Supporting Information

1-D "Platinum Wire" Stacking Structure Built of Platinum(II) Diimine Bis(σ-acetylide) Units with Luminescence in the NIR Region

Jiajia Kang,[†] Xiaoxin Zhang,[†] Huajun Zhou,[‡] Xuqiao Gai,[†] Ting Jia,[†] Liang Xu,[†] Jianjun Zhang,[†] Yanqin Li,[†] and Jun Ni^{*,†}

[†]College of Chemistry, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China,

[‡] High Density Electronics Center, University of Arkansas, Fayetteville, Arkansas 72701, United States

Contents

Table S1. Crystal data and structure refinement for $1 \cdot DMSO$, $1 \cdot 1/2(CH_3CN)$ and $1 \cdot 1/8(CH_2Cl_2)$
Table S2. Selected bond lengths (Å), bond angles (°) and the shortest $Pt \cdots Pt$ (Å) distance for $1 \cdot DMSO$, $1 \cdot 1/2$ (CH ₃ CN) and $1 \cdot 1/8$ (CH ₂ Cl ₂)
Table S3. Hydrogen-bonding geometry (Å, $^{\circ}$) and short interactions in 1·DMSO, 1·1/2(CH ₃ CN) and1·1/8(CH ₂ Cl ₂)
Table S4. Partial molecular orbital compositions (%) in the ground state for 1 in dichloromethane solution from the TD-DFT calculation
Table S5. Absorption and emission transition properties of 1 in dichloromethane solution by TD-DFTmethod at the PBE1PBE level with the polarized continuum model (PCM)
Table S6. Partial molecular orbital compositions (%) in the ground state for the two-molecule model of 1.DMSO in the solid state by TD-DFT method at the PBE1PBE level
Table S7. Absorption and emission transition properties for the two-molecule model of 1 DMSO in the solid state by TD-DFT method at the PBE1PBE level
Table S8. Partial molecular orbital compositions (%) in the ground state for the two-molecule model of $1 \cdot 1/2$ (CH ₃ CN) in the solid state by TD-DFT method at the PBE1PBE level
Table S9. Absorption and emission transition properties for the two-molecule model of $1 \cdot 1/2$ (CH ₃ CN)in the solid state by TD-DFT method at the PBE1PBE level.15
Table S10. Partial molecular orbital compositions (%) in the ground state for the two-molecule modelof $1 \cdot 1/8$ (CH ₂ Cl ₂) in the solid state by TD-DFT method at the PBE1PBE level
Table S11. Absorption and emission transition properties for the two-molecule model of $1 \cdot 1/8(CH_2Cl_2)$ in the solid state by TD-DFT method at the PBE1PBE level.17
Table S12. Partial molecular orbital compositions (%) in the ground state for the three-molecule modelof $1 \cdot 1/8$ (CH ₂ Cl ₂) in the solid state by TD-DFT method at the PBE1PBE level
Table S13. Absorption and emission transition properties for the three-molecule model of $1 \cdot 1/8(CH_2Cl_2)$ in the solid state by TD-DFT method at the PBE1PBE level

Table S14. Partial molecular orbital compositions (%) in the ground state for the four-molecule modelof $1 \cdot 1/8(CH_2Cl_2)$ in the solid state by TD-DFT method at the PBE1PBE level
Table S15. Absorption and emission transition properties for the four-molecule model of $1 \cdot 1/8(CH_2Cl_2)$ in the solid state by TD-DFT method at the PBE1PBE level
Table S16. Partial molecular orbital compositions (%) in the ground state for the five-molecule modelof $1 \cdot 1/8$ (CH ₂ Cl ₂) in the solid state by TD-DFT method at the PBE1PBE level
Table S17. Absorption and emission transition properties for the five-molecule model of $1 \cdot 1/8(CH_2Cl_2)$ in the solid state by TD-DFT method at the PBE1PBE level
Figure S1. The π - π stacking interactions within the quasi-dimeric structure of 1 ·DMSO (a) and dimeric structure of 1 ·1/2(CH ₃ CN) (b), and one dimeric unit showing the π - π stacking interactions in the 1-D linear chain of 1 ·1/8(CH ₂ Cl ₂) (c). The hydrogen atoms are omitted for clarity. Symmetry code: a. 2-x, 1-y, 2-z; b. 1-x, -y, -z; c. 1-x, 1-y, 1- z; dx, 1-y, 1-z
Figure S2. The interactions between adjacent dimeric structures in complex $1 \cdot 1/2$ (CH ₃ CN). The hydrogen atoms not participate in hydrogen bond are omitted for clarity. Symmetry code: ax, -y, -z; b. $-2+x$, $-1+y$, $-1+z$
Figure S3. The hydrogen bonds between solvate molecules and Pt(II) moieties in complex 1·DMSO and $1\cdot 1/2$ (CH ₃ CN). The hydrogen atoms not important are omitted for clarity. Symmetry code: a. x, y, 1+z; bx, -y, -z; c1+x, y, z
Figure S4. Packing diagrams of $1 \cdot DMSO$ (a) and $1 \cdot 1/2(CH_3CN)$ (b), showing the Pt(II) moieties are well separated by the solvent molecules in the two phases
Figure S5. The stacking diagram of $1 \cdot 1/8$ (CH ₂ Cl ₂), showing the CH ₂ Cl ₂ solvate molecules located in space of crystal lattice
Figure S6. The Pt···Pt distances and interplanar distances in the stacking structures of $1 \cdot DMSO$ (a), $1 \cdot 1/2$ (CH ₃ CN) (b), and $1 \cdot 1/8$ (CH ₂ Cl ₂) (c)
Figure S7. Low-energy absorption (dash lines) and emission spectra (solid lines) of 1 in various solvents at ambient temperature.
Figure S8. Emission spectra of 1 in dichloromethane solution with different concentration

