2 , 4 3 6}$

Scan: 408

R.T.: 2.69

Base: m/z 28; 93.2\%FS \#Ions: 21 TIC: $\mathbf{4 5 7 6 3 5 6}$ (Max Inten : 3907156)

Figure S22. Mass spectrum of species at 2.69 minutes from flask containing ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$.
Table S4. Percent composition of species in Figure S22.

Scan: 408 R.T.: 2.69											
Base: m/z 28; 93.2\%FS\#Ions: 21 TIC: 4576356 (Max Inten : 3907156)											
Threshold: . 1% of Base										Displa	yed TIC: 4576356
Mass	\%Base	\%TIC	Intensity	Mass	\%Base	\%TIC	Intensity	Mass	\%Base	\%TIC	Intensity
13.9786	2.6	2.200	100,692	18.0183	3.2	2.722	124,564	29.0195	. 7	0.638	29,204
15.9895	. 2	0.206	9,428	27.8257	. 1	0.125	5,716	32.0052	8.4	7.137	326,612
17.0040	. 6	0.530	24,276	28.0181	100.0	85.377	3,907,156	39.9789	. 7	0.561	25,684

Figure S23. Mass spectrum of species at 5.48 minutes from the chromatogram of the reaction headspace of ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and $\mathbf{2}$ in Figure S 17 .

Table S5. Summary integration values of ${ }^{15} \mathrm{~N}_{2}$ from reaction headspace experiments with ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ and 2, after 6 and 48 hours compared to the ${ }^{15} \mathrm{~N}_{2} \mathrm{O}$ blank. Integration values were obtained from the extracted ion chromatogram for $\mathrm{m} / \mathrm{z} 30$ for the peak with the retention time of 2.68 minutes (bottom of Figure S17 and Figure S18).

	Reaction ${ }^{15} \mathrm{~N}_{2}$ Peak Integration	Blank ${ }^{15} \mathrm{~N}_{2}$ Peak Integration
48 Hours	181,583	21,394
6 Hours	109,835	22,868

Table S6. Comparison of calculated and experimental bond distances (\AA).

	1' (calculated)	1 (experimental)	2' (calculated)	$\mathbf{2}$ (experimental)
$\mathrm{Cu} 1-\mathrm{Cu} 2$	2.469	$2.4226(6)$	2.584	$2.502(1), 2.486(1)$
$\mathrm{Cu} 2-\mathrm{Cu} 3$	2.928	$3.0353(6)$	2.827	$2.809(1), 2.854(1)$
$\mathrm{Cu} 3-\mathrm{Cu} 4$	2.469	$2.4226(6)$	2.584	$2.532(1), 2.500(1)$
$\mathrm{Cu} 1-\mathrm{Cu} 4$	2.928	$3.0353(6)$	2.827	$2.831(1), 2.844(1)$
Average $\mathrm{Cu}-\mathrm{S}$	2.261	2.180	2.302	2.217

Figure S24. Optimized structure of 2'.

Figure S25. Calculated UV-Vis spectrum of 2'.

Figure S26. Optimized structure of $\mathbf{1}^{\prime}$.

Figure S27. Calculated UV-Vis spectrum of $\mathbf{1}^{\prime}$.

Table S7. Optimized coordinates of $\mathbf{2}^{\boldsymbol{\prime}}$.

Center Number	Atomic		Atomic	Coordinates (Angstroms)	
		ber	Type	X Y	Z
1	29	0	1.386449	-1.349982	-0.224024
2	16	0	0.000002	-0.000076	-1.474806
3	7	0	3.281351	-0.976101	-0.923119
4	7	0	3.126323	1.380414	-0.861635
5	6	0	3.733485	0.243940	-1.159060
6	1	0	4.723098	0.321561	-1.645214
7	29	0	-1.386447	1.349952	-0.224154
8	7	0	-3.281346	0.976012	-0.923222
9	7	0	-3.126316	-1.380499	-0.861544
10	6	0	-3.733473	-0.244049	-1.159074
11	1	0	-4.723075	-0.321712	-1.645242
12	29	0	-1.194111	-1.470350	-0.169276
13	7	0	-0.983854	-2.734209	1.363758
14	7	0	1.364907	-2.687537	1.258960
15	6	0	0.218929	-3.082077	1.789964
16	1	0	0.271111	-3.754926	2.662529
17	29	0	1.194104	1.470329	-0.169420
18	7	0	0.983846	2.734363	1.363467
19	7	0	-1.364915	2.687653	1.258698
20	6	0	-0.218937	3.082258	1.789654
21	1	0	-0.271117	3.755185	2.662158
22	6	0	-4.104976	2.086128	-1.378376
23	1	0	-4.335943	2.772439	-0.551923

