Supporting Information: Designing Industrial Networks using Ecological Food Web Metrics

Astrid Layton

Bert Bras

Marc Weissburg

Contents: 9 pages – 3 tables

- Page 2 The carpet manufacturing-recycling network (Table S1)
- Page 5 The traditional objective function (Table S2)
- Page 7 The biological objective function (Table S3)

c _{Lnw} =13.5	Nylon winding [\$	/hr]	
Emissions:			
<pre>epvc=[2015, 10.27, 0.0007, 12.12, 8.43, 0.001, 4.03, 0.002, 3E-05, 1.4, 1.47, 10.43]</pre>		g emission/kg PVC produced [CO ₂ , CH ₄ , N ₂ O, SO ₂ , NO _x , Pb, CO, VOCs, Hg, HC, PM, SO _x]	
<pre>e_n=[6681, 42.09, 0.74, 21.6, 17.85, 2E-06, 6.27, 0.08, 4E-06, 3.89, 2.11, 0]</pre>		g emission/kg Nylon 6,6 produced [CO ₂ , CH ₄ , N ₂ O, SO ₂ , NO _x , Pb, CO, VOCs, Hg, HC, PM, SO _x]	
<pre>ecleaner=[7.28E-03, 0, 0, 4.78E-05, 8.94E-06, 0, 0, 0, 7.78E-11, 0, 0, 0]</pre>		g emission/kg deep cleaning solution produced [CO ₂ , CH ₄ , N ₂ O, SO ₂ , NO _x , Pb, CO, VOCs, Hg, HC, PM, SO _x]	
e_{v3}=[487.446; 0.0032; 0.0030; 0.0061; 3.06; 0; 11.87; 0; 0; 1.00; 0.08; 0]		g emission/km [CO ₂ , CH ₄ , N ₂ O, SO ₂ , NO _x , Pb, CO, VOCs, Hg, HC, PM, SO _x]	
<pre>e_{v8A}=[882.502; 0.0032; 0.0030; 0.011; 6.52; 0; 25.26; 0; 0; 2.12; 0.16; 0]</pre>		u	
e _e =[629.58; 0; 0; 4.13; 0.77; 0; 0; 0; 0; 6.73E-06; 0; 0; 0]		g emission/kWh generated; only CO ₂ , SO ₂ , NO _x and Hg provided [CO ₂ , CH ₄ , N ₂ O, SO ₂ , NO _x , Pb, CO, VOCs, Hg, HC, PM, SO _x]	
Unit Efficiencies:			
f _{pvc} =0.7 Total material eff mass/input backi		ficiency for PVC recycling (output PVC backing ing mass)	
f _n =0.7	Total material ef	ficiency for Nylon 6,6 recycling (output nylon nylon nylon nylon nylon nylon face mass)	
R _n =0.2	Fraction of carpe	t tile face mass sent to nylon recycling	
f ₁₇ =0.9	Total material ef carpet tile mass/	ficiency for carpet reuse (output reusable input reusable carpet tile mass)	
f ₁₈ =0.9		<i>u</i>	
f ₁₉ =0.9		u	
f ₂₀ =0.9		"	
f ₂₁ =0.9		"	
f ₂₂ =0.9		"	
f ₂₃ =0.9		u	
f ₂₄ =0.9		u	
f ₂₅ =0.9		и	
f ₂₆ =0.9		u	
f ₂₇ =0.9		и	
f ₂₈ =0.9		<i>u</i>	
f ₂₉ =0.9		<i>u</i>	
Recycling Process Data:			