Figure S13. The XRD diagrams recorded in a reversible vapochromic cycle $1 \cdot 1/2(CH_3CN) \Rightarrow 1 \cdot 1/8(CH_2Cl_2)$, showing dynamic variations of XRD patterns from $1 \cdot 1/2(CH_3CN) \rightarrow 1 \cdot 1/8(CH_2Cl_2)$ upon exposure of $1 \cdot 1/2(CH_3CN)$ into a saturated CH_2Cl_2 vapor, and the XRD patterns from $1 \cdot 1/8(CH_2Cl_2) \rightarrow 1 \cdot 1/2(CH_3CN)$ by exposing $1 \cdot 1/8(CH_2Cl_2)$ into CH_3CN vapor at ambient temperature
Figure S14. Thermogravimetric analysis curves of the three heated samples 1a, 1b and 1c41
Figure S15. Plots of the frontier molecular orbitals involved in the absorption transition for complex 1 in dichloromethane solution (isovalue = 0.02)
Figure S16. Plots of the frontier molecular orbitals involved in the absorption transition for the two- molecule model of $1 \cdot DMSO$ (isovalue = 0.02)
Figure S17. Plots of the frontier molecular orbitals involved in the absorption transition for the two- molecule model of $1.1/2$ (CH ₃ CN) (isovalue = 0.02)
Figure S18. Plots of the frontier molecular orbitals involved in the absorption transition for two- molecule model of $1 \cdot 1/8$ (CH ₂ Cl ₂) (isovalue = 0.02)
Figure S19. Plots of the frontier molecular orbitals involved in the absorption transition for three- molecule model of $1 \cdot 1/8$ (CH ₂ Cl ₂) (isovalue = 0.02)

Figure	S21.	Plots	of th	ne frontier	molecular	orbitals	involved	in	the	absorption	transition	for	five-
molecul	le moo	del of	1 ·1/8((CH ₂ Cl ₂) (i	sovalue = 0	0.02)							54

	1 · DMSO	$1 \cdot 1/2 CH_3 CN$	$1 \cdot 1/8(CH_2Cl_2)$
Empirical formula	$C_{32}H_{30}Br_2N_2OPtS$	$C_{62}H_{51}Br_4N_5Pt$	$C_{241}H_{194}Br_{16}Cl_2N_{16}Pt_8$
М	845.52	1575.90	6224.30
Crystal system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	C2/c
<i>a</i> / Å	10.6084(7)	8.9811(4)	22.200(12)
b / Å	12.8660(8)	15.4169(8)	21.156(12)
<i>c</i> / Å	13.3514(9)	20.7934(11)	13.262(7)
α / °	61.360(4)	99.006(4)	90
eta / °	76.813(5)	95.653(3)	96.522(6)
γ /°	83.798(5)	98.947(3)	90
$V/ m \AA^3$	1557.17(18)	2786.6(2)	6188(6)
Ζ	2	2	1
D_c /g.cm ⁻³	1.803	1.878	1.670
$\mu(\text{mm}^{-1})$	7.166	7.927	7.158
Radiation $(\lambda, \text{\AA})$	0.71073	0.71073	0.71073
T/K	296(2)	296(2)	296(2)
<i>F</i> (000)	816	1508	2970
R _{int}	0.030	0.032	0.039
Reflections collected / uniques	10723/5449	13825/9659	15210/5425
Observed reflections $(I > 2\sigma(I))$	4645	7222	3077
$R1^a(I > 2\sigma(I))$	0.0325	0.0540	0.0425
wR2 ^b (all data)	0.0775	0.1547	0.1319
GOF	1.017	1.029	1.067

Table S1. Crystal data and structure refinement for $1 \cdot DMSO$, $1 \cdot 1/2(CH_3CN)$ and $1 \cdot 1/8(CH_2Cl_2)$.

