Mechanisms of Radiation-Induced Degradation of $CFCl_3$ and CF_2Cl_2 in

Noble-Gas Matrixes: An Evidence for "Hot" Ionic Channels in the Solid

Phase.

Ekaterina S. Shiryaeva, Daniil A. Tyurin, Vladimir I. Feldman*

Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia

Supporting Information.

Table S1. Strong absorption bands (cm⁻¹) of CFCl₃ in different matrices after deposition at 7 K.

Approximate type of mode	Ne	Ar	Kr	Xe	Gas phase literature data ^{a)}
CCl ₃ d-deform	~ 845-848 [*]	837.5	834.8	832.7	847
CF stretch	1075.5-1077.5	1070	1069.2	1067-1068.7	1085
a) and Def 40					

 a^{a} – see Ref. 40

- out of scale

Table S2. Absorption bands (maxima position, cm⁻¹) used for quantitative estimates of the product formation in the CFCl₃/Ng systems.

Spacios	Matrix							
species	Ne	Ar	Kr	Xe				
CFCl ₃ ^{+•}	1214	1212	1214-1222	1217				
CFCl ₃ -•	1057.5	1055.5	_	_				
CCl_3^+	1047	1036.5	1035.5	_				
CCl_3	903 + 909	898	895	890.5-893.5				
	(after photolysis)							
CFC1"	750	739	735.9	731.3-733				
CFCl ₂	920.5+926.5	915.5-918.5	915	914.5				
CFCl_2^+	1359	1351	1351	1337-1347 + 1352.3				

Figure S1. Difference IR spectrum demonstrating the radiation-induced absorptions for CFCl₃/Ne system (1/1000) irradiated with X-rays at 7 K.

Figure S2. Difference IR spectrum demonstrating the radiation-induced absorptions for CFCl₃/Kr system (1/1000) irradiated with X-rays at 7 K.

Figure S3. Difference IR spectrum demonstrating the radiation-induced absorptions for CFCl₃/Xe system (1/1000) irradiated with X-rays at 7 K.

Figure S4. Accumulation of the radiation-induced species under X-rays irradiation of the CFCl₃/Ne system (1/1000) at 7 K.

Figure S5. Accumulation of the radiation-induced species under X-rays irradiation of the CFCl₃/Kr system (1/1000) at 7 K.

Figure S6. Accumulation of the radiation-induced species under X-rays irradiation of the $CFCl_3$ /Xe system (1/1000) at 7 K.

Matrix	N	le			Ar					Kr				X	le	
Conversion, %	13	27	4	14	24	32	40	18	26	29	33	39	21	35	41	52
Species								i	I							
CFCl ₃ ^{+•}	0.048	0.102	0.094	0.146	0.193	0.223	0.242	0.343	0.390	0.414	0.39	0.393	0.526	0.752	0.848	1
CFCl ₃ -•	0.019	0.025	0.020	0.021	0.017	0.014	0.007	0	0	0	0	0	0	0	0	0
CCl_3^+	0.038	0.054	0.005	0.007	0.009	0.013	0.019	0.002	0.003	0.004	0.005	0.007	0	0	0	0
CCl ₃	0.030	0.037	0.003	0.011	0.020	0.027	0.033	0.006	0.010	0.010	0.013	0.019	0.006	0.011	0.017	0.027
CFC1"	0.003	0.010	0.020	0.038	0.057	0.067	0.071	0.131	0.169	0.182	0.192	0.205	0.130	0.192	0.238	0.289
CFCl ₂	0.040	0.081	0.030	0.063	0.095	0.106	0.115	0.051	0.072	0.079	0.085	0.094	0.086	0.120	0.146	0.175
CFCl_2^+	0.067	0.087	0.030	0.029	0.028	0.031	0.030	0.103	0.099	0.101	0.092	0.096	0.055	0.076	0.089	0.110
900.9								0.017	0.018	0.017	0.015	0.013				
903.5			0.034	0.041	0.058	0.063	0.053									
904								0.003	0.003	0.003	0.003	0.002				
901-904													0.027	0.033	0.036	0.037
913	0.012	0.027														
1097.5			0.003	0.003	0.004	0.004	0.004									
1098.5													0.023	0.029	0.032	0.033
1099								0.021	0.021	0.021	0.020	0.018				
1099.5	0.008	0.020														

Table S3. The relative integral intensities of selected product absorptions of irradiated Freon-11 in noble gas matrices.