24	1	0	-3.588327	2.676106	-2.150727
25	1	0	-5.062706	1.748165	-1.807901
26	6	0	-3.808144	-2.611006	-1.234625
27	1	0	-4.788424	-2.420762	-1.702280
28	1	0	-3.210188	-3.195840	-1.949527
29	1	0	-3.978270	-3.252732	-0.358617
30	6	0	-2.127197	-3.266063	2.093188
31	1	0	-2.789334	-2.456198	2.427473
32	1	0	-2.728135	-3.934564	1.460693
33	1	0	-1.820489	-3.837150	2.983909
34	6	0	2.587763	-3.192080	1.869003
35	1	0	3.264894	-2.367038	2.125869
36	1	0	2.386510	-3.760642	2.791011
37	1	0	3.133163	-3.856012	1.182523
38	6	0	4.104985	-2.086257	-1.378171
39	1	0	5.062724	-1.748332	-1.807706
40	1	0	4.335933	-2.772504	-0.551660
41	1	0	3.588346	-2.676293	-2.150485
42	6	0	3.808163	2.610891	-1.234795
43	1	0	3.978266	3.252684	-0.358834
51	1	0	-2.386519	3.760866	2.790672
44	1	0	-3.133196	3.856082	1.182186
45	1	0	3.210227	3.195670	-1.949759
46	6	0	2.127192	3.266324	2.092813
47	1	0	2.789424	2.456516	2.427042
48	1	0	2.728025	3.934883	1.460277
49	1	0	1.820497	3.837380	2.983559
5	0	-2.587772	3.192221	1.868715	
4845	2.420608	-1.702409			
20					

```
\(\begin{array}{llllll}53 & 1 & 0 & -3.264882 & 2.367186 & 2.125659\end{array}\)
```

Table S8. Optimized coordinates of $\mathbf{1}^{\text {² }}$.

Center Number	Atomic		Atomic	Coordinates (Angstroms)	
		ber	Type	X	Z
1	29	0	1.309161	-1.408896	-0.176093
2	16	0	0.000030	-0.000018	-1.366232
3	7	0	3.123631	-1.031322	-0.923548
4	7	0	3.004493	1.333672	-0.894061
5	6	0	3.590064	0.180910	-1.162130
6	1	0	4.583731	0.236714	-1.629581
7	29	0	-1.309162	1.408912	-0.176201
8	7	0	-3.123593	1.031285	-0.923732
9	7	0	-3.004442	-1.333708	-0.894173
10	6	0	-3.590005	-0.180955	-1.162305
11	1	0	-4.583648	-0.236781	-1.629805
12	29	0	-1.157468	-1.514723	-0.152193
13	7	0	-1.027289	-2.830246	1.301666
14	7	0	1.317693	-2.747879	1.262167
15	6	0	0.167111	-3.191147	1.742215
16	1	0	0.206278	-3.905971	2.577536
17	29	0	1.157482	1.514715	-0.152169
18	7	0	1.027225	2.830266	1.301657
19	7	0	-1.317758	2.747935	1.262025
20	6	0	-0.167196	3.191189	1.742132

21	1	0	-0.206399	3.906025	2.577442
22	6	0	-3.927349	2.169324	-1.361351
23	1	0	-4.165283	2.829723	-0.518974
24	1	0	-3.385261	2.766474	-2.107040
25	1	0	-4.875848	1.848734	-1.815429
26	6	0	-3.693299	-2.557939	-1.292745
27	1	0	-4.671398	-2.346570	-1.747857
28	1	0	-3.098340	-3.120147	-2.025142
29	1	0	-3.859048	-3.212817	-0.429241
30	6	0	-2.193353	-3.416698	1.953617
31	1	0	-2.919871	-2.638329	2.215184
32	1	0	-2.700891	-4.136000	1.296463
33	1	0	-1.917232	-3.945138	2.877449
34	6	0	2.543713	-3.261118	1.863637
35	1	0	3.231249	-2.439063	2.094298
36	1	0	2.339983	-3.804238	2.797769
37	1	0	3.065933	-3.948915	1.184318
38	6	0	3.927278	-2.169374	-1.361332
39	1	0	4.875974	-1.848822	-1.815025
40	1	0	4.164834	-2.830094	-0.519102
41	1	0	3.385291	-2.766176	-2.107378
42	6	0	3.693513	2.557897	-1.292372
48	1	0	2.919775	2.638376	2.215245
43	1	0	3.859656	3.212442	-0.428686
44	1	0	4.671436	2.346476	-1.747840
45	1	0	3.098468	3.120487	-2.024398
46	6	0	2.193256	3.416734	1.953655
1	0	1.917091	3.945163	2.877480	
400804	4.136048	1.296524			
20					