 $\overline{{}^{a}R1 = \Sigma |F_{o} - F_{c}| / \Sigma F_{o}, {}^{b}wR2} = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})]^{1/2}$

	1.DMSO	1·1/2(CH ₃ CN)		1 · DMSO $1 \cdot 1/2(CH_3CN)$		$1 \cdot 1/8(CH_2Cl_2)$
Shortest Pt…Pt distance	4.845	4.	882	3.341		
Pt-N	2.074(5)	2.0633(5)	2.0459(6)	2.061(7)		
	2.066(4)	2.0482(7)	2.0607(6)	2.039(7)		
Pt-C	1.946(6)	1.961(10)	1.959(11)	1.970(9)		
	1.959(7)	1.9055(6)	1.9797(7)	1.946(10)		
N-Pt-N	78.89(17)	79.02(3)	79.25(3)	79.4(3)		
C-Pt-N	94.4(2)	94.5(3)	94.5(3)	96.4(4)		
C-Pt-N	95.9(2)	95.26(3)	97.58(3)	95.3(3)		
C-Pt-C	90.8(2)	91.9(4)	88.00(3)	88.9(4)		

Table S2. Selected bond lengths (Å), bond angles (°) and the shortest $Pt \cdots Pt$ (Å) distance for $1 \cdot DMSO$, $1 \cdot 1/2(CH_3CN)$ and $1 \cdot 1/8(CH_2Cl_2)$.

1·DMSO								
<i>D</i> -H··· <i>A</i>	<i>D</i> -Н	H···A	$D \cdots A$	<i>D</i> - H··· <i>A</i>	Symmetry code			
C4-H4…O1	0.93	2.38	3.249(9)	156	x, y, 1+z			
С7-Н7…О1	0.93	2.44	3.280(8)	150	x, y, 1+z			
		center	center	Symmetry code				
$\pi(Cg1)\cdots\pi(C11\equiv C12)$		3.45	5		2-x, 1-y, 2-z			
Cg1 is the pyridine ring con	ntaining N1 at	om.						
		1·1/2(CH	I ₃ CN)					
D-H··· A	<i>D</i> -Н	$\mathbf{H} \cdots \mathbf{A}$	$D \cdots A$	<i>D</i> - H··· <i>A</i>	Symmetry code			
C02-H02A… <i>π</i> (C11≡C12)	0.96	2.76	3.598(14)	146	-			
C4-H4…N01	0.93	2.69	3.606	170	-x, -y, -z			
С7-Н7…N01	0.93	2.60	3.510(10)	167	-x, -y, -z			
C20-H20A····Br3	0.96	2.81	3.577(12)	137	2-x, 1-y, 1-z			
C39-H39…N01	0.93	2.58	3.3350(12)	138	1+x, y, z			
C58-H58…Cg7	0.93	2.92	3.718	144	-			
		center	center	Sy	ymmetry code			
$\pi(Cg2)\pi(Cg3)$		3.87	1	-x, -y, -z				
$\pi(Cg3)\pi(Cg4)$		3.71	8	1-x,-y,-z				
$\pi(Cg2)\pi(C11\equiv C12)$		3.28	4	1-x,-y,-z				
$\pi(Cg5)\pi(Cg6)$		3.49	7	2-x,1-y,1-z				
$\pi(Cg6)\pi(Cg7)$		3.87	9	1-x,1-y,1-z				
$\pi(Cg5)\pi(C41\equiv C42)$		3.59	9	1-x,1-y,1-z				

Table S3. Hydrogen-bonding geometry (Å,°) and short interactions in $1 \cdot DMSO$, $1 \cdot 1/2(CH_3CN)$ and $1 \cdot 1/8(CH_2Cl_2)$.

Cg2 is pyridine ring containing N1 atom, Cg3 is the pyridine ring containing N2 atom, Cg4 is the benzene ring containing C18 atom, Cg5 is pyridine ring containing N3 atom, Cg6 is pyridine ring containing N4 atom, Cg7 is the benzene ring containing C48 atom.

