Supporting Information for

## A General Protocol for the Polycondensation of Thienyl MIDA-Boronate Esters to Form High Molecular Weight Copolymers

Josue Ayuso Carrillo, Michael L. Turner\*, Michael J. Ingleson\*

School of Chemistry, University of Manchester. Oxford Road M13 9PL, Manchester, UK

Corresponding authors: Michael.Turner@manchester.ac.uk (MLT) Michael.Ingleson@manchester.ac.uk (MJI)

# Contents

| General considerations                                | S3  |
|-------------------------------------------------------|-----|
| Monomer synthesis procedures                          | S6  |
| Monomer hydrolysis reactions procedures               | S13 |
| Polymer synthesis studies                             | S35 |
| Crystallographic details for <b>3</b> , and <b>10</b> | S76 |
| References                                            | S77 |

#### **General considerations**

Experimental procedures. Unless otherwise explicitly stated, all manipulations were performed using standard Schlenk techniques or in an argon-filled MBraun glovebox (O<sub>2</sub> and H<sub>2</sub>O levels below 0.5 ppm). Polymerisations were performed in a Radley carousel connected to a Schlenk line. Glassware was dried overnight in a hot oven and heated under vacuum before use. Tetrahydrofuran (THF), toluene,  $d_8$ -THF, CH<sub>2</sub>Cl<sub>2</sub>, *n*-hexane, *o*-C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub>, MeCN, CD<sub>3</sub>CN, ethyl acetate, Et<sub>2</sub>O, C<sub>6</sub>D<sub>5</sub>Br, mesitylene, Et<sub>3</sub>N, and 2,6-di-tert-butylpyridine (tBu<sub>2</sub>Py) were distilled from K, NaK alloy, or CaH<sub>2</sub> under N<sub>2</sub> gas atmosphere and stored over molecular sieves or K mirror as appropriate. All solvents were freeze-pump-thaw degassed prior to use. 2,6-dichloropyridine ( $Cl_2Py$ ), and  $K_3PO_4$ , were dried overnight under reduced pressure  $(1 \times 10^{-2} \text{ mbar at } 23 \text{ °C})$ , finely ground, and stored under inert atmosphere. Deionised water,  $D_2O_2$ , and alkaline aqueous solutions were thoroughly degassed by a continuous bubbling flow of N<sub>2</sub> gas for at least one hour. N-Methyliminodiacetic disilyl ester (TMS<sub>2</sub>-MIDA), <sup>1</sup> 5-bromo-4-hexylthien-2-yl-MIDA-boronate, 1, <sup>2</sup> 4,4'-bis(dodecyl)-2,2'-bithiophene, 13,<sup>3</sup> 4,7-bis(5-bromo-3-hexylthiophene-2-yl)-2,1,3-benzothiadiazole, 9,<sup>4</sup> were prepared procedures. 4,4'-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4according to literature 4,7-dibromo-5-fluoro-2,1,3-benzothiadiazole, b']dithiophene, 8. 2 and 2,5dibromothieno[3,2-b]thiophene, 12, were purchased from TCI (98%), and used without further purification. 5,5'-dibromo-2,2'-bithiophene, 11, was purchased from Alfa Aesar (99%) and used as received. 4,7-dibromobenzo [c]-1,2,5-thiadiazole, 7, was purchased from Alfa Aesar (98%) and recrystallised from EtOH before use. All other materials were purchased from commercial vendors and used as received. Room temperature (RT) refers to 23 °C (± 2 °C).

Analytical procedures: NMR spectroscopy experiments were performed using Bruker AV-400 (<sup>1</sup>H, 400 MHz, <sup>13</sup>C, 100.6 MHz; <sup>11</sup>B, 128.4 MHz; <sup>27</sup>Al, 104.3 MHz; <sup>19</sup>F, 376.6 MHz) or Bruker AV-500 (<sup>1</sup>H, 500 MHz, <sup>13</sup>C, 125.8 MHz; <sup>11</sup>B, 160.5 MHz; <sup>27</sup>Al, 130.3 MHz; <sup>19</sup>F, 470.7 MHz; <sup>17</sup>O, 67.8 MHz) spectrometers. Chemical shift values for <sup>1</sup>H and <sup>13</sup>C are reported in ppm relative to residual protio solvents (*e.g.*, CHCl<sub>3</sub> in CDCl<sub>3</sub>  $\delta_{\rm H}$  = 7.26) or TMS ( $\delta_{\rm H}$  = 0.00), and the central peak of CDCl<sub>3</sub> triplet ( $\delta_{\rm C}$  = 77.0)) as internal standards, respectively. All other nuclei NMR spectra were referenced to external standards: <sup>11</sup>B, BF<sub>3</sub>:Et<sub>2</sub>O; <sup>27</sup>Al, Al(NO<sub>3</sub>)<sub>3</sub> in D<sub>2</sub>O [Al(D<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>; <sup>19</sup>F, C<sub>6</sub>F<sub>6</sub>; <sup>17</sup>O, D<sub>2</sub>O. In reactions where *in situ* analyses (*e.g.*, borylations or polymerisations) were performed the NMR spectra were recorded in protio solvents, employing a capillary filled with wet *d*<sub>6</sub>-DMSO insert as a locking solvent. All coupling constants (*J*) are reported in Hz. Multiplicity of signals are indicated as "s", "d", "t", "m" for singlet, doublet, triplet, and multiplet, respectively. Unless otherwise stated all NMR spectra are recorded at 293 K. Broad features in the <sup>11</sup>B and <sup>27</sup>Al NMR spectra are due to boron materials used in the glassware, and the spectrometer probe, respectively, whilst carbon atoms directly bonded to boron are not observed in the <sup>13</sup>C{<sup>1</sup>H} NMR spectra due to quadrupolar relaxation effects.

Gel permeation chromatography (GPC) analyses were performed in THF solution (~1 mg mL<sup>-1</sup>) at 35 °C using a Viscotex GPCmax VE2001 solvent/sample module with  $2 \times PL$  gel 10 µm mixed-B and a PL gel 500 A column, and equipped with a Viscotex VE3580 RI detector employing narrow polydispersity polystyrene standards (Agilent Technologies) as a calibration reference. Samples were filtered through an Acrodisc CR 13 mm syringe filter with 0.45 µm PTFE membrane before injection to equipment, and experiments were carried out with injection volume of 100  $\mu$ L, flow rate of 1 mL min<sup>-1</sup>. Results were analysed using *n*dodecane as internal marker, and Malvern OmniSEC 4.7 software, and processed using OriginLab Pro 8.5 software. Alternatively, GPC analyses were performed in chlorobenzene solution (~1 mg mL<sup>-1</sup>) at 70 °C using a Polymer Laboratories solvent/sample module with  $2 \times$ PL gel 10 µm mixed-B and a PL gel 500 A column, and equipped with an ERC 7515A RI detector employing narrow polydispersity polystyrene standards (Agilent Technologies) as a calibration reference. Experiments were carried out with injection volume of 100  $\mu$ L, flow rate of 0.5 mL min<sup>-1</sup>. Results were analysed using toluene as internal marker, and in-house customised LabView 8.5 software, and processed using OriginLab Pro 8.5 software. GPC analyses in 1,2,4-trichlorobenzene solution at 160 °C were performed by PSS Polymer Standards Service GmbH, Mainz, Germany.

UV-vis spectroscopy analyses were performed in spectroscopy grade chloroform or chlorobenzene solution  $(1 \times 10^{-5} \text{ M})$  at room temperature using an Agilent Technologies Cary 5000 UV-vis-NIR spectrophotometer.

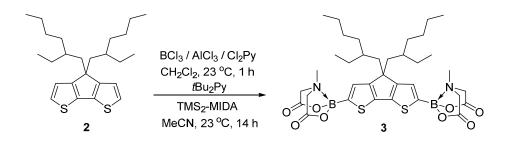
MALDI-TOF analyses were performed using a Shimadzu Axima Confidence spectrometer using a 4k PPG as a calibration reference. 1  $\mu$ L of a solution of dopant NaI in THF (10 mg mL<sup>-1</sup>) was spotted onto a well of the MALDI plate and the solvent left to evaporate. Polymer samples solutions were made up to 10 mg mL<sup>-1</sup> in THF. A solution of matrix dithranol was made up to 10 mg mL<sup>-1</sup> in THF. 2  $\mu$ L of sample solution and 20  $\mu$ L of matrix solution were thoroughly mixed and 1  $\mu$ L of this solution was spotted onto a well with no dopant, and 1  $\mu$ L spotted by a layered method with the NaI. The solvent was allowed to evaporate before being placed in the spectrometer. Samples were run in positive polarity mode in either linear or reflectron mode. Results were and processed using OriginLab Pro 8.5 software.

X-Ray crystallographic analyses were carried out by Dr. Inigo Vitorica-Yrezabal and Dr. James Raftery (for **3**), and Dr. Jay J. Dunsford (for **10**). Data for compounds **3** and **10** were recorded on an Agilent Supernova diffractometer, with Mo K $\alpha$  radiation (mirror monochromator,  $\lambda = 0.7107$ ). The CrysAlisPro<sup>5a</sup> software package was used for data collection, cell refinement and data reduction. The CrysAlisPro software package was also used for empirical absorption corrections, which were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Structures were solved using direct methods and refined against F<sup>2</sup> using the OLEX2<sup>5b</sup> software package. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were all located in a difference map and repositioned geometrically.

Crystallographic data for **3** and **10** have been deposited with the Cambridge Crystallographic Data Center under the references: CCDC 1493979 and 1493980, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre (CCDC) *via* www.ccdc.cam.ac.uk/data\_request/cif

Elemental analyses were performed by the Micro Analytical Laboratory, School of Chemistry, University of Manchester.

#### **Monomer synthesis procedures**


General Procedure (GP1) Optimised for multigram-scale bis-borylation of bithiophenes. An oven-dried Schlenk ampoule fitted with a J. Young's tap containing a stirrer bar was heated under reduced pressure and back filled with N<sub>2</sub>. The ampoule was charged with Cl<sub>2</sub>Py (2.1 equiv.) and AlCl<sub>3</sub> (2.0 equiv.). Then, anhydrous CH<sub>2</sub>Cl<sub>2</sub> was added and the mixture was stirred until the solids completely dissolved. This was followed by addition of BCl<sub>3</sub> (2.1 equiv, 1.0 M solution in  $CH_2Cl_2$ , and then the respective bithiophene (1.0 equiv) was added, keeping the temperature at 18-25 °C. After stirring at ambient temperature for 1 h, 2,6-di-tertbutylpyridine ( $tBu_2Py$ , 2.1 equiv) was injected into the solution. The reaction mixture was then immediately added via cannula to TMS2-MIDA (2.1 equiv.) in anhydrous MeCN (precharged in a Schlenk ampoule fitted with a J. Young's tap), keeping the temperature at 18-25 °C, and stirring was continued at ambient temperature for 14 h. After the MIDA esterification was accomplished the reaction mixture was subjected to the relevant work up procedures. It should be noted that in experiments where  $tBu_2Py$  is not added the *in-situ* conversion to **3** is significantly lower, with protodeboronation products observed even before work up. This is attributed to the strongly Brønsted acidic by-product  $[HCl_2Py]^+$  from S<sub>E</sub>Ar reacting with a four coordinate thienylBCl<sub>2</sub>(L) species ( $L = MIDA^{2-}$  or MeCN). *t*Bu<sub>2</sub>Py deprotonates  $[HCl_2Py]^+$  and generates a less acidic solution resulting in no protodeboronation in-situ.

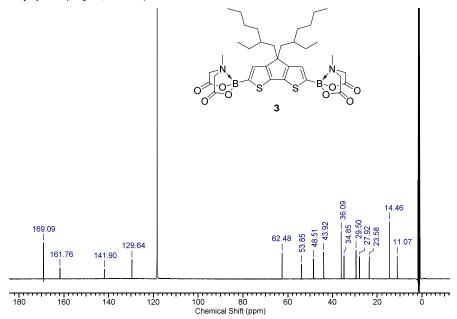
**Workup Procedure 1 (WP1)**, optimised for the synthesis of **3**: The crude reaction mixture was concentrated under reduced pressure at ambient temperature to remove TMSCl and solvents. The crude product was washed thoroughly with anhydrous toluene. The residue was redissolved in anhydrous ethyl acetate, filtered through a plug of dry Celite, and concentrated under reduced pressure at ambient temperature. Then it was recrystallised from a concentrated solution in anhydrous MeCN layered with anhydrous Et<sub>2</sub>O. Decantation of the solvents and drying under reduced pressure  $(1 \times 10^{-2} \text{ mbar})$ , afforded the desired pure product. **Workup Procedure 2 (WP2)**, optimised for the synthesis of **10**: The crude reaction mixture was concentrated under reduced pressure at ambient temperature to remove TMSCl and solvents. The crude product was redissolved in anhydrous hot THF, filtered through a short plug of Et<sub>3</sub>N-treated silica gel (40-63 µm), and concentrated under reduced pressure at ambient temperature.

40 °C under reduced pressure ( $1 \times 10^{-2}$  mbar) afforded the desired pure product.

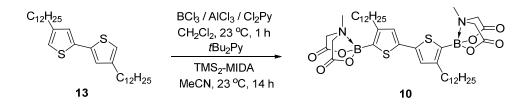
hexane  $(3 \times 15 \text{ mL})$ , Et<sub>2</sub>O  $(3 \times 15 \text{ mL})$ , and cold ethyl acetate  $(3 \times 15 \text{ mL})$ . Further drying at

4,4'-bis(2-ethylhexyl)-4*H*-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-MIDA-boronate, 3




According to **GP1**: 4,4'-bis(2-ethylhexyl)-4*H*-cyclopenta[2,1-b;3,4-b']dithiophene (1.0 g, 2.48 mmol) reacted with BCl<sub>3</sub> (5.2 mL of 1.0 M in CH<sub>2</sub>Cl<sub>2</sub>, 5.22 mmol), Cl<sub>2</sub>Py (0.77 g, 5.22 mmol), and AlCl<sub>3</sub> (0.66 g, 4.97 mmol), in CH<sub>2</sub>Cl<sub>2</sub> (15 mL). Subsequent addition of  $tBu_2Py$  (1.0 g, 5.22 mmol), followed by esterification with TMS<sub>2</sub>-MIDA (1.52 g, 5.22 mmol) in MeCN (20 mL) afforded after workup (following **WP1**), 1.44 g (81%) of a pure product as a colourless solid. When workup followed standard purification using non-purified "wet" solvents and silica gel chromatography,<sup>2</sup> the yield of **3** decreased to 23%, along with **4** being isolated in 32%. X-Ray quality crystals of **3** were grown from a concentrated solution in MeCN, layered with Et<sub>2</sub>O.