50	6	0	-2.543802	3.261181	1.863439
51	1	0	-2.340102	3.804360	2.797543
52	1	0	-3.066019	3.948928	1.184067
53	1	0	-3.231328	2.439128	2.094135

Table S9. Excitation energies and oscillator strengths calculated for 2'.

Excited State 3: 2.014-A 106B ->125B -0.17953 115B ->125B $\quad-0.14311$

119B ->125B -0.14966
122B ->125B 0.95136

Excited State 4: 2.016-A $1.5197 \mathrm{eV} 815.85 \mathrm{~nm} \mathrm{f}=0.0004$ <S**2>=0.766 117B ->125B -0.28839

119B ->125B 0.93398
122B ->125B 0.14766

ExcitedState 5: 2.014-A $1.7681 \mathrm{eV} 701.21 \mathrm{~nm} \mathrm{f}=0.0035\left\langle\mathrm{~S}^{* *} 2>=0.764\right.$ 106B ->125B -0.12989

108B ->125B -0.21992

```
121B ->125B 0.95954
```

Excited State	$6:$
103B	$2.014-\mathrm{A}$
->125B	-0.13558
110B ->125B	-0.12442
120B ->125B	0.96831

$1.7853 \mathrm{eV} 694.48 \mathrm{~nm} \mathrm{f}=0.0001\left\langle\mathrm{~S}^{* * 2>=0.764}\right.$

ExcitedState 7: 2.018-A
$2.0145 \mathrm{eV} 615.45 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.768$

$107 B->125 B$	-0.11607
$116 B->125 B$	0.31707
$118 B->125 B$	0.91674

ExcitedState 8: 2.017-A
107B ->125B -0.17133

114B ->125B $\quad-0.38394$
116B ->125B 0.82481
118B ->125B -0.28052
123B ->125B 0.23153

ExcitedState 9: 2.009-A

$117 B->125 B$	0.92381
$119 B->125 B$	0.28993

ExcitedState 10: 2.019-A

$106 B->125 B$	-0.10521
$115 B->125 B$	0.97445
$122 B->125 B$	0.12177

Excited State 11: 2.021-A 2.2968 eV 539.81 nm f=0.0006 <S**2>=0.771

$113 B->125 B$	-0.41552
$114 B->125 B$	0.81505
$116 B->125 B$	0.25767
$118 B->125 B$	-0.18268
$123 B->125 B$	0.12055

Excited State 12: 2.023-A 101B ->125B 0.14150

103B ->125B 0.16943
113B ->125B 0.86179
114B ->125B 0.39427
116B ->125B 0.13180

Excited State 13: 2.022-A 108B ->125B 0.20952

112B ->125B 0.96306

Excited State 14: 2.022-A 110B ->125B -0.50719 111B ->125B 0.84862

Excited State 15: 2.021-A 103B ->125B -0.22846

110B ->125B 0.81149
111B ->125B 0.49847
12OB ->125B 0.11851

Excited State 16: 2.024-A 108B ->125B -0.15892
2.3075 eV $537.30 \mathrm{~nm} f=0.0024$ <S**2>=0.773
2.3845 eV $519.95 \mathrm{~nm} f=0.0022<$ S $^{* *} 2>=0.772$
$2.5655 \mathrm{eV} 483.27 \mathrm{~nm} \mathrm{f}=0.0004$ <S**2>=0.772
$2.6971 \mathrm{eV} 459.70 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.771$
$2.7419 \mathrm{eV} 452.18 \mathrm{~nm} \mathrm{f}=0.0011<\mathrm{S}^{* *} 2>=0.774$