	$1 \cdot 1/8(CH_2Cl_2)$	
	centercenter	Symmetry code
$\pi(Cg8)\pi(C21\equiv C22)$	3.446	-x,1-y,1-z
$\pi(Cg9)\pi(C11\equiv C12)$	3.420	-x,1-y,1-z

Cg8 is the pyridine ring containing N1 atom, Cg9 is the pyridine ring containing N2 atom.

orbital	energy (eV)	MO contribution (%)				
		Pt(s/p/d)	C≡CPh-Et-4	DiBrbpy		
LUMO+11	0.60	52.2(0/52/48)	32.1	15.7		
LUMO+8	-0.24	41.9(94/5/1)	56.3	1.8		
LUMO+7	-0.02	2.6(17/20/63)	73.5	23.9		
LUMO+6	-0.09	6.3(74/14/12)	5.4	88.3		
LUMO+5	-0.14	4.7(2/34/64)	13.3	82.0		
LUMO+4	-0.17	7.7(81/15/4)	12.7	79.6		
LUMO+3	-0.26	18.2(5/73/22)	68.3	13.5		
LUMO+2	-1.55	1.5(1/1/98)	0.7	97.8		
LUMO+1	-1.79	2.8(0/59/41)	1.0	96.2		
LUMO	-2.76	4.4(0/36/64)	2.6	93.0		
НОМО	-5.67	16.1(0/1/99)	82.3	1.6		
HOMO-1	-5.84	12.1(0/5/95)	85.0	2.9		
HOMO-2	-6.34	33.9(0/1/99)	61.1	5.0		
НОМО-3	-6.61	21.3(0/2/98)	73.4	5.3		
HOMO-4	-6.87	96.4(28/0/72)	2.9	0.7		
HOMO-5	-6.95	0.8(0/1/99)	99.1	0.1		
HOMO-6	-7.02	0.05(4/4/92)	99.94	0.01		
HOMO-7	-7.50	29.6(0/0/100)	59.4	11.0		
HOMO-8	-7.81	12.3(0/2/98)	80.0	7.7		
НОМО-9	-8.01	1.6(0/2/98)	10.2	88.2		
HOMO-10	-8.13	9.8(0/1/99)	23.1	67.1		

Table S4. Partial molecular orbital compositions (%) in the ground state for 1 in dichloromethanesolution from the TD-DFT calculation.

States	<i>E</i> , nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T ₁	591	0.0000	HOMO→LUMO	91%	³ LLCT/ ³ MLCT	640
- 1	(2.10)	0.0000	HOMO-1→LUMO	7%	³ LLCT/ ³ MLCT	010
S_2	517	0.0928	HOMO-1→LUMO	100%	¹ LLCT/ ¹ MLCT	
	(2.40)					
S_3	453	0.1063	HOMO-2→LUMO	100%	¹ LLCT/ ¹ MLCT	469
	(2.73)					
S_5	405	0.0672	HOMO-3→LUMO	100%	¹ LLCT/ ¹ MLCT	429
	(3.07)					
S_8	356	0.1287	HOMO→LUMO+2	71%	¹ LLCT/ ¹ MLCT	
	(3.49)		HOMO-1→LUMO+1	29%	¹ LLCT/ ¹ MLCT	
S 9	341	0.0721	HOMO-1→LUMO+2	100%	¹ LLCT/ ¹ MLCT	
	(3.63)					
S19	283	0.0695	HOMO-8→LUMO	96%	¹ LLCT/ ¹ MLCT	291
	(4.38)					
S ₂₀	279	0.6633	HOMO-9→LUMO	53%	¹ IL/ ¹ LLCT	
	(4.45)		HOMO-10→LUMO	35%	¹ IL/ ¹ LLCT	
			HOMO-3→LUMO+2	9%	¹ LLCT/ ¹ MLCT	
S_{21}	272	0.7132	HOMO→LUMO+3	100%	¹ IL/ ¹ MC ¹ /LLCT	
	(4.55)					
S_{24}	262	0.2656	HOMO→LUMO+5	31%	¹ IL/ ¹ LLCT/ ¹ MLCT	265
	(4.73)		HOMO→LUMO+11	21%	¹ IL/ ¹ MC/ ¹ LLCT	
			HOMO-1→LUMO+3	19%	¹ IL/ ¹ MC/ ¹ LLCT	
			HOMO→LUMO+4	11%	¹ IL/ ¹ LLCT/ ¹ MLCT	
			HOMO→LUMO+6	11%	¹ LLCT/ ¹ MLCT	
S ₂₆	260	0.0773	HOMO-1→LUMO+3	63%	¹ IL/ ¹ MC/ ¹ LLCT	
	(4.78)		HOMO-2→LUMO+3	12%	¹ IL/ ¹ MC/ ¹ LLCT	
			HOMO→LUMO+5	11%	¹ IL/ ¹ LLCT/ ¹ MLCT	
S ₃₀	252	0.1779	HOMO-5→LUMO+2	26%	¹ LLCT	241
	(4.92)		HOMO-1→LUMO+5	20%	¹ IL/ ¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+4	9%	¹ IL/ ¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+11	8%	¹ IL/ ¹ MC/ ¹ LLCT	
			HOMO-1→LUMO+7	7%	¹ IL/ ¹ LLCT/ ¹ MLCT	
S ₃₁	252	0.1283	HOMO-2→LUMO+3	29%	¹ IL/ ¹ MC/ ¹ LLCT	
	(4.92)		HOMO-5→LUMO+2	13%	¹ LLCT	
			HOMO-2→LUMO+7	11%	¹ IL/ ¹ LLCT/ ¹ MLCT	
			HOMO→LUMO+6	11%	¹ LLCT/ ¹ MLCT	