<sup>1</sup>**H NMR** (400 MHz, *d*<sub>8</sub>-THF): δ 7.20 (s, 2 H), 4.16 (dm,  ${}^{2}J_{(H,H)} = 16.6$  Hz, 4 H, 2 × CH<sub>2</sub>), 3.90 (dm,  ${}^{2}J_{(H,H)} = 16.6$  Hz, 4 H, 2 × CH<sub>2</sub>), 2.67 (6 H, 2 × NCH<sub>3</sub>), 1.94 (d, *J* = 4.9 Hz, 4 H, 2 × CH<sub>2</sub>), 1.03 – 0.94 (m, 16 H, 8 × CH<sub>2</sub>), 0.79 (t,  ${}^{3}J_{(H,H)} = 7.0$  Hz, 6 H, 2 × CH<sub>3</sub>), 0.69 (m, 2 H, 2 × CH), 0.59 (m, 6 H, 2 × CH<sub>3</sub>) <sup>13</sup>C{<sup>1</sup>H} **NMR** (125.8 MHz, CD<sub>3</sub>CN): δ 169.1 (4 C<sub>quat</sub>), 161.8 (2 C<sub>quat</sub>), 141.9 (2 C<sub>quat</sub>), 129.6 (2 CH), 62.5 (4 CH<sub>2</sub>), 53.9 (C<sub>quat</sub>), 48.5 (2 CH<sub>3</sub>), 43.9 (2 CH<sub>2</sub>), 36.1 (2 CH), 34.9 (2 CH<sub>2</sub>), 29.5 (2 CH<sub>2</sub>), 27.9 (2 CH<sub>2</sub>), 23.6 (2 CH<sub>2</sub>), 14.5 (2 CH<sub>3</sub>), 11.1 (2 CH<sub>3</sub>) <sup>11</sup>B **NMR** (128.4 MHz, *d*<sub>8</sub>-THF): δ 11.0 (s)

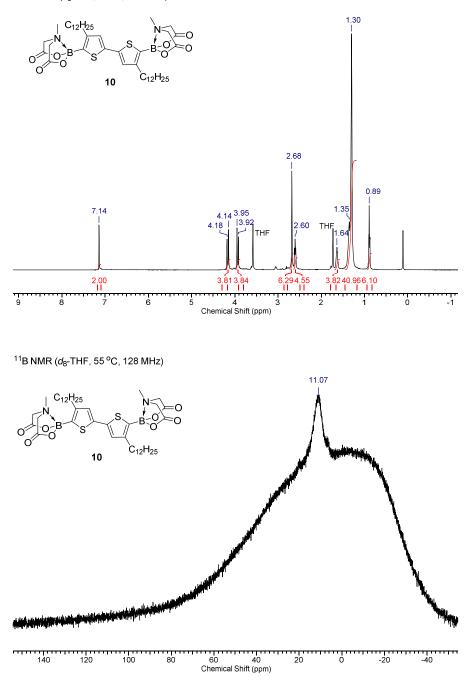

HRMS (APCI): calcd. for  $C_{35}H_{50}N_2O_8S_2B_2H^+ [M + H^+]^+$  713.3286, found 713.3289 Elemental Microanalysis: Expected C = 59.00, H = 7.07, N = 3.93. Found C = 58.87, H = 7.58, N = 3.86



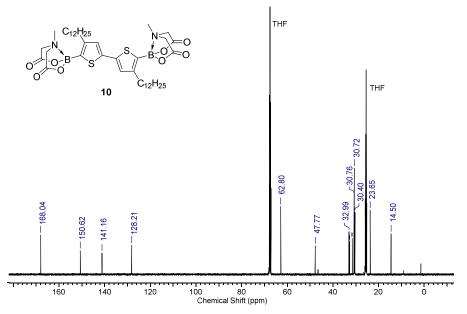
 $^{13}C{^{1}H} NMR (CD_{3}CN, 125 MHz)$ 



### 4,4'-bis(dodecyl)-2,2'-bithiophene-2,7-diyl-MIDA-boronate, 10




According to **GP1**: 4,4'-bis(dodecyl)-2,2'-bithiophene, **13**, (1.00 g, 1.99 mmol) reacted with BCl<sub>3</sub> (4.2 mL of 1.0 M in CH<sub>2</sub>Cl<sub>2</sub>, 4.18 mmol), Cl<sub>2</sub>Py (0.622 g, 4.18 mmol), and AlCl<sub>3</sub> (0.560 g, 3.98 mmol), in CH<sub>2</sub>Cl<sub>2</sub> (15 mL). Subsequent addition of  $tBu_2Py$  (0.804 g, 4.18 mmol), followed by esterification with TMS<sub>2</sub>-MIDA (1.224 g, 4.18 mmol) in MeCN (40 mL) afforded after workup (following **WP2**), 0.93 g (57.4%) of a pure product as a pale yellow solid. When workup followed standard purification using non-purified "wet" solvents,<sup>2</sup> the isolated yield of **10** decreased to 8.4%. X-Ray quality crystals were grown from slow cooling a warm concentrated solution of **10** in MeCN.


<sup>1</sup>**H NMR** (500 MHz,  $d_8$ -THF, 55°C):  $\delta$  7.14 (s, 2 H), 4.16 (d,  ${}^2J_{(H,H)} = 17.0$  Hz, 4 H), 3.94 (d,  ${}^2J_{(H,H)} = 17.0$  Hz, 4 H), 2.68 (s, 6 H, 2 × NCH<sub>3</sub>), 2.60 (t,  ${}^3J_{(H,H)} = 7.7$  Hz, 2 × CH<sub>2</sub>C<sub>5</sub>H<sub>11</sub>), 1.64 (tt,  ${}^3J_{(H,H)} \approx 7.4$  Hz, 2 × CH<sub>2</sub>C<sub>4</sub>H<sub>9</sub>), 1.30 (m, 36 H, 18 × CH<sub>2</sub>), 0.89 (t,  ${}^3J_{(H,H)} = 6.9$  Hz, 6 H, 2 × CH<sub>3</sub>)

<sup>13</sup>C{<sup>1</sup>H} NMR (125.8 MHz, *d*<sub>8</sub>-THF, 55°C): δ 168.0 (2 C<sub>quat</sub>), 150.6 (C<sub>quat</sub>), 141.2 (C<sub>quat</sub>), 128.2 (CH), 62.8 (2 CH<sub>2</sub>), 47.8 (CH<sub>3</sub>), 32.99 (CH<sub>2</sub>), 32.70 (CH<sub>2</sub>), 31.56 (CH<sub>2</sub>), 30.78 (CH<sub>2</sub>), 30.76 (CH<sub>2</sub>), 30.75 (CH<sub>2</sub>), 30.72 (CH<sub>2</sub>), 30.63 (CH<sub>2</sub>), 30.40 (CH<sub>2</sub>), 23.65 (CH<sub>2</sub>), 14.5 (CH<sub>3</sub>)
<sup>11</sup>B NMR (128.4 MHz, *d*<sub>8</sub>-THF, 55°C): δ 11.1 (s)

HRMS (APCI): calcd. for  $C_{42}H_{66}B_2N_2O_8S_2^-$  [M + H<sup>+</sup>]<sup>-</sup> 813.4519, found 813.4520 Elemental Microanalysis: Expected C = 62.07, H = 8.19, N = 3.45. Found C = 61.77, H = 8.76, N = 3.63. <sup>1</sup>H NMR (*d*<sub>8</sub>-THF, 55 °C, 500 MHz)



# <sup>13</sup>C{<sup>1</sup>H} NMR (*d*<sub>8</sub>-THF, 55 °C, 125.8 MHz)



### Monomer hydrolysis reactions procedures

# Stability and Hydrolysis Kinetics of MIDA Boronate Ester Monomers, using D<sub>2</sub>O (base-free)

Under anhydrous conditions, all thienyl MIDA boronate ester monomers remained unchanged in solution for weeks. They are structurally and thermally stable, as confirmed *via* variable temperature NMR spectroscopy experiments (at least to 100 °C). For example, the diastereotopic CH<sub>2</sub> protons of thienyl-BMIDA maintained their <sup>2</sup>J<sub>HH</sub> coupling over this temperature range, indicating no N $\rightarrow$ B bond dissociation (Figure S1).

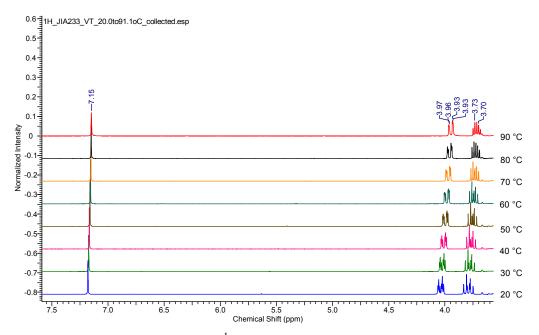



Figure S1. Variable-temperature <sup>1</sup>H NMR spectra (partial range) of **3** in anhydrous  $d_8$ -dioxane.

# Kinetics experiments for thienyl MIDA boronate esters hydrolysis with THF/D<sub>2</sub>O (base-free conditions)

Procedure for kinetics experiments and *in situ* measurements, example procedure for **1**. An oven-dried J. Young's NMR tube was charged under inert atmosphere with **1**, (1.0 equiv.), mesitylene as internal reference (1.0  $\mu$ L), and dissolved in  $d_8$ -THF (0.7 mL). Subsequently, D<sub>2</sub>O (30.0 equiv. per BMIDA moiety), was added [**1**]=  $6.2 \times 10^{-2}$  M, and the reaction mixture was vigorously shaken to homogenise before recording its NMR spectrum ( $t_0$ ). Then the tube was rotated at ambient temperature or heated in an oil bath at 55 °C, and followed by NMR spectroscopy at different reaction times.

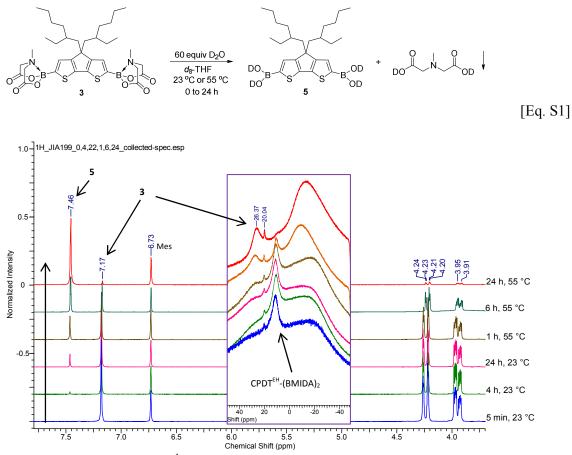
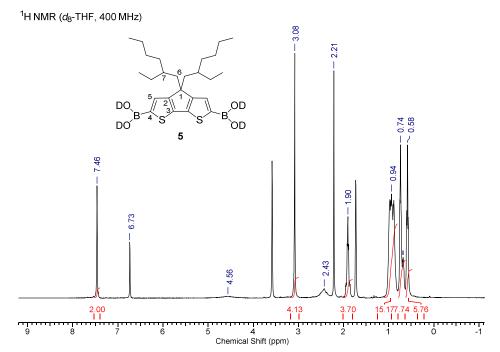
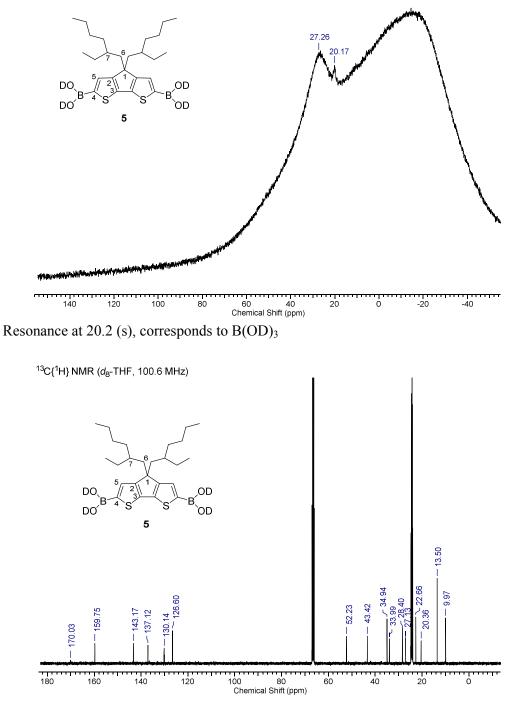




Figure S2. Collected partial <sup>1</sup>H NMR spectra in  $d_8$ -THF of the hydrolysis of **3** to **5**. Reaction conditions as in Equation S1. Mesitylene added as internal standard. Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals.

In situ characterisation of 4,4'-bis(2-ethylhexyl)-4*H*-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-bis-boronic acid, 5:


<sup>1</sup>**H NMR** (400 MHz, *d*<sub>8</sub>-THF): δ 7.46 (s, 2 H), 1.90 (m, 4 H, 2 × CH<sub>2</sub>), 0.94 (m, 16 H, 8 × CH<sub>2</sub>), 0.74 (t, *J* = 5.3 Hz, 6 H, 2 × CH<sub>3</sub>), 0.68 (m, 2 H, 2 × CH), 0.58 (t, *J* = 7.1 Hz, 6 H, 2 × CH<sub>3</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, *d*<sub>8</sub>-THF): δ 159.8 (2 C3<sub>quat</sub>), 143.2 (2 C2<sub>quat</sub>), 130.1 (2 C5-H),
52.2 (C1<sub>quat</sub>), 43.4 (2 C6-H<sub>2</sub>), 34.9 (2 C7-H), 34.0 (2 CH<sub>2</sub>), 28.4 (2 CH<sub>2</sub>), 27.1 (2 CH<sub>2</sub>), 22.7 (2 CH<sub>2</sub>), 13.5 (2 CH<sub>3</sub>), 9.97 (2 CH<sub>3</sub>).
<sup>11</sup>B NMR (128.4 MHz, *d*<sub>8</sub>-THF): δ 27.3 (bs).



Resonances at 6.73, 2.21, correspond to mesitylene (internal standard). Resonance at 3.08 corresponds to free MIDA (4 H,  $2 \times CH_2$ ), and 2.43 is H<sub>2</sub>O and HDO in THF.





Resonances at 137.1, 126.6, 20.4, correspond to mesitylene (internal standard). Resonance at 170.0 ( $C_{quat}$ ), corresponds to free MIDA.

Hydrolysis and subsequent protodeboronation of **3** to **2-(D)**<sub>2</sub> was confirmed by reacting **3** in  $d_8$ -THF with 8 equivalents of DCl (1 M solution in Et<sub>2</sub>O) and then subsequent addition of 60 equivalents of D<sub>2</sub>O at 23 °C. Complete deuteration of the alpha position of the CPDT core was observed by *in situ* NMR spectroscopy after addition of D<sub>2</sub>O, with no deoboronation occurring under anhydrous conditions.

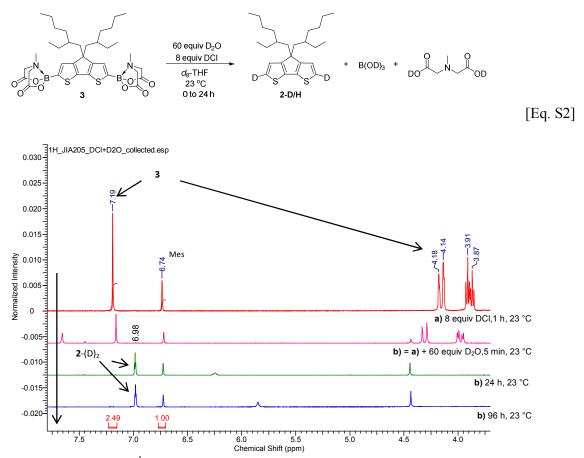
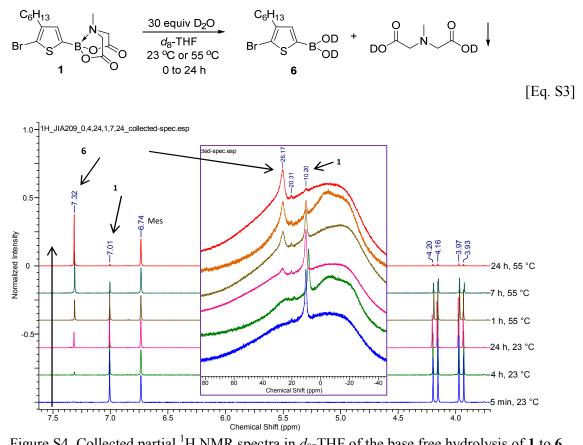
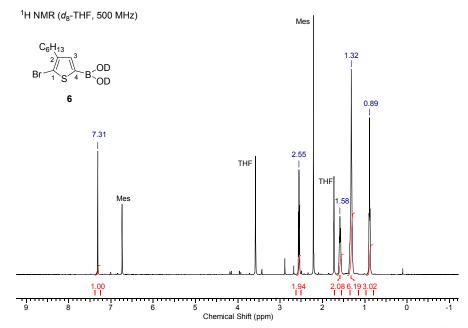
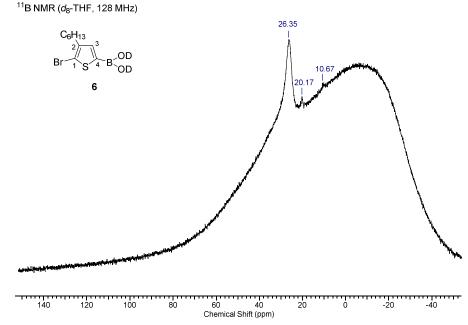


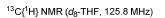

Figure S3. Collected <sup>1</sup>H NMR spectra in  $d_8$ -THF of the hydrolysis of **3** to **2-(D)**<sub>2</sub>. Reaction conditions as in Equation S2.