e _{ruclean} =1.16	E-5	Electricity consumed while cleaning reusable carpet tiles [kWh/kg]
e _{bale} =.002		Electricity consumed to bale recyclable carpet tiles [kWh/kg]
e _s =.056		Electricity consumed to shred recyclable carpet tiles [kWh/kg]
e _g =.055		Electricity consumed to grind recyclable carpet tiles [kWh/kg]
e _{ms} =.178		Electricity consumed to separate ground carpet tile materials [kWh/kg]
e _p =.01		Electricity consumed during PVC pellet creation [kWh/kg]
e _{ncy} =.0082		Electricity consumed to cyclonically separate nylon [kWh/kg]
e _{nb} =.819		Electricity consumed by a bunker melter [kWh/kg]
e _{ns} =.506		Electricity consumed by nylon spinnerets [kWh/kg]
e _{nc} =.232		Electricity consumed to cool nylon [kWh/kg]
e _{nd} =.317		Electricity consumed to draw nylon [kWh/kg]
e _{nw} =.257		Electricity consumed to wind drawn nylon [kWh/kg]
T _{ru} =1.16E-5		Throughflow for cleaning reusable carpet tiles [kg/hr]
T _{bale} =.002		Throughflow for baling recyclable carpet tiles [kg/hr]
T _s =.056		Throughflow for shredding recyclable carpet tiles [kg/hr]
T _g =.055		Throughflow for grinding recyclable carpet tiles [kg/hr]
T _{ms} =.178		Throughflow for separating ground carpet tile materials [kg/hr]
T _p =.01		Throughflow for PVC pellet creation [kg/hr]
T _{ncy} =.0082		Throughflow for cyclonic nylon separation [kg/hr]
T _{nb} =.819		Throughflow for bunker melter [kg/hr]
T _{ns} =.506		Throughflow for nylon spinnerets [kg/hr]
T _{nc} =.232		Throughflow for cooling nylon [kg/hr]
T _{nd} =.317		Throughflow for nylon draw [kg/hr]
T _{nw} =.317		Throughflow for nylon winding [kg/hr]
Transportat	ion Data:	
s _{avg} =93.115		Average truck speed in km/hr (55 mph)
I _{v3} =1814		Load capacity of a HDDV3 truck [kg/truck]
I _{v8A} =12247		Load capacity of a HDDV8A truck [kg/truck]
η _{v3} =.425		Fuel efficiency of a HDDV3 truck [km/L]
$\eta_{v8A} = \eta_{v3}$		Fuel efficiency of a HDDV8A truck [km/L]

Table S1: The basic model structure for the carpet recycling network used to test the objective functions outlined in Tables S2 and S3.

	$G_{Sox} = 1.50 \times 10^7$		Sulfur Oxides SO	x emissions (g/year)	
	$G_{cost} = 5.90 \times 10^6$		Total network cost (US dollars/year)		
Traditional C	bjective Function:	Minin	nize total cost and	nize total cost and emissions	
	$d_{min} = 1 - \frac{value}{goal \ target \ value}$		alue	Difference between the value of each variable and its goal value	
	$w = \frac{1}{13}$		Weighting factor for the 13 components (2 emissions and total cost) of the traditional objective function		
	$\begin{aligned} d_{emissions} &= w \left(1 - \frac{e_{CO2}}{G_{CO2}} \right) + w \left(1 - \frac{e_{CH4}}{G_{CH4}} \right) + w \left(1 - \frac{e_{N2O}}{G_{N2O}} \right) + w \left(1 - \frac{e_{SO2}}{G_{SO2}} \right) \\ &+ w \left(1 - \frac{e_{NOx}}{G_{NOx}} \right) + w \left(1 - \frac{e_{Pb}}{G_{Pb}} \right) + w \left(1 - \frac{e_{CO}}{G_{CO}} \right) + w \left(1 - \frac{e_{VOCs}}{G_{VOCs}} \right) \\ &+ w \left(1 - \frac{e_{Hg}}{G_{Hg}} \right) + w \left(1 - \frac{e_{HC}}{G_{HC}} \right) + w \left(1 - \frac{e_{PM}}{G_{PM}} \right) + w \left(1 - \frac{e_{SOx}}{G_{SOx}} \right) \end{aligned}$				
	$d_{cost} = w \left(1 - \frac{C}{G_{cos}} \right)$	$\left(\frac{1}{t}\right)$			
	$Z_{trad} = d_{cost} + d_{en}$	nissions		Minimize objective function	

Table S2: Emission values used in calculating the traditional objective function, and the final form of thetraditional objective function.