Table S5. Absorption and emission transition properties of **1** in dichloromethane solution by TD-DFT method at the PBE1PBE level with the polarized continuum model (PCM).

S ₃₂	249	0.0819	HOMO-5→LUMO+2	36%	¹ LLCT
	(4.99)		HOMO→LUMO+8	17%	¹ IL/ ¹ MC/ ¹ LLCT
			HOMO-7→LUMO+1	13%	¹ IL/ ¹ LLCT/ ¹ MLCT
S ₃₆	246	0.1609	HOMO→LUMO+7	26%	¹ IL/ ¹ LLCT/ ¹ MLCT
	(5.05)		HOMO-3→LUMO+3	12%	¹ MC/ ¹ IL/ ¹ LLCT
			HOMO-1→LUMO+6	11%	¹ LLCT/ ¹ MLCT
			HOMO-6→LUMO+2	10%	¹ LLCT
			HOMO-1→LUMO+4	8%	¹ IL/ ¹ LLCT/ ¹ MLCT
			HOMO-1→LUMO+11	8%	¹ IL/ ¹ MC/ ¹ LLCT
			HOMO→LUMO+8	8%	¹ IL/ ¹ MC/ ¹ LLCT

orbital	energy (eV)	MO contribution (%)				
		Pt(s/p/d)	C≡CPh-Et-4	DiBrbpy		
LUMO+5	-1.29	2.85(21/52/27)	0.65	96.50		
LUMO+4	-1.37	3.57(41/49/10)	1.18	95.25		
LUMO+3	-1.63	2.85(4/59/37)	1.38	95.77		
LUMO+2	-1.71	4.61(41/45/14)	2.54	92.85		
LUMO+1	-2.54	3.89(7/28/65)	2.69	93.42		
LUMO	-2.58	5.53(9/48/43)	2.83	91.64		
НОМО	-5.35	14.10(2/2/96)	84.43	1.47		
HOMO-1	-5.37	13.38(0/2/98)	85.13	1.49		
НОМО-2	-5.58	15.04(0/5/95)	81.64	3.32		
НОМО-3	-5.59	15.00(0/5/95)	80.96	4.04		
HOMO-4	-5.95	32.96(1/1/98)	61.58	5.46		
HOMO-5	-5.99	30.40(1/3/96)	64.28	5.32		
HOMO-6	-6.29	22.97(6/3/91)	70.95	6.08		
HOMO-7	-6.31	19.50(1/3/96)	76.69	3.81		
HOMO-8	-6.54	86.65(28/0/72)	7.12	6.23		
НОМО-9	-6.59	89.10(27/0/73)	3.62	7.28		
HOMO-14	-7.31	27.67(0/1/99)	61.52	10.81		
HOMO-15	-7.34	27.50(1/0/99)	60.82	11.68		

Table S6. Partial molecular orbital compositions (%) in the ground state for the two-molecule model of1.DMSO in the solid state by TD-DFT method at the PBE1PBE level.