109B ->125B 0.96425

Excited State 17: 2.027-A

108B $->125 B$	0.91836
109B $->125 B$	0.17454
112B $->125 B$	-0.20170
121B $->125 B$	0.22317
122B $->125 B$	-0.11180

Excited State 18: 2.026-A

$105 B->125 B$	0.65387
$107 B->125 B$	0.72969
$116 B->125 B$	0.10957

116B ->125B
0.10957

Excited State 19: 2.028-A

```
105B ->125B 0.73661
107B ->125B -0.62098
116B ->125B -0.17680
123B ->125B -0.11599
```

Excited State 20: 2.026-A

$104 B->125 B$	0.97627
$106 B->125 B$	0.15190

106B ->125B
0.15190

Excited State 21: 2.023-A
102B ->125B -0.16140
104B ->125B $\quad-0.14710$
106B ->125B 0.93325
121B ->125B 0.12978
$2.7674 \mathrm{eV} 448.02 \mathrm{~nm} \mathrm{f}=0.0002\left\langle\mathrm{~S}^{* *} 2>=0.778\right.$
$2.8010 \mathrm{eV} 442.65 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.776$
$2.9282 \mathrm{eV} 423.41 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.778$
$2.9584 \mathrm{eV} 419.09 \mathrm{~nm} \mathrm{f}=0.0004$ <S**2>=0.776
3.0904 eV $401.20 \mathrm{~nm} \mathrm{f}=0.0009<\mathrm{S}^{* *} 2>=0.773$

```
122B ->125B
0.19626
```

Excited State 22:	$2.027-A$
102B ->125B	0.96600
106B ->125B	0.15586

106B ->125B
0.15586

Excited State 23: 2.865-A
124B ->126B 0.96849
$124 \mathrm{~B}->130 \mathrm{~B}-0.17849$

Excited State 24: 2.032-A 3.2040 eV 386.96 nm f=0.0002 <S**2>=0.783
3.1250 eV $396.74 \mathrm{~nm} \mathrm{f}=0.0044<\mathrm{S}^{* *} 2>=0.777$
$3.1862 \mathrm{eV} 389.13 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* * 2>=1.802}$

Excited State 25: 2.025-A
101B ->125B -0.16399
103B ->125B 0.92412
110B ->125B 0.19048
113B ->125B -0.14148
120B ->125B 0.19548

Table S10. Excitation energies and oscillator strengths calculated for $\mathbf{1}^{\prime}$.

```
Excited State 1: Singlet-A 0.8195 eV 1512.85 nm f=0.0000 <S**2>=0.000
        124 ->125 0.69812
```

Excited State 2: Singlet-A $0.9557 \mathrm{eV} 1297.26 \mathrm{~nm} \mathrm{f}=0.0002<\mathrm{S}^{* *} 2>=0.000$ $120->125 \quad-0.12684$

```
122 ->125 0.34619
123 ->125 0.59919
```

Excited State 3: Singlet-A $1.1420 \mathrm{eV} 1085.69 \mathrm{~nm} \mathrm{f}=0.0089<\mathrm{S}^{* *} 2>=0.000$

$120->125$	0.21827
$122->125$	0.59859
$123->125$	-0.30230

Excited State 4: Singlet-A 1.1876 eV $1044.00 \mathrm{~nm} \mathrm{f}=0.0005<$ S $^{* *} 2>=0.000$ 121 ->125 0.70440

Excited State	$5:$	Singlet-A
$118->125$	-0.32957	
$119->125$	0.62069	

ExcitedState 6: Singlet-A $2.0442 \mathrm{eV} 606.51 \mathrm{~nm} \mathrm{f}=0.0000<S^{* *} 2>=0.000$ 113 ->125 0.10210 $116->125 \quad-0.48352$ 117 ->125 0.48766 124 ->125 0.10386

Excited State 7: Singlet-A $2.1103 \mathrm{eV} 587.53 \mathrm{~nm} \mathrm{f}=0.1047$ <S**2>=0.000

$115->125$	-0.14336
$120->125$	0.64006
$122->125$	-0.12524
$123->125$	0.21890
$120-125$	-0.11134

Excited State 8: Singlet-A 2.4436 eV $507.39 \mathrm{~nm} \mathrm{f}=0.0163<\mathrm{S}^{* *} 2>=0.000$

```
115 ->125 0.68200
120 ->125 0.12697
```