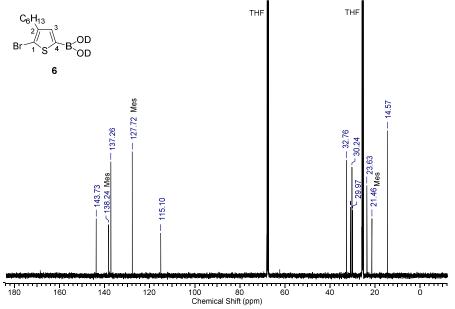
The hydrolysis of BMIDA by water under these conditions is not specific to 3, 1, p-Me-PhBMIDA and p-F-PhBMIDA all undergo slow hydrolysis in THF/water mixtures to form the respective boronic acid with the MIDA diacid precipitating in each case under these conditions.



Figure S4. Collected partial <sup>1</sup>H NMR spectra in  $d_8$ -THF of the base free hydrolysis of **1** to **6**. Reaction conditions as in Equation S3. Mesitylene added as internal standard. Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals.

### In situ characterisation of 5-bromo-4-hexylthien-2-yl-boronic acid, 6:


<sup>1</sup>**H NMR** (500 MHz, *d*<sub>8</sub>-THF): δ 7.31 (s, H), 2.55 (t, *J* = 7.63 Hz, 2 H, CH<sub>2</sub>), 1.58 (m, 2 H, CH<sub>2</sub>), 1.32 (m, 6 H,  $3 \times CH_2$ ), 0. 89 (t, *J* = 7.02 Hz, 3 H, CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>**H**} **NMR** (125.8 MHz, *d*<sub>8</sub>-THF): δ 143.7 (C2<sub>quat</sub>), 137.3 (C3-H), 115.1 (C1<sub>quat</sub>), 32.8 (CH<sub>2</sub>), 30.9 (CH<sub>2</sub>), 30.2 (CH<sub>2</sub>), 30.0 (CH<sub>2</sub>), 23.6 (CH<sub>2</sub>), 14.6 (CH<sub>3</sub>). <sup>11</sup>**B NMR** (128.4 MHz, *d*<sub>8</sub>-THF): δ 26.4 (bs).




Resonances at 6.74, 2.22, correspond to mesitylene (internal standard). Small resonances at 7.01, 4.17 (d), 3.95 (d), 2.68, correspond to residual 1; and 3.43 and 2.89 correspond to free MIDA.



Resonance at 20.2 (s), corresponds to  $B(OD)_3$ , and small resonance at 10.7 (bs) corresponds to residual 1.





Resonances at 138.2, 127.7, 21.5, correspond to mesitylene (internal standard).

Comparison of relative rates of hydrolysis of para-substituted arylBMIDAs.

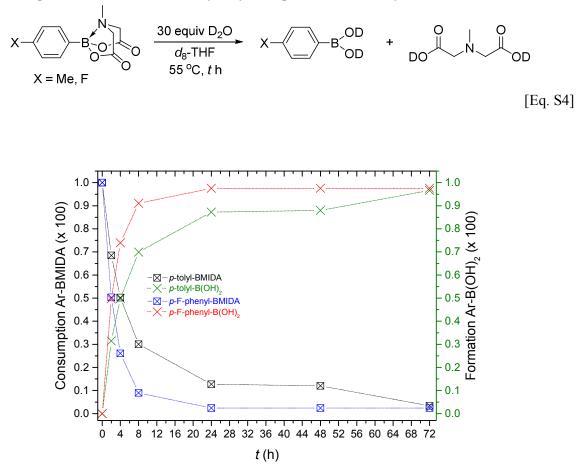
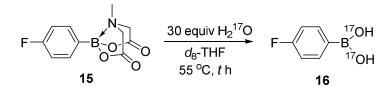




Figure S5. Kinetic profiles of hydrolysis of para-substituted arylBMIDAs under  $D_2O$ , and formation of their corresponding boronic acids, as depicted in Equation S4.

Hydrolysis of p-Fluorophenyl-MIDA boronate ester with 10% enriched <sup>17</sup>O-labelled water confirmed incorporation of <sup>17</sup>O on the boronic acid formed, and the NMR chemical shifts match previous reports.<sup>6,7</sup>



[Eq. S5]

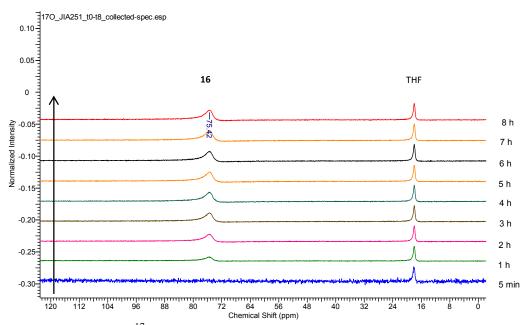



Figure S6. Collected <sup>17</sup>O NMR spectra in  $d_8$ -THF of the hydrolysis of **15** to **16**. Reaction conditions as in Equation S5.

 $H_2$ MIDA precipitates from this reaction mixture as a crystalline solid, isolation and analysis of the <sup>17</sup>O NMR spectrum of these crystals revealed no observable <sup>17</sup>O incorporation into  $H_2$ MIDA.

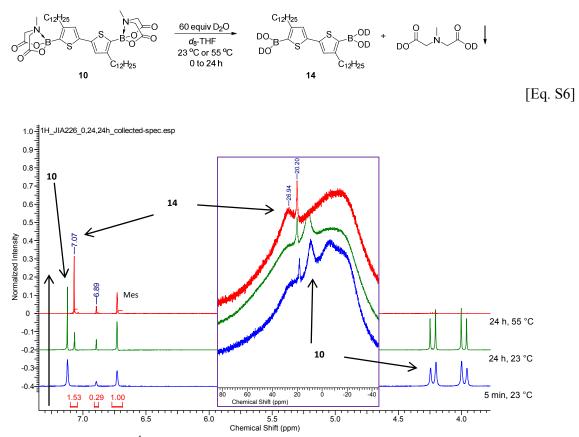
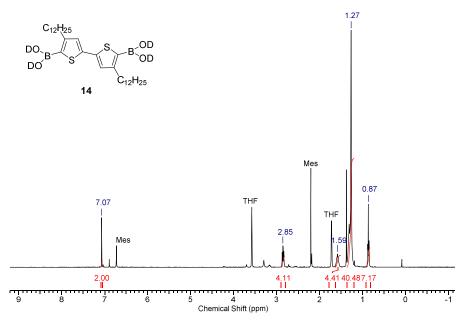
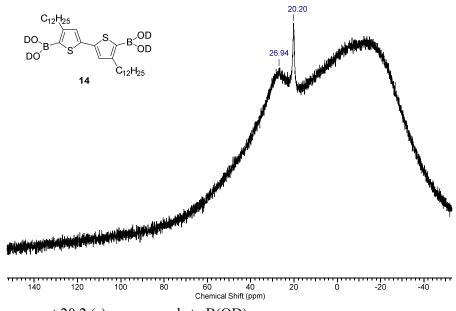




Figure S7. Collected <sup>1</sup>H NMR spectra in  $d_8$ -THF of the hydrolysis of **10** to **14**. Reaction conditions as in Equation S6. Integration of signal at 6.89 ppm (tentatively assigned as the  $d_2$ -isotopomer of the protodeboronation product ) remains unchanged over time. Mesitylene added as internal standard. Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals.


In situ characterisation of 4,4'-bis(dodecyl)-2,2'-bithiophene-2,7-diyl-bis-boronic acid, 14:

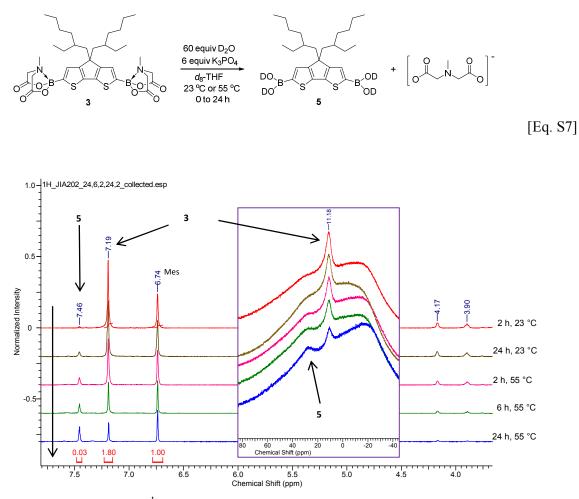
<sup>1</sup>**H NMR** (400 MHz, *d*<sub>8</sub>-THF): δ 7.07 (s, 2 H), 2.85 (t, J = 7.6 Hz, 4 H, 2 × CH<sub>2</sub>), 1.59 (m, 4 H, 2 × CH<sub>2</sub>), 1.27 (m, 40 H, 20 × CH<sub>2</sub>), 0.87 (t, J = 6.7 Hz, 6 H, 2 × CH<sub>3</sub>). <sup>11</sup>**B NMR** (128.4 MHz, *d*<sub>8</sub>-THF): δ 27.0 (bs). <sup>1</sup>H NMR (*d*<sub>8</sub>-THF, 400 MHz)



Resonances at 6.73, 2.20, correspond to mesitylene (internal standard). Resonance at 6.89 is tentatively assigned as the  $d_2$ -isotopomer of the protodeboronation product .






Resonance at 20.2 (s), corresponds to  $B(OD)_3$ 

#### Monomer hydrolysis reactions general procedures



General Procedure (**GP2**) for kinetics experiments and in situ measurements. An oven-dried J. Young's NMR tube was charged under inert atmosphere with **3**, (1.0 equiv.), internal reference (mesitylene), and K<sub>3</sub>PO<sub>4</sub> (6 equiv.), followed by addition of  $d_8$ -THF and D<sub>2</sub>O (60.0 equiv),  $[\mathbf{3}]_0 = 3.5 \times 10^{-2}$  M, and the reaction mixture was vigorously shaken to homogenise before recording its NMR spectra. Then it was rotated at ambient temperature or heated in an oil bath at 55 °C, and followed by NMR spectroscopy at different reaction times.

General Procedure (**GP3**) for kinetics experiments and measurements on extracted aliquots. A Schlenk ampoule fitted with a J. Young's tap containing a stirrer bar was charged with **3**, base (K<sub>3</sub>PO<sub>4</sub>), and  $d_8$ -THF, [**3**]<sub>0</sub> =  $3.5 \times 10^{-2}$  M. After the mixture was set at 55 °C the desired amount of D<sub>2</sub>O was added and the first aliquot was taken out of the reaction mixture for  $t_0$  whilst the remaining mixture was stirred at 900 rpm. Each aliquot was quenched with 0.6 mL of CD<sub>3</sub>CN (containing internal reference 0.05% mesitylene v/v) and NMR spectra were recorded. The same procedure was followed for each aliquot at the defined times.



## Kinetics studies of the hydrolysis of the BMIDA moiety in 3: K<sub>3</sub>PO<sub>4</sub>/H<sub>2</sub>O system

Figure S8. Collected <sup>1</sup>H NMR spectra in  $d_8$ -THF of the hydrolysis of **3** to **5**. Reaction conditions as in Equation S7 (performed in a J. Young's NMR tube). Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals.

Direct comparison between the hydrolysis of **3** under not agitated vs stirred (900 rpm) conditions at  $55^{\circ}$ C:

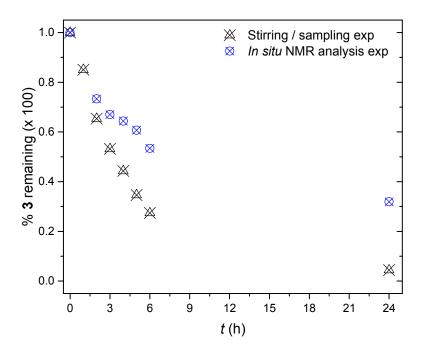
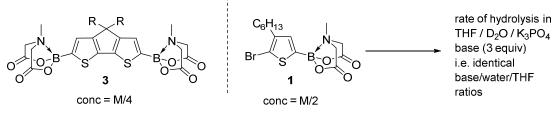




Figure S9. Kinetic profiles of the hydrolysis of **3** under two different experimental conditions: a) In a Schlenk tube fitted with a J. Young valve with stirring (900 rpm), and sampling/quenching for further NMR analyses (Triangle). b) In a J. Young's NMR tube without mixing, and *in situ* NMR analyses (Circle). Reaction conditions: 1:6:60 equivalents of **3**:K<sub>3</sub>PO<sub>4</sub>:D<sub>2</sub>O in  $d_8$ -THF at 55 °C, [**3**]<sub>0</sub> = 3.5 × 10<sup>-2</sup> M.

Direct comparison between hydrolysis rate of 1 and 3, under D<sub>2</sub>O/K<sub>3</sub>PO<sub>4</sub>

A competitive BMIDA hydrolysis experiment was carried out as follows: hydrolysis of a 2:1 mixture of 1/3 in  $d_8$ -THF / D<sub>2</sub>O (30 equiv. per BMIDA) / K<sub>3</sub>PO<sub>4</sub> (3 equiv. per BMIDA) at 55 °C,  $[1 + 3]_0 = 6.2 \times 10^{-2}$  M. The reaction mixture was monitored by NMR spectroscopy periodically.



identical BMIDA concentration in solution. M = monomer

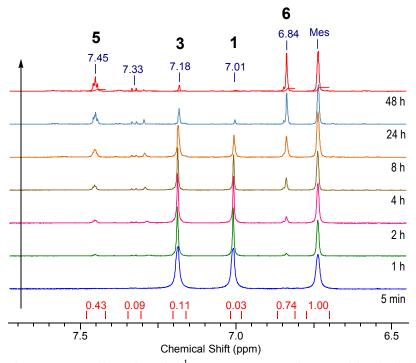



Figure S10. Collected partial <sup>1</sup>H NMR spectra of competitive hydrolysis of **1** and **3** (aromatic region, Mes = mesitylene as internal reference).

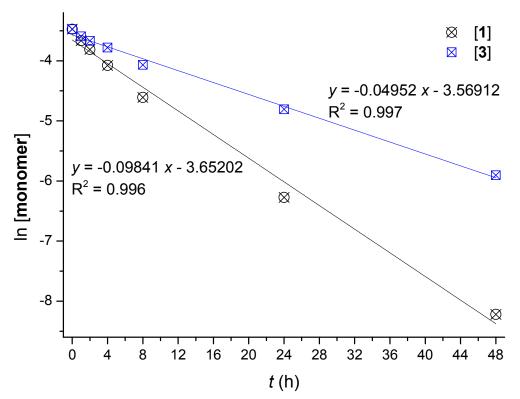



Figure S11. Pseudo-first order BMIDA hydrolysis kinetics of 1 and 3.