States	<i>E</i> , nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T ₁	617	0.0000	HOMO→LUMO	72%	³ LI CT/ ³ MI CT	570
11	(2.01)	0.0000	HOMO-1 \rightarrow LUMO+1	20%	³ LLCT/ ³ MLCT	570
T_2	613	0.0000	HOMO-1→LUMO	48%	$^{3}LLCT/^{3}MLCT$	
12	(2.02)	0.0000	HOMO→LUMO+1	45%	$^{3}LLCT/^{3}MLCT$	
T ₃	581	0 0000	HOMO-1→LUMO	35%	³ LLCT/ ³ MLCT	
15	(2.14)	0.0000	HOMO→LUMO+1	31%	³ LLCT/ ³ MLCT	
			HOMO-2→LUMO+1	18%	³ LLCT/ ³ MLCT	
			HOMO-3→LUMO	15%	³ LLCT/ ³ MLCT	
S_6	529	0.0446	HOMO-3→LUMO	84%	¹ LLCT/ ¹ MLCT	501
(2.34)	(2.34)		HOMO-2→LUMO	8%	¹ LLCT/ ¹ MLCT	
		HOMO→LUMO+1	8%	¹ LLCT/ ¹ MLCT		
S_8	S ₈ 524	0.0412	HOMO-2→LUMO+1	81%	¹ LLCT/ ¹ MLCT	
(2.37)		HOMO→LUMO+1	9%	¹ LLCT/ ¹ MLCT		
S_{10}	475	0.1298	HOMO-4→LUMO	71%	¹ LLCT/ ¹ MLCT	462
	(2.61)		HOMO-5→LUMO+1	21%	¹ LLCT/ ¹ MLCT	
S ₁₆	418	0.0380	HOMO-7→LUMO	70%	¹ LLCT/ ¹ MLCT	412
	(2.96)		HOMO-6→LUMO+1	12%	¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+2	12%	¹ LLCT/ ¹ MLCT	
S ₂₄	383	0.0338	HOMO-3→LUMO+2	61%	¹ LLCT/ ¹ MLCT	385
	(3.24)		HOMO→LUMO+3	16%	¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+2	7%	¹ LLCT/ ¹ MLCT	
S_{27}	377	0.0582	HOMO-9→LUMO	36%	¹ MLCT	
	(3.29)		HOMO-8→LUMO+1	33%	¹ MLCT	
			HOMO-2→LUMO+3	14%	¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+4	11%	¹ LLCT/ ¹ MLCT	
S ₃₁	363	0.0500	HOMO→LUMO+5	41%	¹ LLCT/ ¹ MLCT	
	(3.41)		HOMO-1→LUMO+4	24%	¹ LLCT/ ¹ MLCT	
			HOMO-4→LUMO+2	18%	¹ LLCT/ ¹ MLCT	
			HOMO-2→LUMO+3	9%	¹ LLCT/ ¹ MLCT	
S ₃₃	358	0.0477	HOMO-4→LUMO+2	56%	¹ LLCT/ ¹ MLCT	
	(3.46)		HOMO-5→LUMO+3	18%	¹ LLCT/ ¹ MLCT	
			HOMO-2→LUMO+3	10%	¹ LLCT/ ¹ MLCT	

Table S7. Absorption and emission transition properties for the two-molecule model of 1.DMSO in thesolid state by TD-DFT method at the PBE1PBE level.

			HOMO→LUMO+5	8%	¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+4	8%	¹ LLCT/ ¹ MLCT	
S_{38}	344	0.0422	HOMO-2→LUMO+5	83%	¹ LLCT/ ¹ MLCT	344
	(3.60)		HOMO-3→LUMO+4	9%	¹ LLCT/ ¹ MLCT	
			HOMO→LUMO+5	8%	¹ LLCT/ ¹ MLCT	
S49	321	0.0348	HOMO-4→LUMO+4	36%	¹ LLCT/ ¹ MLCT	315
	(3.87)		HOMO-7→LUMO+2	36%	¹ LLCT/ ¹ MLCT	
			HOMO-6→LUMO+3	10%	¹ LLCT/ ¹ MLCT	
S ₅₆	313 (3.96)	0.0392	HOMO-5→LUMO+5	76%	¹ LLCT/ ¹ MLCT	
S ₅₉	307	0.0349	HOMO-14→LUMO	71%	¹ IL/ ¹ LLCT/ ¹ MLCT	300
	(4.04)		HOMO-15→LUMO+1	9%	¹ IL/ ¹ LLCT/ ¹ MLCT	