	$s = f(\mathcal{C}) = f(A_{adj})$		Number of to the size	Number of nodes in a community matrix; usually equal to the size of the community matrix	
	$L = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$		Number o communi	of links connected nodes in the adjacency or ty matrix	
	Structural Metrics :				
	$L_D = \frac{L}{S}$		Link dens	Link density	
	$P_{special} = \frac{n_{s-pred}}{m}$	predator	Specialize	d predator ratio	
	$P_r = \frac{n_{prey}}{n_{predator}}$	r	Prey to p	Prey to predator ratio	
	$G = L/n_{predator}$		Generaliz	Generalization	
	$V = {}^{L}/n_{prey}$		Vulnerabi	Vulnerability	
	$\lambda_{max} = max. real eigenvalue A_{adj}$		Cyclicity	Cyclicity	
	Input-Output Metric	s :			
	$m_{in} = x_1 + x_2$		Carpet m	Carpet material inflow	
	$m_{tst} = \sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij}$		Total syst	Total system throughflow	
	$MPL = \frac{m_{tst}}{m_{in}}$		Mean Pat	Mean Path Length	
	$FCI = \frac{m_{tstc}}{m_{tst}}$		Finn Cycli	Finn Cycling Index	
Find:					
	x_i for <i>i</i> =16,1741 Amount of us 41) centers		used carpetir s	ng sent to recycling (i=16-28) and reuse (i=29-	
Satisfy:					
	$\sum_{i=16}^{28} x_i \le 1,189,300$ P		PVC recyclin	VC recycling facility capacity constraint	
	$x_{i+28} \le 0.1r_i$, for i = 1,213		Reuse facility	Reuse facility capacity constraint	
	$x_i \ge 0$, for $i = 1, 2 \dots 85$ Pe		Positive flow	ositive flow constraint	
Goal Target Inspired Ob	Il Target Values for Bio- bired Objective Function:		e the average	value of 50 food webs from the literature.	
	$G_{P_{cmaxial}} = 0.10$			Specialized Predator Ratio	
	$G_{\rm p} = 1.09$			Prev to Predator Ratio	
	$G_{P_r} = 1.07$			Linkage density	
	$\sigma_{LD} = 5.01$			Linkage density	

	$G_G = 6.18$		Generalization
	$G_V = 5.34$		Vulnerability
	$G_{\lambda_{max}} = 4.24$		Cyclicity
	$G_{MPL} = 5.7$		Mean Path Length
	$G_{FCI} = 0.295$		Finn Cycling Index
Bio-Inspired Objective Function: Minimize total different		Minimize total differe	nce between metrics and their goal values
	$1 \ge n \ge 8$		<i>n</i> : the number of metrics included in the objective function
	$w = \frac{1}{n}$		Weighting factor for the 8 food web metrics (6 structural metrics and 2 flow based metrics) of the bio-inspired objective function
	Minimize:		
	$p_{special}, p_r$		Metrics to reduce to reach goal values
	$d_{min} = 1 - \frac{metric \ value}{metric \ goal \ target \ value}$		Difference between the value of each variable and its goal value
	$d_{min} = w \left(1 - \frac{P_{special}}{G_{P_{special}}} \right) + w \left(1 - \frac{P_r}{G_{P_r}} \right)$		
	Maximize:		
	L_D , G, V, λ_{max} , MPL, FCI		Metrics to increase to reach goal values
	$d_{max} = 1 - rac{metricgoal \ target \ value}{metric \ value}$		Difference between the value of each variable and its goal value
	$d_{max} = w \left(1 - \frac{G_{L_D}}{L_D} \right) + w \left(\frac{G_{L_D}}{G_{L_D}} \right)$	$+ w \left(1 - \frac{G_G}{G} \right) + w \left(1 - \frac{G_{FCI}}{FCI} \right)$	$-\frac{G_V}{V} + w\left(1 - \frac{G_{\lambda_{max}}}{\lambda_{max}}\right) + w\left(1 - \frac{G_{MPL}}{MPL}\right)$
	$Z_{bio} = d_{min} + d_{max}$		Minimize objective function

Table S3: Formulas and goal values used in calculating the metrics of the bio-inspired objective function,as well as its final form.