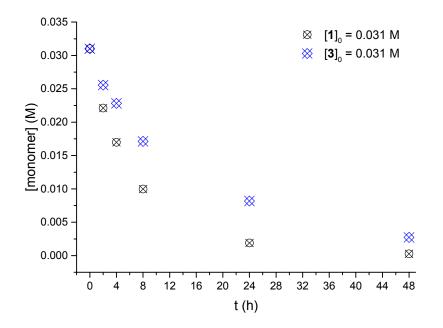



Figure S12. Kinetic profile of the hydrolysis of **1** and **3** in  $d_8$ -THF at 55 °C (with D<sub>2</sub>O/K<sub>3</sub>PO<sub>4</sub> base)

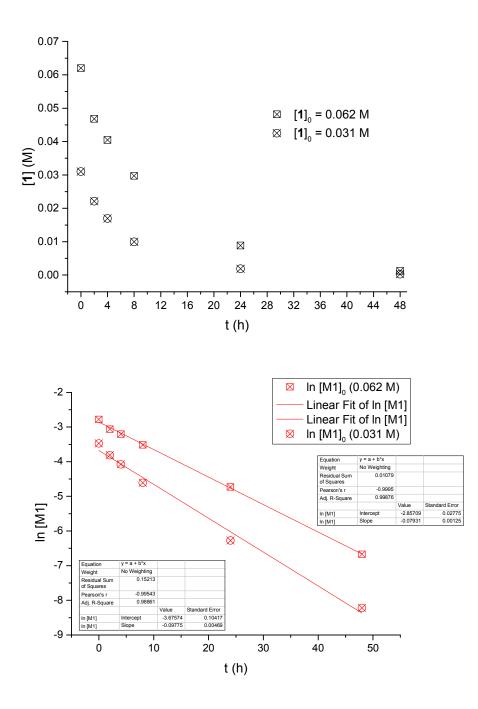



Figure S13. Top, kinetic profile of the hydrolysis of **1** in  $d_8$ -THF at 55 °C in the presence and absence of **3**. Bottom, pseudo first order kinetics showing minimal change in gradients (for the hydrolysis of **1**) in the presence/absence of CPDT-(BMIDA)<sub>2</sub> monomer **3**.

### Kinetics studies of the hydrolysis of the BMIDA moiety in 3: KOH/H<sub>2</sub>O system

In  $d_8$ -THF, the hydrolysis of **3** in the presence of 30 equivalents of D<sub>2</sub>O and 3 equivalents of KOH per BMIDA moiety is faster than in the absence of base, and different from the K<sub>3</sub>PO<sub>4</sub> case. Under these reaction conditions, at 55 °C (in J. Young's NMR tubes), hydrolysis of **3** follows a different rate, compared to its hydrolysis with D<sub>2</sub>O both with and without K<sub>3</sub>PO<sub>4</sub> (Figure S14).

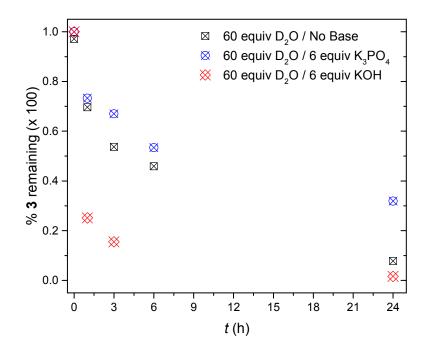



Figure S14. Kinetic profile of the hydrolysis of **3** in  $d_8$ -THF at 55 °C comparing the effect of base. Reaction conditions as described in Equation S7. D<sub>2</sub>O:Base ratio as indicated.

In an attempt to observe the possible formation of the dianionic borate  $[2-(B(OH)_3)_2]^{2-}$  an additional quantity of KOH was added to the reaction mixture (additional 6 equiv. of KOH) (Equation S8). This excess of base promoted the complete disappearance of 5 in the organic phase which now consisted mainly of protodeborylated  $2-(D/H)_2$  with some degree of deuteration (~80% of  $2-(D/H)_2$ , by <sup>1</sup>H NMR spectroscopy *versus* an internal standard). As the mass balance indicated that other CPDT-derived species should be present in the aqueous phase, this was isolated and analysed by electrospray ionisation mass spectrometry and NMR spectroscopy. The presence of a peak at m/z 602.55 confirmed the existence of the anionic borate intermediate,  $[K_2][2-(B(OH)_3)_2]$ .

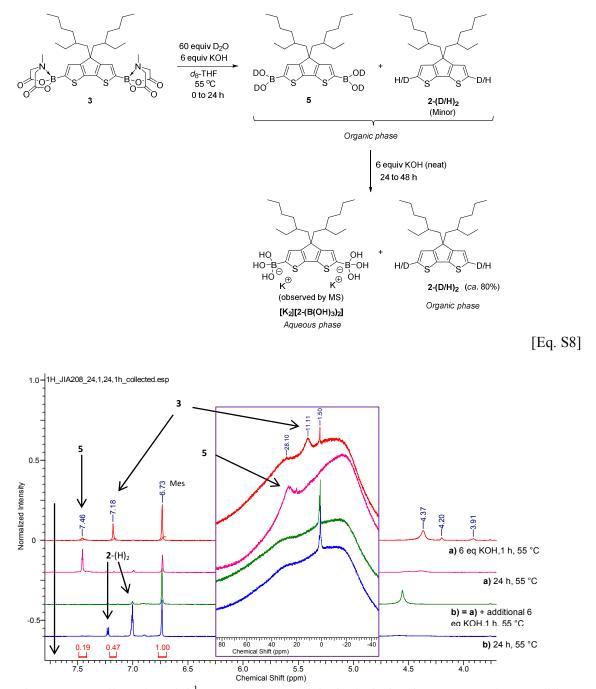



Figure S15. Collected partial <sup>1</sup>H NMR spectra of the hydrolysis of **3** to **5**. Reaction conditions as in Equation S8. Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals (singlet at 1.50 ppm not assigned).

# Kinetics studies of the hydrolysis of the BMIDA moiety in 10: $K_3PO_4/H_2O$ and KOH/D<sub>2</sub>O systems

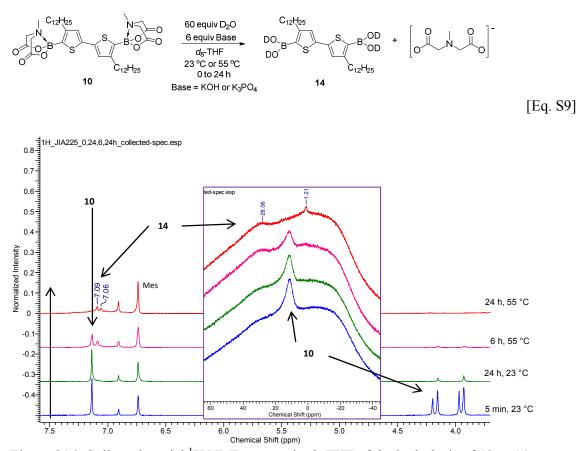



Figure S16. Collected partial <sup>1</sup>H NMR spectra in  $d_8$ -THF of the hydrolysis of **10** to **14**. Reaction conditions as in Equation S9, <u>**Base = K\_3PO\_4**</u>. Mesitylene added as internal standard. Integration of signal at 6.89 ppm (tentatively assigned as the d<sub>2</sub>-isotopomer of the protodeboronation product ) remains unchanged over time. Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals.

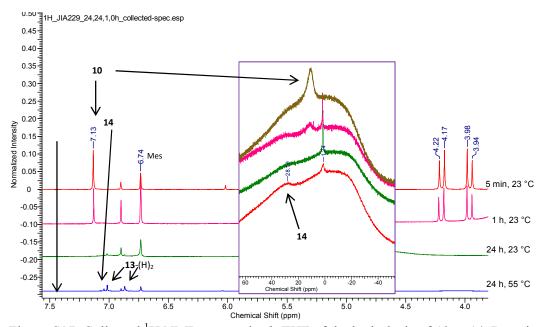
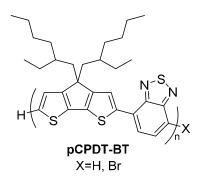




Figure S17. Collected <sup>1</sup>H NMR spectra in  $d_8$ -THF of the hydrolysis of **10** to **14**. Reaction conditions as in Equation S9, **Base = KOH**. Mesitylene added as internal standard. Integration of signal at 6.89 ppm (tentatively assigned as the d<sub>2</sub>-isotopomer of the protodeboronation product ) remains unchanged over time. Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals.

### **Polymer synthesis studies**

## Polymer syntheses general procedures




General Procedure (**GP4**) for optimised **pCPDT-BT** synthesis. An oven-dried Radley's carousel tube containing a stirrer bar was charged with **3** (1.0 equiv.), and **7** (1.0 equiv.). Dry and degassed THF was added and the reaction mixture was stirred until all components had completely dissolved,  $[\mathbf{3}] = 3.5 \times 10^{-2}$  M. Then the appropriate quantity of degassed KOH aqueous solution was added (**GP6**), and the system was heated to 55 °C for *ca*. 5 min. Subsequently, a freshly prepared palladium precatalyst in THF solution (**GP5**) was injected and the polymerisation was carried out with vigorous stirring (900 rpm) under a constant flow of N<sub>2</sub> gas. Aliquots of the reaction mixture were taken out of the solution (when required) at different times and precipitated in vigorously stirred HCl-acidified MeOH ([HCl] =  $5 \times 10^{-4}$  M) and NMR spectra recorded. At the end of the reaction, the crude mixture was quenched by precipitating it into an excess (fifty-fold by volume) of HCl-acidified MeOH. The collected polymeric solid material was dried overnight at ambient temperature under reduced pressure ( $1 \times 10^{-2}$  mbar). Sequential MeOH, *n*-hexane and chlorobenzene fractions were collected by Soxhlet extraction, for 14 h at each stage or until the solvent in the Soxhlet chamber was colourless.

General Procedure (**GP5**) for preparation of the palladium precatalyst. An oven-dried J. Young's tube was charged under inert atmosphere with 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl "SPhos", and tris(dibenzylideneacetone)dipalladium, Pd<sub>2</sub>dba<sub>3</sub> (2:1 mol of L/Pd, *e.g.*, 5 mol % of **3**). Dry and degassed THF (1.0 mL) was added to the mixture, and the tube was rotated at room temperature for 1 h or until complete homogenisation.

General Procedure (**GP6**) for preparation of KOH aqueous solution. A Schlenk flask was charged with KOH and dissolved with  $H_2O$  (1:10 mol of base/ $H_2O$ , *e.g.*, 0.63 mmol/6.30 mmol). The solution was degassed by continuous bubbling of  $N_2$  gas for at least 1 h.

Poly[4,4-bis(2-ethylhexyl)-4*H*-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-*alt*-2,1,3-benzothiadiazole-4,7-diyl], pCPDT-BT



According to **GP4**: **3** (75.0 mg, 0.105 mmol) reacted with: **7** (31.0 mg, 0.105 mmol), KOH (35.3 mg, 0.630 mmol), H<sub>2</sub>O (113  $\mu$ L, 6.300 mmol) in the presence of palladium precatalyst: Pd<sub>2</sub>(dba)<sub>3</sub> (2.4 mg, 0.003 mmol) and SPhos (4.8 mg, 0.006 mmol) in THF (2.90 mL) over 24 h to afford after precipitation with HCl-acidified MeOH 56 mg (>99%) of crude polymer as a dark green solid. After Soxhlet extraction, 55 mg (98%) of dark blue **pCPDT-BT** was recovered from the chlorobenzene fraction.

<sup>1</sup>**H** NMR (500 MHz, C<sub>6</sub>D<sub>5</sub>Br, 70 °C): δ 8.36 (s, 2 H, 2 × CH), 7.70 (bs, 2 H, 2 × CH), 2.21 (bs, 4 H, 2 × CH<sub>2</sub>), 1.13 (m, 18H), 0.76 (d, J = 33.0 Hz, 12 H, 4 × CH<sub>3</sub>) <sup>13</sup>C{<sup>1</sup>H} NMR (125.8 MHz, C<sub>6</sub>D<sub>5</sub>Br, 70 °C): δ 159.8 (C<sub>quat</sub>), 152.6, 141.1 (C<sub>quat</sub>), 139.2, 124.5, 123.2, 54.5 (C<sub>quat</sub>), 43.8 (CH<sub>2</sub>), 35.9 (CH), 34.7 (CH<sub>2</sub>), 29.0 (CH<sub>2</sub>), 27.9 (CH<sub>2</sub>), 23.1 (CH<sub>2</sub>), 14.2 (CH<sub>3</sub>), 11.1 (CH<sub>3</sub>) Elemental Analysis: Trace of Pd found, <0.1%, by ICP. UV-vis (C<sub>6</sub>H<sub>5</sub>Cl solution at 23 °C):  $\lambda_{max}$  = 730 nm;  $\varepsilon$  = 44294 M<sup>-1</sup> cm<sup>-1</sup>

**GPC** (1,2,4-trichlorobenzene, 160 °C, PS calibration):  $M_n = 42.5$  kDa;  $M_w = 130.0$  kDa

### <sup>1</sup>H NMR (C<sub>6</sub>D<sub>5</sub>Br, 70 °C, 500 MHz)



# GPC analysis from PSS Polymer Standards Service GmbH:

### Sample preparation

The samples were weighted exactly and 1,5 ml 1,2,4-Trichlorobenzene were added.

After 2 hours dissolving at 160°C the samples were injected twice with 200 µl into the SEC.

# Method Information

1\*10 4

1\*10 5

Molar mass lua

| Project:                  | W:\GPC_DATEN\AN\LC\serv_16\serv_16_PG14.LDX | Injection time:          | 29.04.2016 14:15:28 |
|---------------------------|---------------------------------------------|--------------------------|---------------------|
| GPC instrument:           | PG 14, Agilent PL-210-HT                    | Operator:                | pm                  |
| Calibration type:         | Conventional                                | Calibration fit:         | PSS Poly 5          |
| Calibration file:         | ps-160°C-SDV AK-TCB-Merck-22-04-16.CAL      | Int. standard:           | keiner              |
| Vp int. standard calib .: | 50,00 mL                                    | Vp int. standard sample: | 0,00 mL             |
| Injection volume:         | 200 µL                                      |                          |                     |
| Sample concentration:     | 3,000 g/L                                   | temperature:             | 160,0 °C            |
| Eluent:                   | 1,2,4-trichlorobenzene                      | Flow rate:               | 1,00 mL/min         |
| Columns:                  |                                             |                          |                     |



|   | Detector | Mn /Da | Mw /Da | Mz /Da | PDI (=Mw/Mn) | Vp /mL | Mp /Da | Area /(mL*V) |
|---|----------|--------|--------|--------|--------------|--------|--------|--------------|
| Γ | <br>RID  | 42500  | 130000 | 736000 | 3,07         | 17,90  | 127000 | 0,1922       |

1\*10 6




Figure S18. UV-vis spectrum of **pCPDT-BT** in C<sub>6</sub>H<sub>5</sub>Cl at room temperature.

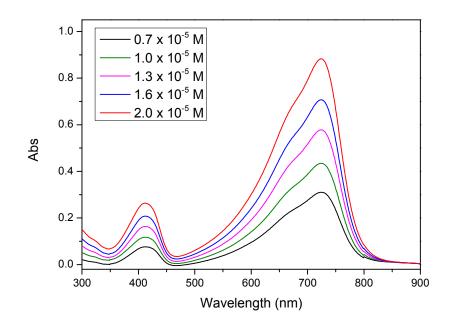



Figure S19: Uv-vis spectra of **pCPDT-BT** in chlorobenzene at varying concentrations at ambient temperature.

For comparison pCPDT-BT made via Stille coupling has an absorption maxima in orthodichlorobenzene at room temperature of 736 nm. $^8$ 

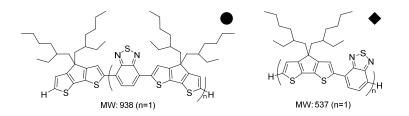



Chart S1. **pCPDT-BT** chain fragments from the reaction of **3** and **7** with 6 equiv. KOH with different end groups observed by MALDI-TOF spectrometry.

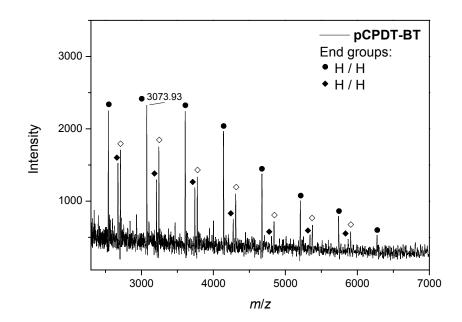



Figure S20. MALDI-TOF spectrum of **pCPDT-BT** (made using 6 equiv. KOH). End groups as shown in Chart S1. Blank diamonds corresponds to  $\bullet$  + 35 uma adducts. Sample after Soxhlet fractionation, C<sub>6</sub>H<sub>5</sub>Cl fraction.