orbital	energy (eV)	MO contribution (%)		
		Pt(s/p/d)	C≡CPh-Et-4	DiBrbpy
LUMO+5	-1.41	2.86(48/24/28)	1.89	95.25
LUMO+4	-1.44	3.16(29/56/15)	2.72	94.12
LUMO+3	-1.70	2.17(5/50/45)	0.44	97.39
LUMO+2	-1.73	2.71(27/52/21)	2.81	94.48
LUMO+1	-2.51	4.78(5/22/73)	4.67	90.55
LUMO	-2.59	5.60(6/41/53)	4.31	90.09
НОМО	-5.26	17.01(1/1/98)	79.72	3.27
HOMO-1	-5.29	16.92(1/1/98)	80.88	2.20
НОМО-2	-5.46	18.06(1/8/91)	75.79	6.15
НОМО-3	-5.48	17.91(0/9/91)	74.67	7.42
HOMO-12	-6.94	10.39(10/8/82)	82.02	7.59
HOMO-13	-6.97	6.17(5/4/91)	87.88	5.95
HOMO-14	-7.03	34.77(0/0/100)	49.72	15.51
HOMO-15	-7.04	37.77(0/0/100)	45.76	16.47
HOMO-16	-7.16	23.54(3/1/96)	64.55	11.91

Table S8. Partial molecular orbital compositions (%) in the ground state for the two-molecule model of $1\cdot 1/2$ (CH₃CN) in the solid state by TD-DFT method at the PBE1PBE level.

States	E, nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T ₁	683	0.0000	HOMO→LUMO	78%	³ LLCT/ ³ MLCT	625
	(1.82)		HOMO-1→LUMO+1	15%	³ LLCT/ ³ MLCT	
T_2	674	0.0000	HOMO-1→LUMO	50%	³ LLCT/ ³ MLCT	
	(1.84)		HOMO→LUMO+1	40%	³ LLCT/ ³ MLCT	
			HOMO-3→LUMO	7%	³ LLCT/ ³ MLCT	
T ₃	624	0.0000	HOMO→LUMO+1	45%	³ LLCT/ ³ MLCT	
	(1.99)		HOMO-1→LUMO	43%	³ LLCT/ ³ MLCT	
			HOMO-2→LUMO+1	12%	³ LLCT/ ³ MLCT	
\mathbf{S}_2	618 (2.00)	0.0365	HOMO-1→LUMO	85%	¹ LLCT/ ¹ MLCT	582
S ₃	602	0.0591	HOMO→LUMO+1	88%	¹ LLCT/ ¹ MLCT	
	(2.06)		HOMO-1→LUMO	8%	¹ LLCT/ ¹ MLCT	
S ₆	532 (2.33)	0.1883	HOMO-3→LUMO	92%	¹ LLCT/ ¹ MLCT	530
S_8	521 (2.38)	0.1427	HOMO-2→LUMO+1	96%	¹ LLCT/ ¹ MLCT	
S_{17}	424	0.0576	HOMO→LUMO+3	79%	¹ LLCT/ ¹ MLCT	430
	(2.93)		HOMO-1→LUMO+2	17%	¹ LLCT/ ¹ MLCT	
S ₂₆	388	0.1123	HOMO-1→LUMO+4	48%	¹ LLCT/ ¹ MLCT	390
	(3.19)		HOMO-3→LUMO+2	27%	¹ LLCT/ ¹ MLCT	
			HOMO→LUMO+5	15%	¹ LLCT/ ¹ MLCT	
			HOMO-2→LUMO+5	7%	¹ LLCT/ ¹ MLCT	
S ₂₈	384	0.0346	HOMO-2→LUMO+3	47%	¹ LLCT/ ¹ MLCT	
	(3.23)		HOMO-3→LUMO+4	20%	¹ LLCT/ ¹ MLCT	
			HOMO-3→LUMO+2	13%	¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+4	8%	¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+2	7%	¹ LLCT/ ¹ MLCT	
S ₃₆	361	0.1556	HOMO-3→LUMO+4	45%	¹ LLCT/ ¹ MLCT	346
	(3.43)		HOMO-2→LUMO+5	36%	¹ LLCT/ ¹ MLCT	
			HOMO-1→LUMO+4	9%	¹ LLCT/ ¹ MLCT	
S ₄₂	346	0.0396	HOMO-13→LUMO	58%	¹ LLCT	
	(3.59)		HOMO-12→LUMO+1	42%	¹ LLCT/ ¹ MLCT	
S ₅₃	322	0.0675	HOMO-16→LUMO	54%	¹ IL/ ¹ LLCT/ ¹ MLCT	323
	(3.85)		HOMO-13→LUMO	15%	¹ LLCT	
			HOMO-12→LUMO+1	9%	¹ LLCT/ ¹ MLCT	
			HOMO-15→LUMO	9%	¹ IL/ ¹ LLCT/ ¹ MLCT	
			HOMO-14→LUMO+1	7%	¹ IL/ ¹ LLCT/ ¹ MLCT	

Table S9. Absorption and emission transition properties for the two-molecule model of $1 \cdot 1/2$ (CH₃CN) in the solid state by TD-DFT method at the PBE1PBE level.