Approximate type of mode	Ne	Ar	Kr	Xe	Gas phase literature data ^{a)}
CCl ₂ a-stretch	883.5-888.5	877.7-	877.1-	885.5-890	882
		882.7	881.4		
CCl ₂ a-stretch	~ 919-921 [*]	908.5-	905.9-	912.5-916.5	922
		912.7	910.6		
CF₂ s-stretch	1096-1100.5	1089.8-	1089-	1087	1101
		1094.8	1092.3		
CF ₂ a-stretch	1147.4-1155.5	1144.9-	1149.8-	1142.5-1146	1159
		1149.8	1151.6		

Table S4. Strong absorption bands (cm⁻¹) of CF_2Cl_2 in different matrices after deposition at 7 K.

^{a)} – see Ref. 40

* - out of scale

Table S5. Absorption bands (maxima position, cm^{-1}) used for quantitative estimates of the product formation in the CF₂Cl₂/Ng systems.

Spacios	Matrix								
Species	Ne	Ar	Kr	Xe					
$CF_2Cl_2^{+\bullet}$	1237	1233	1232.0	_					
$CF_2Cl_2^{-\bullet}$	568	563.2	561.7	560.4					
"Х"	1220	1219.1	1216.9	1213.3					
CF_2	1222	_	_	_					
CFCl_2^+	1361	1354.2	_	_					
CF_2Cl^+	1411.5	1406.2-1409.4	1408-1411	_					
$CFCl_2$	752.5	_	_	_					
CF_2Cl	1212.5	1206.6	1203.7	1200					
CFC1"	746.5	739.9	737.2	730.6					
"Y"	1251.5	1254.4	1253.3	1249.4					

Figure S7. Difference IR spectrum demonstrating the radiation-induced absorptions for CF_2Cl_2/Ne system (1/1000) irradiated with X-rays at 7 K.

Figure S8. Difference IR spectrum demonstrating the radiation-induced absorptions for CF_2Cl_2/Kr system (1/1000) irradiated with X-rays at 7 K.

Figure S9. Difference IR spectrum demonstrating the radiation-induced absorptions for CF_2Cl_2/Xe system (1/1000) irradiated with X-rays at 7 K.

Figure S10. Accumulation of the radiation-induced species under X-rays irradiation of the CF_2Cl_2/Ne system (1/1000) at 7 K.

Figure S11. Accumulation of the radiation-induced species under X-rays irradiation of the CF_2Cl_2/Kr system (1/1000) at 7 K.

Figure S12. Accumulation of the radiation-induced species under X-rays irradiation of the CF_2Cl_2/Xe system (1/1000) at 7 K.

Matrix		Ne			A	r				K	ſr					Xe		
Conversion, %	7	14	23	<1	14	23	30	4	18	31	39	46	60	9	19	25	36	45
Species]	[
$CF_2Cl_2^{+\bullet}$	0.08	0.157	0.22	0.023	0.074	0.088	0.093	0.017	0.063	0.103	0.125	0.153	0.164	0	0	0	0	0
$CF_2Cl_2^{-\bullet}$	0.276	0.241	0.205	0.152	0.108	0.084	0.070	0.181	0.175	0.133	0.122	0.091	0.069	0.067	0.028	0.02	0.008	0.005
CF_2	0.009	0.018	0.026	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CFCl_2^+	0.052	0.045	0.048	0.007	0.009	0.01	0.009	0	0	0	0	0	0	0	0	0	0	0
CF_2Cl^+	0.148	0.170	0.170	0.118	0.142	0.134	0.124	0.097	0.214	0.208	0.202	0.155	0.156	0	0	0	0	0
CFCl ₂ •	0.026	0.046	0.061	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CF ₂ Cl [•]	0.066	0.143	0.216	0.005	0.037	0.061	0.079	0	0.008	0.016	0.034	0.052	0.077	0.098	0.170	0.22	0.261	0.32
CFCI"	0.002	0.005	0.008	0.021	0.044	0.049	0.049	0.011	0.009	0.014	0.017	0.022	0.028	0.017	0.038	0.073	0.122	0.167
"X"	0.016	0.035	0.049	0.090	0.255	0.315	0.341	0.023	0.111	0.194	0.233	0.291	0.363	0.025	0.033	0.039	0.038	0.043
"Y"	0.036	0.063	0.081	0.03	0.052	0.058	0.063	0.153	0.517	0.761	0.883	1	1	0.055	0.094	0.113	0.136	0.134
1131	0.150	0.278	0.368															
1240.8				0	0.002	0.01	0.01											
1131.8								0.02	0.086	0.092	0.188	0.139	0.208					
1238.0								0.019	0.036	0.064	0.081	0.108	0.122					
1281.9								0.077	0.259	0.389	0.439	0.503	0.519					
1125.4														0.017	0.047	0.108	0.158	0.172

Table S6. The relative integral intensities of selected product absorptions of irradiated Freon-12 in noble gas matrices.