# Polymerisation studies of 3 using 7 as a model comonomer

As explained in the main text, polymerisation of **3** with **7** started employing  $K_3PO_4$  as base, Eq. S10:

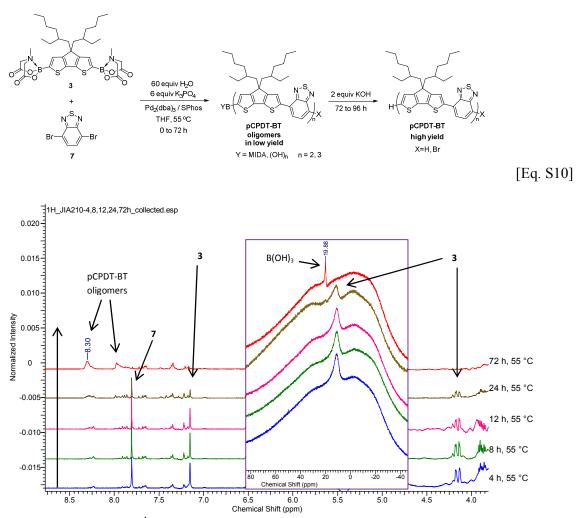



Figure S21. Collected <sup>1</sup>H NMR spectra of aliquots extracted from the polymerisation of **3** and **7**. Reaction conditions as in Equation S10. Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals. Significant **3** (or other CPDT-BMIDA species) is still present after 24 h at 55°C.

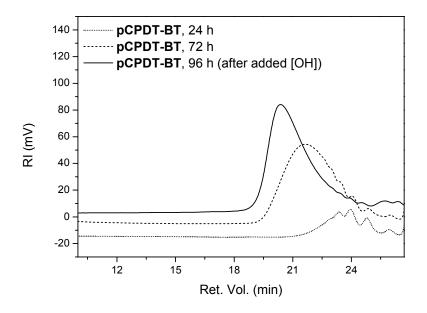
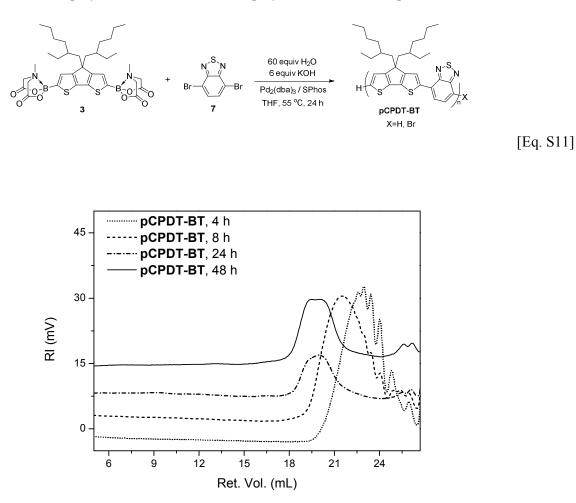




Figure S22. GPC traces of the crude **pCPDT-BT** samples collected at different times of reaction (THF at 35 °C, PS calibration). Reaction conditions as in Equation S10.



When the polymerisation of **3** with **7** employed KOH as base, Eq. S11:

Figure S23. GPC traces of the reaction of **3** and **7** at different times: crude **pCPDT-BT** samples collected (THF at 35 °C, PS calibration). Reaction conditions as in Equation S11. Polymerization is complete after 24 h by GPC analysis.

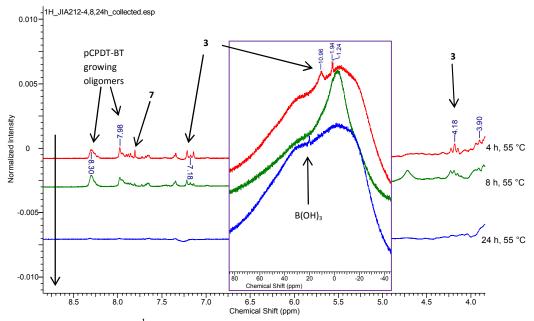



Figure S24. Collected <sup>1</sup>H NMR spectra of the polymerisation of **3** and **7**. Reaction conditions as in Equation S11. Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals. No **3** (or other CPDT-BMIDA containing moieties) are observed after 24 h at 55°C.

Effect of base on polymerisation of **3** and **7**:

| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                | Br Pd <sub>2</sub> (db | quiv H₂O<br>uiv Base<br>a)₃ / SPhos H <del>(</del><br>55 °C, 24 h | PCPDT-BT<br>X=H, Br   |                                             |  |
|--------------------------------------------------------------------------------------------------|--------------------------------|------------------------|-------------------------------------------------------------------|-----------------------|---------------------------------------------|--|
| Entry <sup>b</sup>                                                                               | Base                           | Yield <sup>c</sup> (%) | $M_{n}^{d}$ (kDa)                                                 | $M_{\rm w}^{d}$ (kDa) | ${oldsymbol{\mathcal{D}}_{\mathrm{M}}}^{d}$ |  |
| 1                                                                                                | K <sub>3</sub> PO <sub>4</sub> | <12                    | 1.5                                                               | 2.7                   | 1.8                                         |  |
| 2                                                                                                | KOH                            | >99                    | 21.5                                                              | 40.4                  | 1.9                                         |  |
| 3                                                                                                | $[nBu_4N][OH]$                 | ~75                    | 3.0                                                               | 57                    | 19                                          |  |

Table S1. Results of copolymerisation of **3** and **7** with different bases.<sup>*a*</sup>

<sup>a</sup>Reaction conditions:  $T: 55 \text{ °C}, [3] = 3.5 \times 10^{-2} \text{ M}$ , Base: 6 equiv., H<sub>2</sub>O: 60 equiv, Pd<sub>2</sub>(dba)<sub>3</sub>: 2.5 mol%, SPhos: 5 mol%, solvent: THF, t: 24 h, reaction quenched with 2.5% HCl-acidified MeOH. <sup>b</sup>Crude polymer samples. <sup>c</sup>Isolated. <sup>d</sup>Determined by GPC (THF at 35 °C, PS calibration).

When co-polymerisation of **3** with **7** was carried out using  $nBu_4NOH$  as base instead of KOH, (in situ) analysis of the polymerisation progress showed no significant chain growth over time (Reaction conditions as in Table S1):

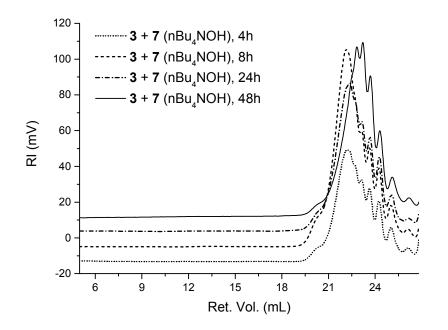



Figure S25. Collected GPC traces of the polymerisation of **3** and **7** using  $nBu_4NOH$ . Reaction conditions as in Table S1.

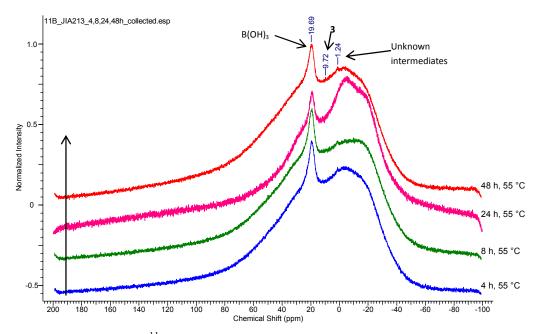



Figure S26. Collected <sup>11</sup>B NMR spectra of the polymerisation of **3** and **7** using nBu<sub>4</sub>NOH. Reaction conditions as in Table S1. No **3** (or other CPDT-BMIDa species) are observed after 4 h at  $55^{\circ}$ C.

It is worth to mention that when preparing the samples from KOH as base for GPC analyses in THF, not all the polymeric sample (typically 1 mg/mL) could be fully dissolved even in boiling THF, therefore, the molecular weights quoted in THF are actually lower than the true polymer  $M_w/M_n$  values. Thus, for the subsequent GPC analyses, the studies were carried out in chlorobenzene at 70 °C (Figure S27) or in 1,2,4-trichlorobenzene at 160 °C by external company PSS (see above).

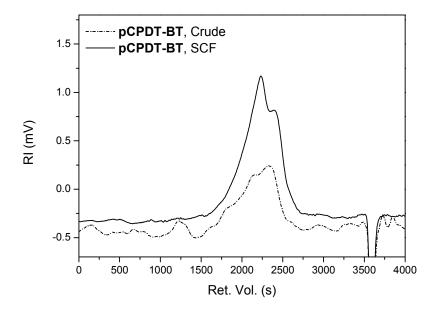



Figure S27. GPC traces of crude, and Soxhlet chlorobenzene fraction (SCF) of **pCPDT-BT** samples ( $C_6H_5Cl$  at 70 °C, PS calibration). Peak at 3600 s corresponding to toluene, added as internal marker.

Effect of KOH equivalents on polymerisation of **3** and **7**:

| O O O B S |         | * Br Br Br  | 60 equiv H <sub>2</sub> O<br>x equiv KOH<br>Pd <sub>2</sub> (dba) <sub>3</sub> / SPhos<br>THF, 55 °C, 24 h<br>x = 2, 6, 8 | H<br>H<br>PCPDT-BT<br>X=H, Br | N-S.N<br>h                        |
|-----------|---------|-------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|
| E         | ntry KO | H (equiv) M | <sup>b</sup> (kDa) Sox                                                                                                    | nlet fraction <sup>c</sup>    | $\mathbf{Yield}^{d}(\mathbf{\%})$ |
| 1         | 2       |             | erud                                                                                                                      | e                             | e                                 |
| 2         | 6       | 42          | .5 crud                                                                                                                   | e                             | >99                               |
| 3         | 6       | 30          | $.0^{f}$ C <sub>6</sub> H                                                                                                 | 5Cl                           | 99                                |
| 4         | 8       | 20          | .3 crud                                                                                                                   | e                             | 95 <sup>g</sup>                   |
| 5         | 8       | 18          | .3 C <sub>6</sub> H                                                                                                       | 5Cl                           | 80 <sup>g</sup>                   |

Table S2. Results of copolymerisation of **3** and **7**, utilising different quantities of KOH.<sup>a</sup>

<sup>*a*</sup>Reaction conditions: *T*: 55 °C,  $[3] = 3.5 \times 10^{-2}$  M, KOH: *x* equiv, H<sub>2</sub>O: 60 equiv, Pd<sub>2</sub>(dba)<sub>3</sub>: 2.5 mol %, SPhos: 5 mol %, solvent: THF, *t*: 24 h, reactions run twice, quenched with 2.5% HCl-acidified MeOH. <sup>*b*</sup>Determined by GPC (C<sub>6</sub>H<sub>5</sub>Cl at 70 °C, PS calibration). *M*<sub>w</sub>/*M*<sub>n</sub> not quoted due to traces out of the calibration curve range in the high molecular weight region. <sup>*c*</sup>Soxhlet-fractionated C<sub>6</sub>H<sub>5</sub>Cl fraction after sequential extractions with MeOH, and *n*-hexane, for 14 h each or until colourless solvent in the Soxhlet chamber. <sup>*d*</sup>Isolated. <sup>*e*</sup>No polymer. <sup>*f*</sup>Corresponding to the second peak at higher retention time. <sup>*g*</sup>Average of multiple runs.

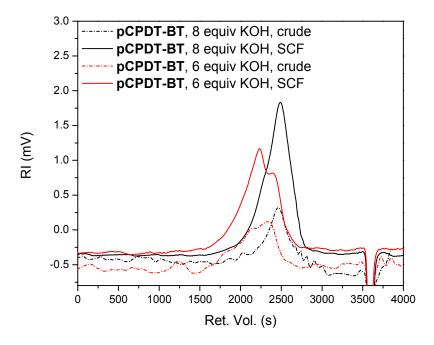



Figure S28. GPC traces of crude and Soxhlet  $C_6H_5Cl$  fraction (SCF) samples of **pCPDT-BT** ( $C_6H_5Cl$  at 70 °C, PS calibration). Reaction conditions as in Table S2. Negative peak at 3600 s corresponding to toluene, added as internal marker.

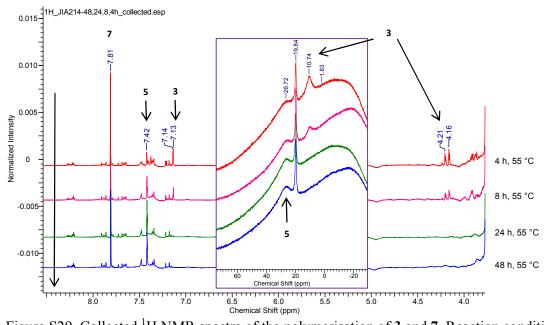



Figure S29. Collected <sup>1</sup>H NMR spectra of the polymerisation of **3** and **7**. Reaction conditions as in Table S2 (<u>2 equiv. KOH</u>). Inset: Collected <sup>11</sup>B NMR spectra at the same time intervals.

### Polymerisation using "aged" monomer

Polymerisation of di-MIDA monomers that have been stored for 1 week under ambient conditions produces comparable results to using freshly prepared monomer or monomer stored under inert atmosphere (consistent with NMR spectroscopy studies where there is no observable protodeboronation in these cases).

Analysis of 3 that has been stored under ambient atmosphere as a solid for 18 months. Monomer 3 stored for 18 months (stored under ambient atmosphere) was analysed by <sup>1</sup>H and <sup>11</sup>B NMR spectroscopy and found to be in a ~6:1 ratio of 3/2 (86% of 3). Significantly no observable mono-MIDA 4 was observed which would be an effective chain capping species. Therefore the polymerization of this aged monomer was studied.

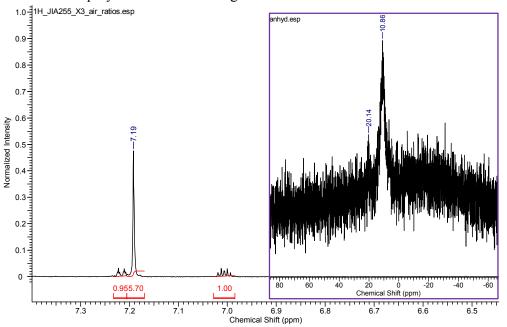
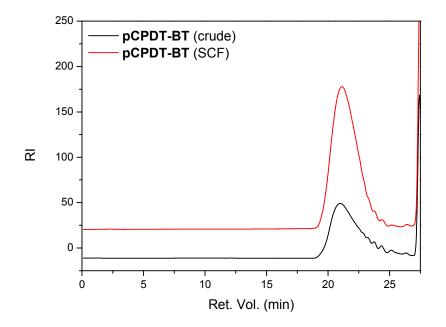
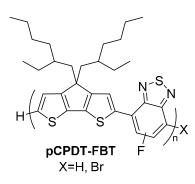
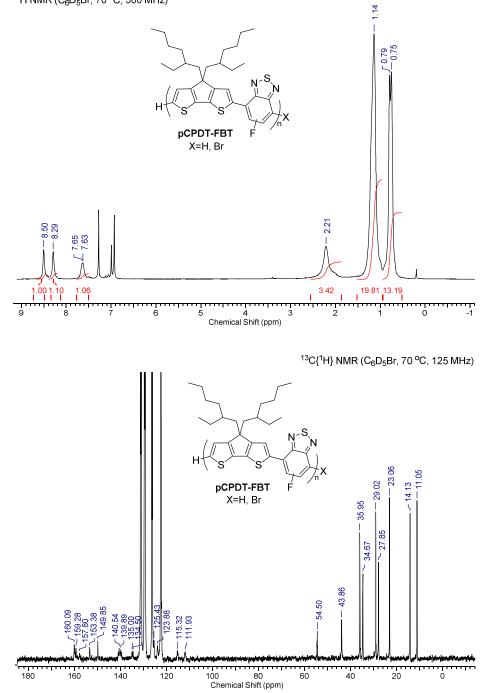


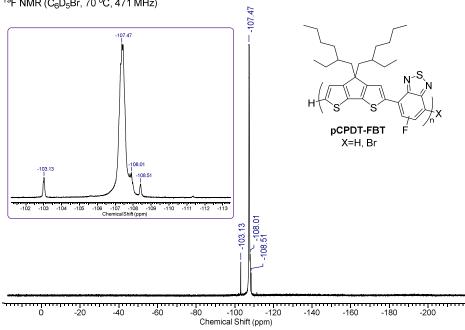

Figure S30. <sup>1</sup>H NMR spectrum (of the aromatic region) of monomer **3** (which was initially pristine at t =0) stored for 18-months under ambient atmosphere (spectra in anhydrous  $d_8$ -THF). Inset: <sup>11</sup>B NMR spectrum of the same sample. Singlet at 7.19 is attributable to **3**, multiplets at 7.0 and 7.21 ppm attributable to **2**.