Excited State 9: Singlet-A $2.5187 \mathrm{eV} 492.26 \mathrm{~nm} \mathrm{f}=0.0000$ <S**2>=0.000

$113->125$	0.66734
$116->125$	0.19973

Excited State 10: Singlet-A $2.5267 \mathrm{eV} 490.71 \mathrm{~nm} \mathrm{f}=0.0111<S^{* *} 2>=0.000$ $100->125 \quad-0.13704$ $104->125 \quad-0.12763$ 114 ->125 0.66842

Excited State 11: Singlet-A $2.6557 \mathrm{eV} 466.86 \mathrm{~nm} \mathrm{f}=0.3389<\mathrm{S}^{* *} 2>=0.000$

$112->125$	-0.10268
$118->125$	0.60542
$119->125$	0.31790

Excited State 12: Singlet-A $2.6650 \mathrm{eV} 465.23 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ $108->125 \quad-0.14988$ $113->125 \quad-0.18960$ 116 ->125 0.43924 117 ->125 0.47689

Excited State 13: Singlet-A $2.8013 \mathrm{eV} 442.60 \mathrm{~nm} \mathrm{f}=0.0123$ <S**2>=0.000
107 ->125 0.18044
$110->125 \quad 0.66256$
$120->125 \quad 0.10742$

Excited State 14: Singlet-A 2.8478 eV $435.36 \mathrm{~nm} \mathrm{f}=0.0010<S^{* *} 2>=0.000$

```
109 ->125 0.43980
111 ->125 0.54322
```

Excited State 15: Singlet-A $2.9437 \mathrm{eV} 421.19 \mathrm{~nm} \mathrm{f}=0.0006<\mathrm{S}^{* *} 2>=0.000$

$101->125$	-0.12153
$104->125$	-0.20509
$109->125$	0.50894
$111->125$	-0.42265

Excited State 16: Singlet-A $2.9488 \mathrm{eV} 420.45 \mathrm{~nm} \mathrm{f}=0.0018$ <S**2>=0.000 $112->125 \quad 0.68901$

Excited State 17: Singlet-A 2.9848 eV $415.39 \mathrm{~nm} \mathrm{f}=0.0034<\mathrm{S}^{* *} 2>=0.000$ 107 ->125 0.66881 $110->125 \quad-0.19805$

Excited State 18: Singlet-A $3.1279 \mathrm{eV} 396.38 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ 103 ->125 0.14705

108 ->125 0.66723
$116->125 \quad 0.11342$

Excited State 19: Singlet-A $3.2227 \mathrm{eV} 384.72 \mathrm{~nm} \mathrm{f}=0.0006<\mathrm{S}^{* *} 2>=0.000$

$105->125$	0.56403
$106->125$	-0.41055

Excited State 20: Singlet-A $3.2489 \mathrm{eV} 381.62 \mathrm{~nm} \mathrm{f}=0.0001<\mathrm{S}^{* *} 2>=0.000$ 105 ->125 0.40875
$106->125 \quad 0.56155$

Excited State 21: Singlet-A $3.3478 \mathrm{eV} 370.35 \mathrm{~nm} \mathrm{f}=0.0000<$ S $^{* *} 2>=0.000$

```
103 ->125 0.68142
108 ->125 -0.12975
```

Excited State 22: Singlet-A $3.3857 \mathrm{eV} 366.19 \mathrm{~nm} \mathrm{f}=0.0043<\mathrm{S}^{* *} 2>=0.000$ $101->125 \quad-0.20671$ $104->1250.64012$ 109 ->125 0.13061

Excited State 23: Singlet-A 3.5036 eV $353.88 \mathrm{~nm} \mathrm{f}=0.0152$ <S**2>=0.000 102 ->125 0.68398

Excited State 24: Singlet-A $4.0030 \mathrm{eV} 309.73 \mathrm{~nm} \mathrm{f}=0.0000<$ S $^{* *} 2>=0.000$

$120->126$	0.12598
$122->126$	-0.18612
$123->126$	0.66239

Excited State 25: Singlet-A $4.0195 \mathrm{eV} 308.46 \mathrm{~nm} \mathrm{f}=0.0032<$ S $^{* *} 2>=0.000$ 124 ->126 0.69794

Excited State 26: Singlet-A $4.0779 \mathrm{eV} 304.04 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$ $122->1260.66474$ 123 ->126 0.18888