Calculated harmonic vibrational frequencies (cm⁻¹), IR intensities (km/mol), molecular geometries and energies for freons and related intermediates

Molecular geometries were fully optimized (tolerance on gradient: 10^{-6} a.u.) at the unrestricted CCSD(T)/L1a level of theory (only the valence electrons are correlated). Basis set contraction scheme: C - {4,3,2}/{11,8,4}; F -{4,3,2}/{11,8,4}; Cl - {5,4,2}/{15,12,4}.

abbreviations:

E-energy (a.u.),

ZPVE -zero point vibration energy (a.u.),

E0 –ZPVE corrected energy (a.u.),

Mode – Mode number

Freq. – Harmonic Frequencies (cm⁻¹),

Mass.- Reduced Masses (a.m.u.),

IR Int. - IR Intensities (km/mol).

CFCl₃

Mode	Freq.	Mass.	IR Int.
1	246.26	29.91	0.060
2	246.27	29.91	0.061
3	349.49	25.59	0.267
4	396.73	25.29	0.000
5	396.74	25.29	0.000
6	527.35	22.59	1.064
7	842.48	12.88	217.424
8	842.49	12.88	217.393
9	1083.61	13.69	160.705

\$molecule

z-matrix set=L1a 6 9 1 1.34780714 17 1 1.77939209 2 108.373773 17 1 1.77939209 2 108.373773 3 120.000000 17 1 1.77939209 2 108.373773 3 -120.000000 \$end

\$molecule cartesian set=L1a 6 0.00000000 -0.00000000 0.06697285 9 0.00000000 -0.00000000 1.41477999 17 0.00000000 1.68867939 -0.49391762 17 -1.46243925 -0.84433970 -0.49391762 17 1.46243925 -0.84433970 -0.49391762 \$end

E = -1516.800747; E0 = -1516.789512; ZPVE = 0.011235

CFCl₃^{+•}

Mode	Freq.	Mass.	IR Int.
1	219.05	29.45	0.281
2	246.31	30.49	0.408
3	328.39	24.99	0.037
4	354.33	27.09	8.012
5	404.04	24.41	0.667
6	528.07	22.14	9.457
7	823.31	12.79	1026.508
8	883.49	13.23	302.465
9	1217.62	13.78	193.443

\$molecule charge=1 mult=2 z-matrix set=L1a 6 9 1 1.30474868 17 1 1.71000235 2 114.389901 17 1 1.83493998 2 110.474444 3 131.681467 17 1 1.83494009 2 110.474443 3 -131.681468 \$end

\$molecule charge=1 mult=2 cartesian set=L1a 6 0.16239134 -0.00000000 0.11684140 9 0.33248471 0.00000004 1.41045547 17 1.61444116 -0.00000021 -0.78629721 17 -1.05465840 1.28385868 -0.37049989 17 -1.05465880 -1.28385851 -0.37049977 \$end

E = -1516.386082; E0 = -1516.374680; ZPVE = 0.011401

CFCl₂

Mode	Freq.	Mass.	IR Int.
1	282.08	26.86	0.013
2	379.04	23.28	0.328
3	462.09	17.58	0.359
4	610.23	15.66	8.526
5	910.59	13.19	264.914
6	1149.81	13.76	221.239

\$molecule mult=2 z-matrix set=L1a 6 9 1 1.33529083 17 1 1.73521198 2 112.960093 17 1 1.73521198 2 112.960093 3 136.096397 \$end

\$molecule mult=2 cartesian set=L1a 6 0.00000000 0.09281400 -0.28388794 9 0.00000000 1.36826457 0.11136823 17 -1.48190439 -0.73053928 0.08625985 17 1.48190439 -0.73053928 0.08625985 \$end

E = -1057.049237; E0 = -1057.040594; ZPVE = 0.008643

\mathbf{CFCl}_{2}^{+}

Mode	Freq.	Mass.	IR Int.
1	330.00	26.00	0.048
2	445.88	23.07	1.951
3	589.32	12.85	2.942
4	640.78	23.93	2.210
5	1129.66	13.15	460.412
6	1365.68	13.64	281.946

\$molecule charge=1 z-matrix set=L1a 6 9 1 1.27239234 17 1 1.64660688 2 117.922267 17 1 1.64660688 2 117.922267 3 -179.999993 \$end