Subsequently, this sample was utilised for polymerisation under conditions described below. Similar to the described General Procedure (**GP4**) with operations carried out under ambient atmosphere: A Radley's carousel tube containing a stirrer bar was charged with 18-month-old sample **3** (112.0 mg, 0.1572 mmol, from which approximately 0.1352 mmol, equating to 86%, is monomer **3**, by <sup>1</sup>H NMR spectroscopy), and **7** (39.7 mg, 0.1352 mmol corresponding to an approximate 1:1 ratio of the bifunctionalised co-monomers). Dry THF was added and the reaction mixture was stirred until all components had completely dissolved, [**3**] =  $3.5 \times 10^{-2}$  M. Then a freshly prepared palladium precatalyst in THF solution (**GP5**) was injected, Pd<sub>2</sub>(dba)<sub>3</sub> (3.1 mg, 0.003 mmol) and SPhos (6.2 mg, 0.006 mmol), and the system was purged by continuous bubbling of N<sub>2</sub> gas for 60 min. Subsequently, the degassed KOH aqueous solution was added (**GP6**), KOH (45.5 mg, 0.811 mmol), H<sub>2</sub>O (0.15 mL, 8.11 mmol), and the system was heated to 55 °C with vigorous stirring (900 rpm) under a constant flow of N<sub>2</sub> gas for 24 h. At the end of the reaction, the crude mixture was quenched by precipitating it into an excess (fifty-fold by volume) of HCl-acidified MeOH. Crude polymer: 70 mg (97% yield). After Soxhlet extraction (sequential MeOH, *n*-hexane and chlorobenzene), 62 mg (86% yield) of dark blue **pCPDT-BT** was recovered from the chlorobenzene fraction:  $M_n = 10.0$ kDa,  $M_w = 15.7$  kDa (GPC in THF at 35 °C, PS calibration).



Figure S31. Full GPC elugram traces (crude, and chlorobenzene fraction, SCF, after Soxhlet fractionation) for the copolymerisation of 18-month-old sample of **3** (stored under ambient conditions) with **7** using reaction conditions as described above.

Poly[4,4-bis(2-ethylhexyl)-4*H*-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-*alt*-5-fluoro-2,1,3-benzothiadiazole-4,7-diyl], pCPDT-FBT



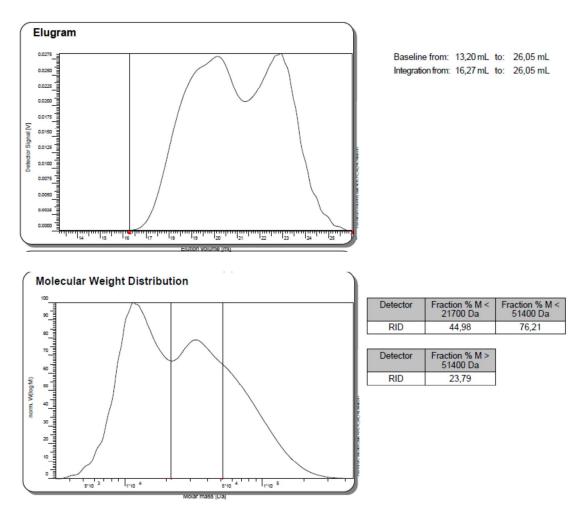

According to **GP4**: **3** (75.0 mg, 0.105 mmol) reacted with: **8** (32.8 mg, 0.105 mmol), KOH (35.3 mg, 0.630 mmol), H<sub>2</sub>O (113  $\mu$ L, 6.300 mmol) in the presence of palladium precatalyst: Pd<sub>2</sub>(dba)<sub>3</sub> (2.4 mg, 0.003 mmol) and SPhos (4.8 mg, 0.006 mmol) in THF (2.90 mL) over 24 h to afford after precipitation with HCl-acidified MeOH 57 mg (>99%) of crude polymer as a dark blue-greenish solid. After Soxhlet extraction, 55 mg (95%) of dark blue **pCPDT-FBT** was recovered from the chlorobenzene fraction.

<sup>1</sup>**H** NMR (500 MHz, C<sub>6</sub>D<sub>5</sub>Br, 70 °C): δ 8.50 (s, 1 H, CH), 8.29 (s, 1 H, CH), 7.64 (bs, 1 H, CH), 2.21 (bs, 4 H, 2 × CH<sub>2</sub>), 1.14 (m, 18H), 0.77 (d, *J* = 19.5 Hz, 12 H, 4 × CH<sub>3</sub>) <sup>13</sup>C{<sup>1</sup>**H**} NMR (125.8 MHz, C<sub>6</sub>D<sub>5</sub>Br, 70 °C): δ 160.1, 159.3 (C<sub>quat</sub>), 157.8, 153.4, 149.9, 140.5 (C<sub>quat</sub>), 139.9, 135.0, 134.5, 125.4, 123.9, 115.3, 111.9, 54.5 (C<sub>quat</sub>), 43.9 (CH<sub>2</sub>), 36.0 (CH), 34.7 (CH<sub>2</sub>), 29.0 (CH<sub>2</sub>), 27.9 (CH<sub>2</sub>), 23.1 (CH<sub>2</sub>), 14.1 (CH<sub>3</sub>), 11.1 (CH<sub>3</sub>). <sup>19</sup>F NMR (470.7 MHz, C<sub>6</sub>D<sub>5</sub>Br, 70 °C): δ -107.5 UV-vis (C<sub>6</sub>H<sub>5</sub>Cl solution at 23 °C):  $\lambda_{max} = 717$  nm;  $\varepsilon = 45651$  M<sup>-1</sup> cm<sup>-1</sup> GPC (1,2,4-trichlorobenzene, 160 °C, PS calibration):  $M_n = 19.4$  kDa;  $M_w = 38.2$  kDa <sup>1</sup>H NMR (C<sub>6</sub>D<sub>5</sub>Br, 70 °C, 500 MHz)



<sup>19</sup>F NMR (C<sub>6</sub>D<sub>5</sub>Br, 70 °C, 471 MHz)




GPC analysis from PSS Polymer Standards Service GmbH:

### Sample preparation

The samples were weighted exactly and 1,5 ml 1,2,4-Trichlorobenzene were added.

After 2 hours dissolving at 160°C the samples were injected twice with 200 µl into the SEC.

#### Method Information W:\GPC\_DATEN\AN\LC\serv\_16\serv\_16\_PG14.LDX Injection time: 29.04.2016 17:26:29 Project: GPC instrument: PG 14, Agilent PL-210-HT Operator: pm PSS Poly 5 Calibration type: Conventional Calibration fit: Calibration file: ps-160°C-SDV AK-TCB-Merck-22-04-16.CAL Int. standard: keiner Vp int. standard calib .: 50,00 mL Vp int. standard sample: 0,00 mL 200 µL Injection volume: 160,0 °C Sample concentration: 3,000 g/L temperature: Eluent: 1,2,4-trichlorobenzene 1,00 mL/min Flow rate: SDV, 5 µm, g, lins, 1000, 10e5A Columns:



|  | Detector | Mn /Da | Mw /Da | Mz /Da | PDI (=Mw/Mn) | Vp /mL | Mp /Da | Area /(mL*V) |
|--|----------|--------|--------|--------|--------------|--------|--------|--------------|
|  | RID      | 19400  | 38200  | 74400  | 1,97         | 22,91  | 11500  | 0,1522       |



Chart S2. **pCPDT-FBT** chain fragments from the reaction of **3** and **8**, with different possible end groups observed by MALDI-TOF spectrometry.

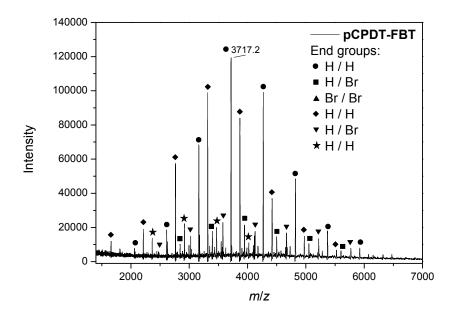



Figure S32. MALDI-TOF spectrum of **pCPDT-FBT**. End groups as shown in Chart S2. Sample after Soxhlet fractionation,  $C_6H_5Cl$  fraction.

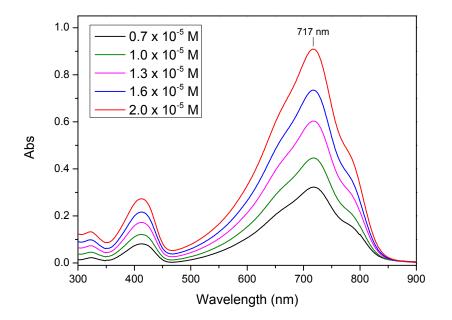
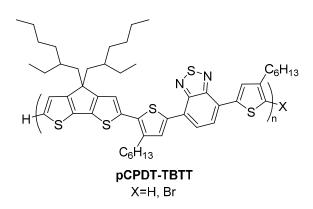
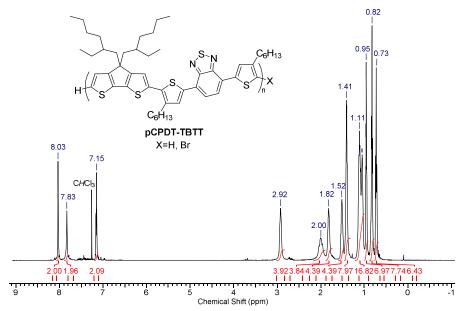
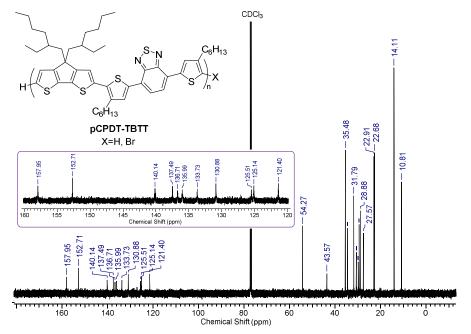




Figure S33: UV-Vis spectra of **pCPDT-FBT** at varying concentrations in chlorobenzene at ambient temperature.

For comparison pCPDT-FBT made via Stille coupling has an absorption maxima in chlorobenzene at room temperature of  $720 \text{ nm.}^9$ 


Poly[(4,4-bis(2-ethylhexyl)-4*H*-cyclopenta[2,1-b;3,4-b']dithiophene)-2,6-diyl-*alt*-[4,7-bis(3-hexylthiophene-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl], pCPDT-TBTT




According to **GP4**: **3** (75.0 mg, 0.105 mmol) reacted with: **9** (65.95 mg, 0.105 mmol), KOH (35.3 mg, 0.630 mmol), H<sub>2</sub>O (113  $\mu$ L, 6.300 mmol) in the presence of palladium precatalyst: Pd<sub>2</sub>(dba)<sub>3</sub> (2.4 mg, 0.003 mmol) and SPhos (4.8 mg, 0.006 mmol) in THF (2.90 mL) over 24 h to afford after precipitation with HCl-acidified MeOH 91 mg (>99%) of crude polymer as a dark blue solid. After Soxhlet extraction, 89 mg (98%) of dark blue **pCPDT-TBTT** was recovered from the chlorobenzene fraction.

<sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>, 50 °C): δ 8.03 (s, 2 H, 2 × CH), 7.83 (bs, 2 H, 2 × CH), 7.15 (t, J = 5.04 Hz, 2 H, 2 × CH), 2.92 (bs, 4 H, 2 × CH<sub>2</sub>), 2.00 (m, 4 H, 2 × CH<sub>2</sub>), 1.82 (bs, 4 H, 2 × CH<sub>2</sub>), 1.52 (bs, 4 H, 2 × CH<sub>2</sub>), 1.41 (m, 8 H, 2 × CH<sub>2</sub>), 1.11-1.05 (m, 18 H), 0.95 (m, 6 H, 2 × CH<sub>3</sub>), 0.82 (t, J = 6.79 Hz, 6 H, 2 × CH<sub>3</sub>), 0.73 (t, J = 6.79 Hz, 6 H, 2 × CH<sub>3</sub>) <sup>13</sup>C{<sup>1</sup>H} NMR (125.8 MHz, CDCl<sub>3</sub>, 50 °C): δ 157.95 (C<sub>quat</sub>), 152.71 (C<sub>quat</sub>), 140.14 (C<sub>quat</sub>), 137.49 (C<sub>quat</sub>), 136.71 (C<sub>quat</sub>), 135.99 (C<sub>quat</sub>), 133.73 (C<sub>quat</sub>), 130.88 (CH), 125.51 (C<sub>quat</sub>), 125.14 (CH), 121.40 (CH), 54.27 (C<sub>quat</sub>), 43.57 (CH<sub>2</sub>), 35.48 (CH), 34.48 (CH<sub>2</sub>), 31.79 (CH<sub>2</sub>), 30.63 (CH<sub>2</sub>), 29.79 (CH<sub>2</sub>), 29.39 (CH<sub>2</sub>), 28.89 (CH<sub>2</sub>), 27.57 (CH<sub>2</sub>), 22.91 (CH<sub>2</sub>), 22.68 (CH<sub>2</sub>), 14.11 (CH<sub>3</sub>), 14.07 (CH<sub>3</sub>), 10.81 (CH<sub>3</sub>), 10.79 (CH<sub>3</sub>) UV-vis (C<sub>6</sub>H<sub>5</sub>Cl solution at 23 °C):  $\lambda_{max} = 602$  nm;  $\varepsilon = 37789$  M<sup>-1</sup> cm<sup>-1</sup> GPC (THF, 35 °C, PS calibration):  $M_n = 35.6$  kDa;  $M_w = 63.7$  kDa

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 50 °C, 500 MHz)



<sup>13</sup>C{<sup>1</sup>H} NMR (CDC<sub>3</sub>, 50 °C, 125 MHz)



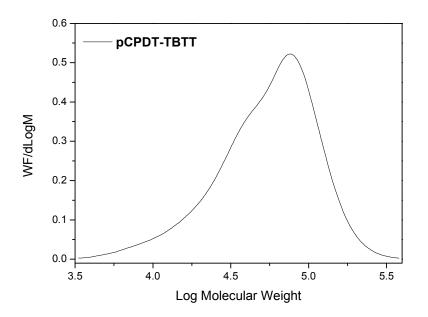



Figure S34. GPC trace of  $C_6H_5Cl$  fraction sample of **pCPDT-TBTT** (THF at 35 °C, PS calibration).

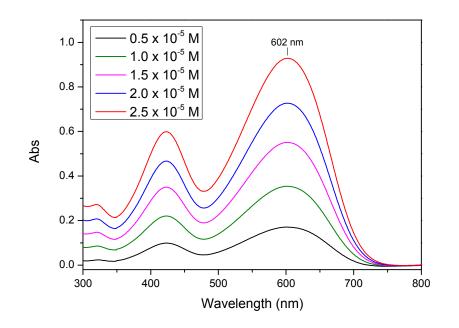



Figure S35: Uv-vis spectra for **pCPDT-TBTT** at varying concentrations in chlorobenzene at ambient temperature.