Excited State 27: Singlet-A $4.2220 \mathrm{eV} 293.66 \mathrm{~nm} \mathrm{f}=0.0769<\mathrm{S}^{* *} 2>=0.000$ 121 ->126 0.69025

Excited State 28: Singlet-A 4.2988 eV $288.42 \mathrm{~nm} \mathrm{f}=0.0372$ <S**2>=0.000 98 ->125 0.10538

```
100->125 0.26640
101 ->125 0.56354
104 ->125 0.12178
109 ->125 0.14037
114->125 0.16931
```

Excited State 29: Singlet-A $4.4764 \mathrm{eV} 276.97 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$

$120->126$	-0.29542
$123->127$	0.60347

Excited State 30: Singlet-A $4.4959 \mathrm{eV} 275.77 \mathrm{~nm} \mathrm{f}=0.0206<\mathrm{S}^{* *} 2>=0.000$

$123->129$	0.10267
$124->127$	0.68345

Excited State 31: Singlet-A 4.5198 eV $274.31 \mathrm{~nm} f=0.0094<S^{* *} 2>=0.000$

$89->125$	0.25955
$92->125$	0.15191
$94->125$	0.11845
$95->125$	0.39205
$99->125$	0.46736

Excited State 32: Singlet-A $4.5363 \mathrm{eV} 273.32 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$

$96->125$	-0.15886
$97->125$	0.25528
$120->126$	0.53293
$122->127$	-0.10522
$123->127$	0.25643

Excited State 33: Singlet-A $4.5538 \mathrm{eV} 272.26 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$

$120->126$	0.10775
$121->128$	0.10769
$122->127$	0.66340
$122->133$	0.11466

Excited State 34: Singlet-A $4.6004 \mathrm{eV} 269.51 \mathrm{~nm} \mathrm{f}=0.0000<\mathrm{S}^{* *} 2>=0.000$
$87->125 \quad 0.12315$
$90->125 \quad 0.26954$
$96->125 \quad-0.27646$
$97->125 \quad 0.43600$
$120->126 \quad-0.28827$
$123->127 \quad-0.13393$

Excited State 35: Singlet-A $4.6488 \mathrm{eV} 266.70 \mathrm{~nm} \mathrm{f}=0.0072<\mathrm{S}^{* *} 2>=0.000$
$99->125 \quad-0.11687$
$121->127 \quad 0.64920$
$121->133 \quad 0.10600$
$122->128 \quad 0.17017$

Figure S28. Frontier $S(p)$ donor MOs for singlet 1': MOs 116-119 (i.e. HOMO-6 through HOMO-9; isovalue $=0.04$).

Figure S29. LUMO for singlet $\mathbf{1}^{\prime}($ MO 125, isovalue $=0.04)$.

Figure S30. Filled $\mathrm{S}(\mathrm{p}) \alpha$-MOs for singlet $\mathbf{1}^{\prime}$: MOs $118 \alpha, 120 \alpha, 124 \alpha, 125 \alpha$ (isovalue $=0.04$).

Figure S31. Filled $\mathbf{S}(\mathrm{p}) \beta$-MOs for singlet $\mathbf{1}$ ': MOs $116 \beta, 119 \beta, 123 \beta$ (isovalue $=0.04$).

References Cited:

${ }^{1}$ Stoll, S.; Schweiger, A. J.; J. Magn. Reson. 2006, 78, 42.
${ }^{2}$ Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122
${ }^{3}$ Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341
${ }^{4}$ Johnson, B. J.; Antholine, W. E.; Lindeman, S. V.; Mankad, N.P. Chem. Commun. 2015, 51, 11860.
${ }^{5}$ Karunananda, M. K.; Vazquez, F. X.; Alp, E. E.; Bi, W.; Chattopadhyay, S.; Shibata, T.; Mankad, N. P. Dalton Trans. 2014, 43, 13361.
${ }^{6}$ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.;

Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;

Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; , Fox, D. J. Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford, CT, 2010.
${ }^{7}$ (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (c) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
${ }^{8}$ (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (b) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029. (c) Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
${ }^{9}$ (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Hay, P. J.; Wadt, W. R. J. Chem.
Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
${ }^{10}$ Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3093.
${ }^{11}$ Martin, R. L. J. Chem. Phys. 2003, 118, 4775.
${ }^{12}$ Dennington, R.; Keith, T.; Millam, J. GaussView, Version 4.1; Semichem Inc., Shawnee Mission, KS, 2009.