\$molecule charge=1 cartesian set=L1a 6 -0.00000000 0.06743288 0.00000004 9 -0.00000000 1.33982522 -0.00000002 17 -1.45491502 -0.70362905 -0.00000001 17 1.45491502 -0.70362905 -0.00000001 \$end

E = -1056.750525; E0 = -1056.740270; ZPVE = 0.010255

(CFCl₂·...Cl⁻)

Mode	Freq.	Mass.	IR Int.
1	60.09	31.49	0.287
2	107.21	22.25	1.084
3	164.77	29.56	78.711
4	262.73	28.39	0.785
5	349.35	23.82	6.030
6	436.33	21.40	3.460
7	478.06	13.15	569.027
8	744.12	12.98	274.956
9	1038.18	13.87	201.174

\$molecule charge=-1 mult=2 z-matrix set=L1a 6 9 1 1.35055356 17 1 1.81286019 2 107.735295 17 1 1.81286019 2 107.735295 3 118.802276 17 1 2.48419706 2 102.684176 3 -120.598862 \$end

\$molecule charge=-1 mult=2 cartesian set=L1a 6 -0.13685300 0.00000000 0.05082299 9 -0.22733020 0.00000000 1.39834249 17 -0.97681629 1.48626262 -0.55905171 17 -0.97681629 -1.48626262 -0.55905171 17 2.31781578 0.0000000 -0.33106206 \$end

E = -1516.828172,E0 = -1516.819877, ZPVE = 0.008294

CCl₃⁺

Mode	Freq.	Mass.	IR Int.
1	311.21	31.74	0.089
2	311.21	31.74	0.089
3	517.45	12.87	0.062
4	534.56	34.97	0.000
5	1027.86	13.37	302.435
6	1027.86	13.37	302.435

\$molecule

charge=1 z-matrix set=L1a 6 17 1 1.66283931 17 1 1.66284011 2 120.000014 17 1 1.66284011 2 120.000014 3 -179.999999 \$end

\$molecule charge=1 cartesian set=L1a 6 0.00000000 0.0000038 0.00000001 17 0.00000000 1.66283969 -0.00000000 17 -1.44006157 -0.83142003 -0.00000000 17 1.44006157 -0.83142003 -0.00000000 \$end

E = -1416.744071; E0 = -1416.735573; ZPVE = 0.008498

CCl₃

Mode	Freq.	Mass.	IR Int.
1	271.98	31.85	0.032
2	271.98	31.85	0.036
3	350.03	16.00	0.213
4	493.98	22.82	0.051
5	880.50	13.42	163.443
6	880.50	13.42	163.295

\$molecule mult=2 z-matrix set=L1a 6 17 1 1.73103925 17 1 1.73103947 2 116.445361 17 1 1.73103947 2 116.445360 3 143.409941 \$end

\$molecule mult=2 cartesian set=L1a 6 -0.00000001 -0.00000020 -0.24782191 17 0.01092242 1.69917435 0.08260728 17 -1.47699001 -0.84012798 0.08260732 17 1.46606760 -0.85904616 0.08260732 \$end

E = -1417.036199; E0 = -1417.029025; ZPVE = 0.007174

CFCl" singlet

Mode	Freq.	Mass.	IR Int.
1	435.63	21.69	14.454
2	732.61	13.46	238.240
3	1142.63	14.01	260.429

\$molecule

z-matrix set=L1a 6 9 1 1.30862413 17 1 1.76955661 2 106.291768 \$end

\$molecule cartesian set=L1a 6 0.22965061 -0.58404154 0.00000000 9 1.12176173 0.37336896 0.00000000 17 -1.35141234 0.21067257 0.00000000 \$end

E = -597.325461; E0 = -597.320197; ZPVE = 0.005265

$CF_2Cl_2 \\$

Mode	Freq.	Mass.	IR Int.
1	262.60	27.34	0.122
2	322.80	21.20	0.000
3	434.20	25.64	0.002
4	434.52	18.57	0.068
5	453.34	25.67	0.114
6	663.14	18.26	8.523
7	911.67	12.72	348.665
8	1102.56	13.55	272.949
9	1155.30	13.39	192.171

\$molecule

z-matrix set=L1a 6 9 1 1.33942236 9 1 1.33942236 2 107.772500 17 1 1.77463762 2 109.298843 3 118.683061 17 1 1.77463762 2 109.298843 3 -118.683061 \$end

\$molecule cartesian set=L1a 6 -0.00000000 0.08226791 0.00000000 9 -0.00000000 0.87171040 1.08205029 9 0.00000000 0.87171037 -1.08205031 17 -1.46938433 -0.91284433 0.00000001 17 1.46938433 -0.91284433 0.00000001 \$end