For comparison pCPDT-TBTT (albeit with octyl substituted CPDT) made via Stille coupling has an absorption maxima at room temperature of 605 nm (although no solvent was stated.<sup>10</sup>

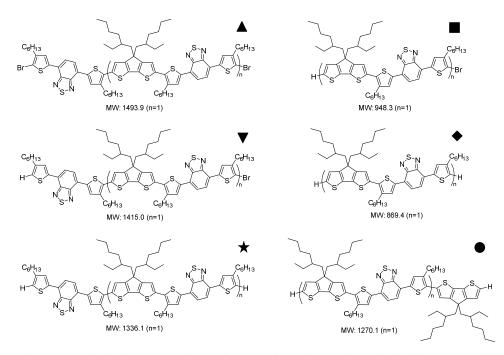



Chart S3. Chain fragments from the reaction of **3** and **9**, with different possible end groups observed by MALDI-TOF spectrometry.

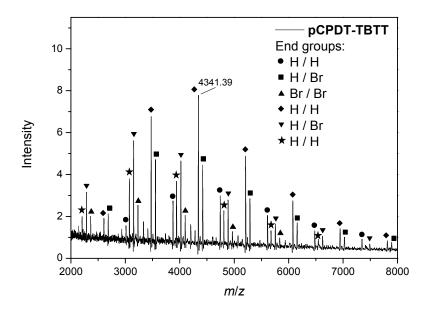



Figure S36. MALDI-TOF spectrum of **pCPDT-TBTT**. End groups as shown in Chart S3 Sample after Soxhlet fractionation,  $C_6H_5Cl$  fraction.

When polymerisation of **3** with **9** employed  $K_3PO_4$  instead of KOH as base: 10% yield at 24 h; even at longer reaction time (in an attempt to fully hydrolyse all BMIDA moieties) only 78.6% yield at 48 h.

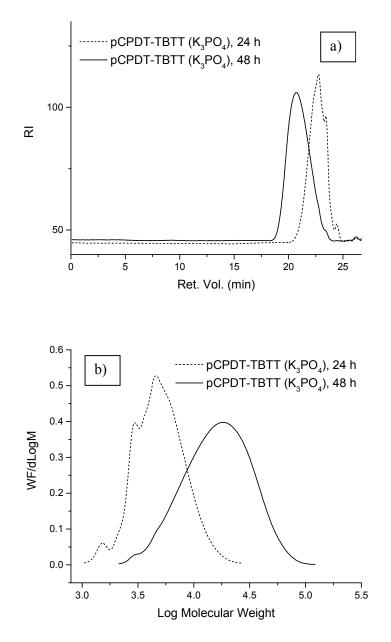



Figure S37. GPC traces (chloroform fraction after Soxhlet fractionation) for the copolymerisation of **3** with **9** using  $K_3PO_4$  as base, at 24 h and 48 h. a) Full GPC elugram traces. b) Molecular weight distribution. (THF at 35 °C, PS calibration)

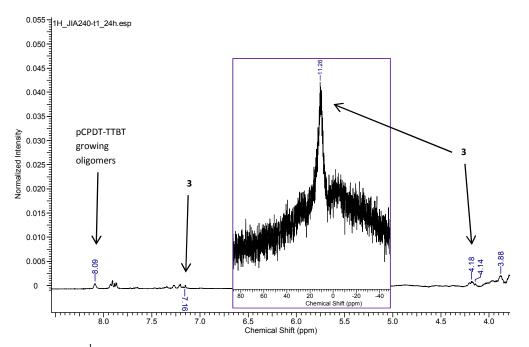



Figure S38. <sup>1</sup>H NMR spectrum of the polymerisation of **3** and **9** at 24 h. Reaction conditions as in Equation S11, using  $K_3PO_4$  instead of KOH. Inset: <sup>11</sup>B NMR spectrum at the same time.

GPC elugrams of pCPDT-BT and pCPDT-FBT in chlorobenzene at 70°C

| Entry <sup>b</sup> | Acceptor | $M_n^c$ | $M_{\rm w}^{c}$ | <b>D</b> _ <sup>c</sup> | $M_{\rm p}^{\ c}$ | Yield <sup>d</sup> | $\lambda_{\max}^{e}$ | ε<br>(M <sup>-1</sup> cm <sup>-1</sup> ) |
|--------------------|----------|---------|-----------------|-------------------------|-------------------|--------------------|----------------------|------------------------------------------|
| LIIUY              | unit     | (kDa)   | (kDa)           | DM                      | (kDa)             | (%)                | (nm)                 | $(M^{-1} cm^{-1})$                       |
| 1                  | BT       | f       | f               | f                       | 30.0 <sup>g</sup> | 99                 | 724                  | 44294                                    |
| 2                  | FBT      | f       | f               | f                       | 12.8 <sup>g</sup> | 95                 | 717                  | 45651                                    |

Table S3. Results from the copolymerisation of CPDT<sup>EH</sup>-(BMIDA)<sub>2</sub> and Acceptor-(Br)<sub>2</sub>.<sup>*a*</sup>

<sup>*a*</sup>Reaction conditions: *T*: 55 °C, [**CPDT**<sup>EH</sup>-(**BMIDA**)<sub>2</sub>] =  $3.5 \times 10^{-2}$  M, KOH: 6 equiv, H<sub>2</sub>O: 60 equiv, Pd<sub>2</sub>(dba)<sub>3</sub>: 2.5 mol %, SPhos: 5 mol %, solvent: THF, *t*: 24 h, reactions run twice, quenched with 2.5% HCl-acidified MeOH. <sup>*b*</sup>Soxhlet-fractionated C<sub>6</sub>H<sub>5</sub>Cl fraction after sequential extractions with MeOH, and *n*-hexane, for 14 h each or until colourless solvent in the Soxhlet chamber. <sup>*c*</sup>Determined by GPC (C<sub>6</sub>H<sub>5</sub>Cl at 70 °C, PS calibration). <sup>*d*</sup>Isolated. <sup>*e*</sup>Determined in C<sub>6</sub>H<sub>5</sub>Cl solution at room temperature. <sup>*f*</sup>No  $M_w/M_n$  quoted due to traces out of the calibration curve range in the high molecular weight region. <sup>*g*</sup>Corresponding to the second peak at higher retention time.

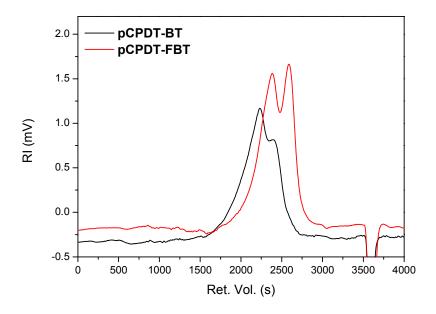



Figure S39. GPC traces of **pCPDT-BT** (black) and **pCPDT-FBT** (red) ( $C_6H_5Cl$  at 70 °C, PS calibration). Peak at 3600 s corresponding to toluene, added as internal marker.

# Polymerisation of 1 using KOH as base

As explained in the main text, homopolymerisation of 1 was carried out using KOH (3 equiv.) and  $H_2O$  (30 equiv.) in THF at 55 °C, (KOH instead of  $K_3PO_4$ , as previously reported<sup>2</sup>). 22.3% yield at 8 h; 46.5% yield at 24 h.

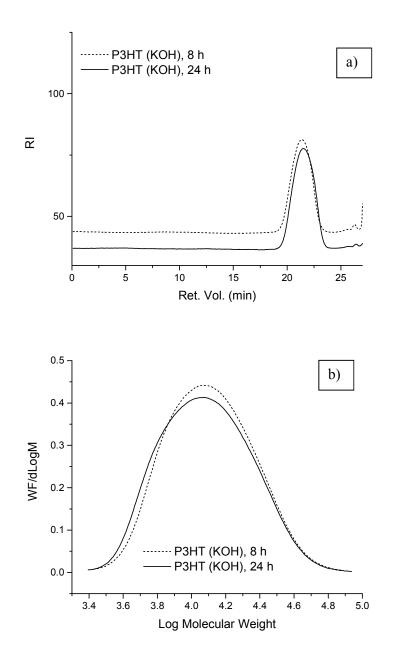
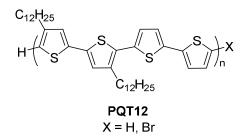
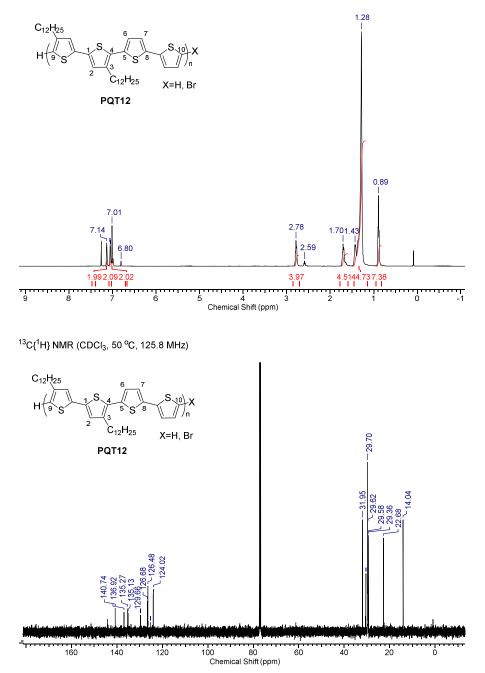




Figure S40. GPC traces (chloroform fraction after Soxhlet fractionation) for the polymerisation of **1** using KOH as base, at 8 h and 24 h. a) Full GPC elugram traces. b) Molecular weight distribution. (THF at 35 °C, PS calibration)

# Co-polymerisation of 10 with 11

# Poly(3,3"'-didodecyl-2,2':5',2":5",2"'-quaterthiophene), PQT12




According to **GP4**: **10** (50.0 mg, 0.0615 mmol) reacted with: 5,5'-dibromo-2,2'-bithiophene, **11**, (20.0 mg, 0.0615 mmol), KOH (20.7 mg, 0.3691 mmol), H<sub>2</sub>O (66.5  $\mu$ L, 3.6912 mmol) in the presence of palladium precatalyst: Pd<sub>2</sub>(dba)<sub>3</sub> (1.4 mg, 0.0015 mmol) and SPhos (2.5 mg, 0.003 mmol) in THF (1.70 mL) over 24 h to afford after precipitation with HCl-acidified MeOH 41 mg (>99%) of crude polymer as a dark red solid. After Soxhlet extraction, 33 mg (81%) of dark red **PQT12** were recovered from the chlorobenzene fraction. Additional 7 mg of dark red solid recovered from the hexane fraction completed the mass balance.

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.14 (d, 2 H), 7.05 (d, 2 H), 7.01 (s, 2 × C2-H), 2.78 (t, <sup>3</sup>*J*<sub>(H,H)</sub> = 7.1 Hz, 2 × CH<sub>2</sub>C<sub>11</sub>H<sub>23</sub>), 1.70 (tt, <sup>3</sup>*J*<sub>(H,H)</sub>  $\approx$  6.9 Hz, 2 × CH<sub>2</sub>CH<sub>2</sub>C<sub>10</sub>H<sub>22</sub>), 1.28 (m, 36 H, 18 × CH<sub>2</sub>), 0.89 (t, <sup>3</sup>*J*<sub>(H,H)</sub>  $\approx$  6.4 Hz, 6 H, 2 × CH<sub>3</sub>). Resonances at 6.80 attributed to C9-H terminal groups, 2.59 attributed to CH<sub>2</sub> of a **10**-derived terminal group.

<sup>13</sup>C{<sup>1</sup>H} NMR (125.8 MHz, CDCl<sub>3</sub>):  $\delta$  140.74 (C<sub>quat</sub>), 136.92 (C<sub>quat</sub>), 135.27 (C<sub>quat</sub>), 135.13 (C<sub>quat</sub>), 129.66 (C<sub>quat</sub>), 126.68 (C-H), 126.48 (C-H), 124.02 (C2-H), 31.95 (CH<sub>2</sub>), 30.47 (CH<sub>2</sub>), 29.70 (CH<sub>2</sub>), 29.62 (CH<sub>2</sub>), 29.58 (CH<sub>2</sub>), 29.48 (CH<sub>2</sub>), 29.36 (CH<sub>2</sub>), 22.68 (CH<sub>2</sub>), 14.04 (CH<sub>3</sub>). Resonances at 125.17 attributed to C9-H terminal groups, 119.17 attributed to C10-H terminal group.

UV-vis (CHCl<sub>3</sub> solution at 23 °C):  $\lambda_{max} = 470$  nm GPC (C<sub>6</sub>H<sub>5</sub>Cl, 70 °C, PS calibration):  $M_n = 9.4$  kDa;  $M_w = 11.9$  kDa <sup>1</sup>H NMR (CDCl<sub>3</sub>, 50 °C, 500 MHz)



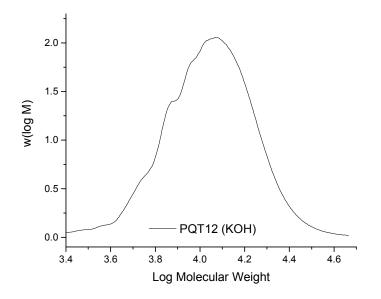



Figure S41. GPC traces of the chloroform fraction sample of **PQT12** synthesised using KOH ( $C_6H_5Cl$  at 70 °C, PS calibration).

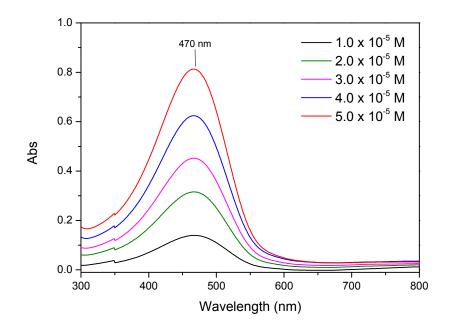



Figure S42: Uv-vis spectra of **PQT12** made using KOH as base, at varying concentrations in chloroform at ambient temperature.

For comparison PQT12 made via Stille coupling has an absorption maxima in chloroform at room temperature of 470 nm.<sup>11</sup>

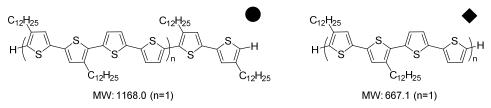



Chart S4. PQT12 polymeric fragments identified by MALDI-TOF spectrometry.