E = -1156.827580; E0 = -1156.814503; ZPVE = 0.013077

 $CF_2Cl_2^{+\bullet}$

Mode	Freq.	Mass.	IR Int.
1	262.11	28.03	0.071
2	278.27	21.71	0.000
3	394.31	26.89	7.994
4	404.67	18.31	0.783
5	446.80	25.47	0.069
6	683.20	17.46	30.970
7	1008.82	12.73	2141.803
8	1184.95	13.90	373.234
9	1341.95	13.47	213.600

\$molecule charge=1 mult=2 z-matrix set=L1a 6 9 1 1.29362378 9 1 1.29362378 2 112.918677 17 1 1.81797382 2 112.809578 3 129.376619 17 1 1.81797382 2 112.809565 3 -129.376589 \$end

\$molecule charge=1 mult=2 cartesian set=L1a 6 0.22431087 0.00000020 0.00000000 9 0.93907510 0.00000039 1.07822752 9 0.93907500 0.00000039 -1.07822758 17 -1.05123118 1.29538481 0.00000002 17 -1.05122979 -1.29538579 0.00000003 \$end

E = -1156.402292; E0 = -1156.388611; ZPVE = 0.013681

CF₂Cl

Mode	Freq.	Mass.	IR Int.
1	363.76	19.40	0.136
2	419.95	23.59	0.062
3	597.01	16.38	3.451
4	766.30	14.06	66.300
5	1151.16	13.73	324.762
6	1206.01	13.49	255.425

\$molecule mult=2 z-matrix set=L1a 6 9 1 1.32860715 9 1 1.32860717 2 110.201491 17 1 1.74303723 2 113.852202 3 129.332069 \$end

\$molecule mult=2 cartesian set=L1a 6 -0.10435771 -0.00000019 -0.29888677 9 -0.74611047 1.08967054 0.10850501 9 -0.74611445 -1.08966855 0.10850512 17 1.59658263 -0.00000180 0.08187664 \$end

E = -697.066876; E0 = -697.056615; ZPVE = 0.010261

CF_2Cl^+

Mode	Freq.	Mass.	IR Int.
1	423.42	19.20	1.795
2	519.53	22.90	3.308
3	676.97	12.84	19.188
4	812.93	19.15	20.556
5	1404.79	13.47	536.295
6	1522.44	13.43	295.421

\$molecule

charge=1 z-matrix set=L1a 6 9 1 1.25538019 9 1 1.25538028 2 116.019209 17 1 1.62980617 2 121.990393 3 -179.999968 \$end

\$molecule charge=1 cartesian set=L1a 6 -0.07491569 0.00000001 0.00000017 9 -0.73998718 1.06473441 -0.00000006 9 -0.73998760 -1.06473423 -0.00000006 17 1.55489048 -0.00000020 -0.00000005 \$end

E = -696.755762; E0 = -696.743551; ZPVE = 0.012211

(**CF**₂**Cl'...Cl**')

Mode	Freq.	Mass.	IR Int.
1	72.23	24.52	7.842
2	133.40	19.13	0.485
3	166.02	27.23	110.295
4	329.01	24.89	72.240
5	335.38	19.54	0.075
6	567.39	13.96	579.119
7	609.19	16.12	231.717
8	1013.16	13.88	312.485
9	1079.21	13.50	223.729

\$molecule charge=-1 mult=2 z-matrix set=L1a 6 9 1 1.34914024 9 1 1.34914024 2 106.474982 17 1 1.86890920 2 107.083924 3 114.291649 17 1 2.46431193 2 104.007002 3 -109.506417 \$end

\$molecule charge=-1 mult=2 cartesian set=L1a 6 -0.13275133 0.04006261 -0.00000000 9 -0.25567841 0.83811037 1.08082750 9 -0.25567841 0.83811038 -1.08082750 17 -1.60239339 -1.11448224 -0.00000000 17 2.24650154 -0.60180112 0.00000000 \$end

E = -1156.847583; E0 = -1156.837776; ZPVE = 0.009807

CF₂"

Mode	Freq.	Mass.	IR Int.
1	658.40	17.82	2.491
2	1088.28	13.69	392.999
3	1208.04	13.79	120.075

\$molecule

z-matrix set=L1a 6 9 1 1.31339283 9 1 1.31339283 2 104.507959 \$end

\$molecule cartesian set=L1a 6 0.00000000 -0.53600644 0.00000000 9 1.03854186 0.26800322 0.00000000 9 -1.03854186 0.26800322 0.00000000 \$end

E = -237.358968; E0 = -237.352237; ZPVE = 0.006731