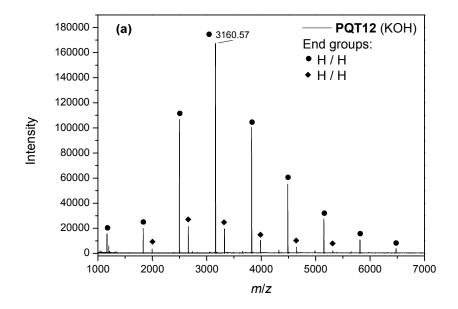



Figure S43. MALDI-TOF spectra of the **PQT12** obtained after using 6 equiv of KOH. End groups as shown in Chart S4. Samples after Soxhlet fractionation, chlorobenzene fraction.

| $0 = 0$ $B = 0$ $B = 0$ $B = 0$ $B = 0$ $C_{12}H_{25}$ $C_{12}H_{25}$ $C_{12}H_{25}$ |                                | Br S Br                   |                                      | 60 equiv H <sub>2</sub> O<br><u>6 equiv Base</u><br>Pd <sub>2</sub> (dba) <sub>3</sub> / SPhos<br>THF, 55 °C, 24 h<br>Base = KOH or K <sub>3</sub> PO <sub>4</sub> |                        | <sup>12H25</sup><br>S<br>C <sub>12</sub><br>PQT12 | ∑ <sup>S</sup> ),<br>H <sub>25</sub> |  |
|--------------------------------------------------------------------------------------|--------------------------------|---------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------|--------------------------------------|--|
| Entry                                                                                | Base                           | Yield <sup>b</sup><br>(%) | M <sup>c</sup> <sub>n</sub><br>(kDa) | M <sub>w</sub> <sup>c</sup><br>(kDa)                                                                                                                               | ${\cal D}_{\rm M}{}^c$ | $M_{\rm p}^{\ c}$ (kDa)                           | $\lambda_{\max}^{d}$ (nm)            |  |
| 1                                                                                    | КОН                            | 81                        | 7.2<br>(9.4) <sup>e</sup>            | 10.7<br>(11.9) <sup>6</sup>                                                                                                                                        | $(1.3)^e$              | 9.5 $(10.7)^{e}$                                  | 470                                  |  |
| 2                                                                                    | K <sub>3</sub> PO <sub>4</sub> | 64                        | 6.7                                  | 9.9                                                                                                                                                                | 1.5                    | 7.4                                               | 470                                  |  |

Table S4. Results of copolymerisation of 10 and 11, with different bases<sup>*a*</sup>

<sup>*a*</sup>Reaction conditions: *T*: 55 °C, [**10**] =  $3.5 \times 10^{-2}$  M, Base: 6 equiv, H<sub>2</sub>O: 60 equiv, Pd<sub>2</sub>(dba)<sub>3</sub>: 2.5 mol%, SPhos: 5 mol%, solvent: THF, *t*: 24 h, reaction quenched with 2.5% HCl-acidified MeOH. <sup>*b*</sup>Isolated, corresponding to the chloroform fraction after Soxhlet fractionation. <sup>*c*</sup>Determined by GPC (THF at 35 °C, PS calibration). <sup>*d*</sup>Determined by UV-vis spectroscopy (solution in CHCl<sub>3</sub>,  $2 \times 10^{-5}$  M). <sup>*e*</sup>Determined by GPC (C<sub>6</sub>H<sub>5</sub>Cl at 70 °C, PS calibration).

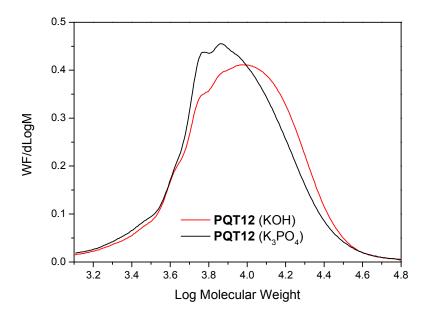
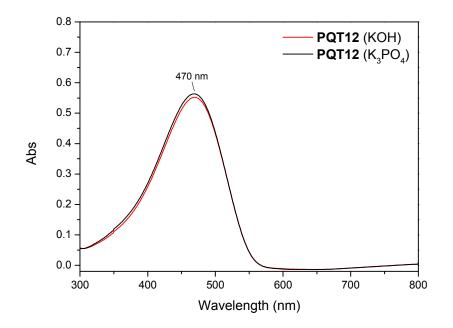
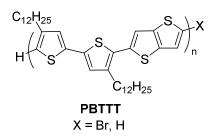
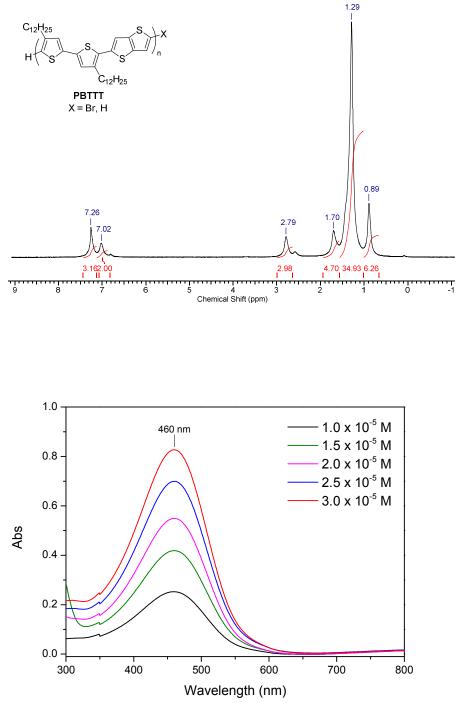
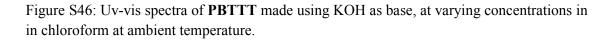



Figure S44. GPC traces of the chloroform fraction samples of **PQT12** synthesised using KOH or  $K_3PO_4$  (THF at 35 °C, PS calibration). Reaction conditions as in Table S3.



Figure S45: Uv-vis spectra of **PQT12** made using  $K_3PO_4$  or KOH as base, in chloroform at ambient temperature.


Poly(2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT



According to **GP4**: **10** (82.0 mg, 0.1009 mmol) reacted with: 2,5-dibromothieno[3,2b]thiophene, **12**, (30.0 mg, 0.1009 mmol), KOH (34.0 mg, 0.6054 mmol), H<sub>2</sub>O (109  $\mu$ L, 6.054 mmol) in the presence of palladium precatalyst: Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg, 0.0025 mmol) and SPhos (2.1 mg, 0.005 mmol) in THF (2.90 mL) over 24 h to afford after precipitation with HCl-acidified MeOH 64 mg (>99%) of crude polymer as a dark red solid. After Soxhlet extraction, 38 mg (59%) of dark red **PBTTT** were recovered from the chlorobenzene fraction. Additional 26 mg of dark red solid polymer that was insoluble in hot chlorobenzene completed the mass balance resulting in an effectively quantitative formation of PBTTT.

<sup>1</sup>H NMR (500 MHz, 50 °C, CDCl<sub>3</sub>): δ 7.26 (s, 2 H), 7.02 (s, 2 H), 2.79 (t,  $2 \times CH_2C_{11}H_{23}$ ), 1.70 (m,  $2 \times CH_2CH_2C_{10}H_{22}$ ), 1.29 (m, 36 H,  $18 \times CH_2$ ), 0.89 (t, 6 H,  $2 \times CH_3$ ). Small resonances at 6.81 attributed to C-H terminal groups, 2.58 attributed to  $CH_2$  of a **10**-derived terminal group. Signal from residual CHCl<sub>3</sub> overlaps with polymer C-H signal. <sup>13</sup>C{<sup>1</sup>H} NMR (125.8 MHz, 50 °C, CDCl<sub>3</sub>): δ 126.8 (C-H), 117.9 (C-H), 31.9 (CH<sub>2</sub>), 30.7 (CH<sub>2</sub>), 29.70 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 14.0 (CH<sub>3</sub>). Other resonances not observed due to the low solubility and aggregation of the polymer. **UV-vis** (CHCl<sub>3</sub> solution at 23 °C):  $\lambda_{max} = 460$  nm;  $\varepsilon = 28600$  M<sup>-1</sup> cm<sup>-1</sup> **GPC** (C<sub>6</sub>H<sub>5</sub>Cl, 70 °C, PS calibration):  $M_n = 13.1$  kDa;  $M_w = 31.9$  kDa <sup>1</sup>H NMR (CDCl<sub>3</sub>, 50 °C, 500 MHz)





For comparison PBTTT made via Stille coupling has an absorption maxima in chloroform at room temperature of 462 nm.<sup>12</sup>

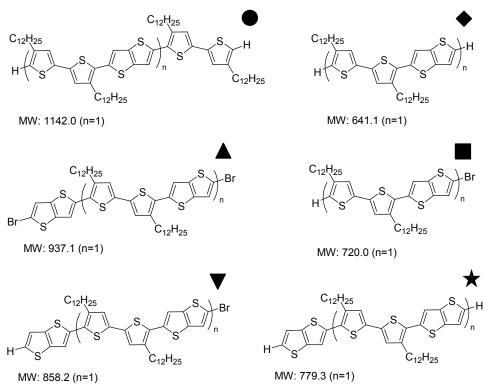



Chart S5. **PBTTT** polymeric fragments identified by MALDI-TOF spectrometry.

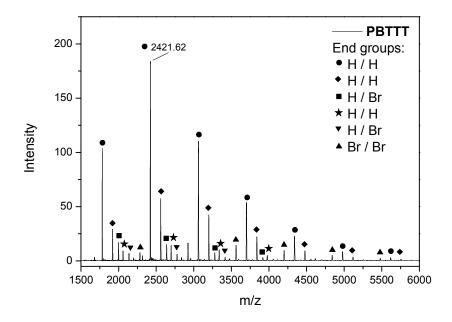
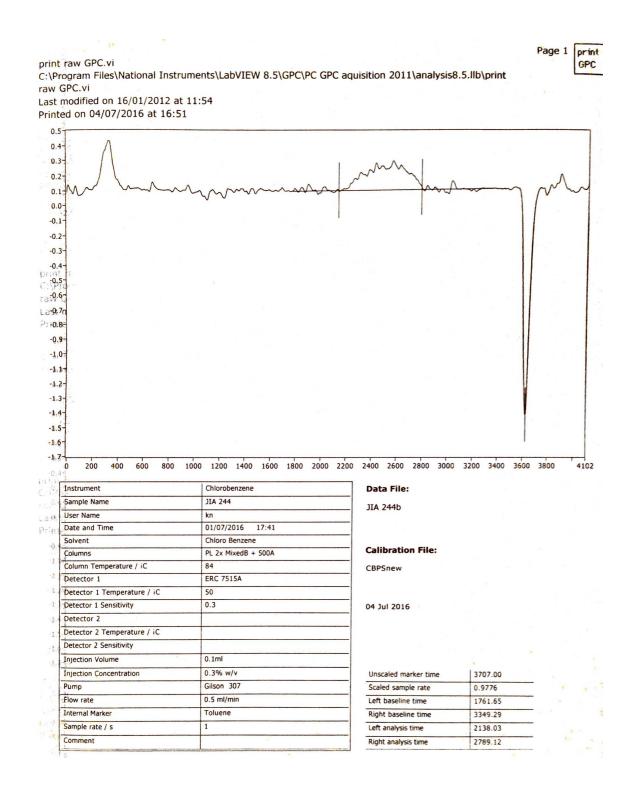




Figure S47: MALDI-TOF spectrum for **PBTTT** obtained after using 6 equiv of KOH. End groups as shown in Chart S5. Sample after Soxhlet fractionation, chlorobenzene fraction.



# Crystallographic details for 3, and 10

|                                             | 3                                             | 10                                    |  |  |
|---------------------------------------------|-----------------------------------------------|---------------------------------------|--|--|
| Identification code                         | amji306na                                     | amji347                               |  |  |
| Empirical formula                           | $C_{28}H_{14}B_2N_2O_8S_2$                    | $C_{44}H_{69}B_2N_3O_8S_2$            |  |  |
| Formula weight                              | 592.15                                        | 853.76                                |  |  |
| Temperature/K                               | 150.01(11)                                    | 150.02(13)                            |  |  |
| Crystal system                              | Monoclinic                                    | triclinic                             |  |  |
| Space group                                 | Pn                                            | P-1                                   |  |  |
| a/Å                                         | 7.2433(16)                                    | 8.2860(2)                             |  |  |
| b/Å                                         | 20.504(4)                                     | 10.6177(4)                            |  |  |
| c/Å                                         | 27.708(5)                                     | 28.6890(11)                           |  |  |
| α/°                                         | 90                                            | 82.158(3)                             |  |  |
| β/°                                         | 90                                            | 83.815(3)                             |  |  |
| γ/°                                         | 90                                            | 69.036(3)                             |  |  |
| Volume/Å <sup>3</sup>                       | 4115.1(14)                                    | 2330.16(15)                           |  |  |
| Ζ                                           | 4                                             | 2                                     |  |  |
| $\rho_{calc}g/cm^3$                         | 0.956                                         | 1.217                                 |  |  |
| $\mu/\text{mm}^{-1}$                        | 0.166                                         | 0.167                                 |  |  |
| F(000)                                      | 1208.0                                        | 920.0                                 |  |  |
| Crystal size/mm <sup>3</sup>                | $0.280 \times 0.110 \times 0.050$             | 0.4 	imes 0.2 	imes 0.05              |  |  |
| Radiation                                   | Mo Kα ( $\lambda$ = 0.71073)                  | MoKα ( $\lambda$ = 0.71073)           |  |  |
| $2\Theta$ range for data collection/°       | 6.648 to 58.29                                | 6.512 to 58.576                       |  |  |
| Index ranges                                | $-9 \le h \le 7, -25 \le k \le 27, -35 \le 1$ | $-11 \le h \le 10, -13 \le k \le 11,$ |  |  |
|                                             | ≤ 37                                          | $-39 \le 1 \le 34$                    |  |  |
| Reflections collected                       | 22599                                         | 19598                                 |  |  |
| Independent reflections                     | 12113 [ $R_{int} = 0.1517$ , $R_{sigma} =$    | 10602 $[R_{int} = 0.0310,$            |  |  |
|                                             | 0.3520]                                       | $R_{sigma} = 0.0702$ ]                |  |  |
| Data/restraints/parameters                  | 12113/26/673                                  | 10602/0/537                           |  |  |
| Goodness-of-fit on F <sup>2</sup>           | 0.962                                         | 1.044                                 |  |  |
| Final R indexes [I>=2 $\sigma$ (I)]         | $R_1 = 0.1390, wR_2 = 0.3127$                 | $R_1 = 0.0565, WR_2 =$                |  |  |
|                                             |                                               | 0.1184                                |  |  |
| Final R indexes [all data]                  | $R_1 = 0.3032, wR_2 = 0.4249$                 | $R_1 = 0.0864, WR_2 =$                |  |  |
|                                             |                                               | 0.1355                                |  |  |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.62/-0.44                                    | 0.28/-0.28                            |  |  |
| Flack parameter                             | -0.1(4)                                       |                                       |  |  |

Table S5. Crystal structure refinement data for compound **3**, and **10**.

# References

- Bagutski, V.; Del Grosso, A.; Ayuso Carrillo, J.; Cade, I. A.; Helm, M. D.; Lawson, J. R.; Singleton, P. J.; Solomon, S. A.; Marcelli, T.; Ingleson, M. J. J. Am. Chem. Soc. 2013, 135 (1), 474–487.
- (2) Ayuso Carrillo, J.; Ingleson, M. J.; Turner, M. L. *Macromolecules* **2015**, *48* (4), 979–986.
- (3) Fei, Z.; Kim, Y.; Smith, J.; Buchaca Domingo, E.; Stingelin, N.; McLachlan, M. A.; Song, K.; Anthopoulos, T. D.; Heeney, M. *Macromolecules* **2012**, *45* (2), 735–742.
- (4) El-Shehawy, A. A.; Abdo, N. I.; El-Barbary, A. A.; Lee, J.-S. *Eur. J. Org. Chem.* **2011**, 4841–4852.
- (5) (a) CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11). (b) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42 (2), 339–341.
- (6) Gierczyk, B.; Kaźmierczak, M.; Popenda, Ł.; Sporzyński, A.; Schroeder, G.; Jurga, S. Magn. Reson. Chem. 2014, 52 (5), 202–213.
- (7) Gierczyk, B.; Kaźmierczak, M.; Schroeder, G.; Sporzyński, A. New J. Chem. 2013, 37
   (4), 1056–1072.
- (8) Coffin, R. C.; Peet, J.; Rogers, J.; Bazan, G. C. Nat. Chem. 2009, 1, 657.
- (9) Albrecht, S.; Janietz, S.; Schindler, W.; Frisch, J.; Kurpiers, J.; Kniepert, J.; Inal, S.; Pingel, P.; Fostiropoulos, K.; Koch, N.; Neher, D. J. Am. Chem. Soc. 2012, 134, 14932.
- (10) Lee, S. K.; Cho, S.; Tong, M.; Hwa Seo, J.; Heeger, A. J. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 1821.
- (11) Zhang, L.; Colella, N. S.; Liu, F.; Trahan, S.; Baral, J. K.; Winter, H. H.; Mannsfeld, S. C. B.; Briseno, A. L. J. Am. Chem. Soc. 2013, 135, 844.
- (12) Zhang, L.; Liu, F.; Diao, Y.; Marsh, H. s.; Colella, N. S.; Jayaraman, A.; Russell, T. P.; Mannsfeld, S. C. B.; Briseno, A. L. J. Am. Chem. Soc., 2014, 136, 18120.