orbital	energy (eV)	MO contribution (%)		
		Pt(s/p/d)	C≡CC ₆ H ₄ Et-4	DiBrbpy
LUMO+5	-1.29	2.35(3/81/16)	0.06	97.59
LUMO+4	-1.30	2.57(50/12/38)	2.48	94.95
LUMO+3	-1.43	3.19(81/9/10)	1.20	95.61
LUMO+2	-1.63	4.51(25/57/18)	1.11	94.38
LUMO+1	-2.41	3.71(39/15/46)	2.88	93.41
LUMO	-2.51	6.91(9/41/50)	4.30	88.79
НОМО	-5.25	19.85(0/6/94)	77.89	2.26
HOMO-1	-5.37	43.53(21/1/78)	53.48	2.99
HOMO-2	-5.39	16.44(2/1/97)	81.46	2.10
HOMO-3	-5.48	21.29(2/8/90)	71.81	6.90
HOMO-4	-5.86	63.36(23/3/74)	31.95	4.69
HOMO-9	-6.69	1.78(0/10/90)	96.67	1.55
HOMO-10	-6.70	1.85(4/5/91)	96.30	1.85
HOMO-11	-6.71	5.47(1/1/98)	90.17	4.36
HOMO-12	-6.74	3.49(6/6/88)	95.73	0.78
HOMO-13	-7.06	33.09(0/0/100)	45.71	21.20
HOMO-14	-7.10	30.04(2/1/97)	50.88	19.08
HOMO-15	-7.13	53.62(13/0/87)	41.60	4.78
HOMO-16	-7.15	48.90(13/1/86)	48.14	2.96
HOMO-17	-7.26	64.47(20/0/80)	23.60	11.93

Table S10. Partial molecular orbital compositions (%) in the ground state for the two-molecule model of $1 \cdot 1/8$ (CH₂Cl₂) in the solid state by TD-DFT method at the PBE1PBE level.

States	E, nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T ₁	655 (1.89)	0.0000	HOMO→LUMO	100%	³ MMLCT/ ³ LLCT	1022
\mathbf{S}_1	623 (1.99)	0.0000	HOMO→LUMO	100%	¹ MLCT/ ¹ LLCT	761
S_2	612	0.0250	HOMO-1→LUMO	87%	¹ MLCT/ ¹ LLCT	
	(2.02)		HOMO-4→LUMO	8%	¹ MLCT/ ¹ LLCT	
S_5	573	0.0637	HOMO-2→LUMO	88%	¹ MLCT/ ¹ LLCT	670
	(2.17)		HOMO→LUMO+1	9%	¹ MLCT/ ¹ LLCT	
S_8	521	0.0985	HOMO-3→LUMO+1	91%	¹ MLCT/ ¹ LLCT	534
	(2.38)		HOMO-4→LUMO	9%	¹ MLCT/ ¹ LLCT	
S 9	487	0.1741	HOMO-4→LUMO	84%	¹ MLCT/ ¹ LLCT	494
	(2.55)		HOMO-1→LUMO	11%	¹ MLCT/ ¹ LLCT	
S19	398	0.0239	HOMO→LUMO+3	73%	¹ MLCT/ ¹ LLCT	423
	(3.12)		HOMO-2→LUMO+2	22%	¹ MLCT/ ¹ LLCT	
S ₂₄	384	0.0508	HOMO→LUMO+4	62%	¹ MLCT/ ¹ LLCT	
	(3.23)		HOMO-1→LUMO+5	21%	¹ MLCT/ ¹ LLCT	
S ₃₀	374	0.0323	HOMO-1→LUMO+5	41%	¹ MLCT/ ¹ LLCT	
	(3.32)		HOMO-3→LUMO+3	27%	¹ MLCT/ ¹ LLCT	
			HOMO→LUMO+4	24%	¹ MLCT/ ¹ LLCT	
S ₃₂	361	0.0586	HOMO-3→LUMO+4	36%	¹ MLCT/ ¹ LLCT	356
	(3.43)		HOMO-2→LUMO+5	28%	¹ MLCT/ ¹ LLCT	
			HOMO-3→LUMO+3	18%	¹ MLCT/ ¹ LLCT	
			HOMO-4→LUMO+2	16%	¹ MLCT/ ¹ LLCT	
S ₃₃	358.09	0.0995	HOMO-4→LUMO+2	76%	¹ MLCT/ ¹ LLCT	
	(3.46)		HOMO-2→LUMO+5	7%	¹ MLCT/ ¹ LLCT	
			HOMO→LUMO+4	7%	¹ MLCT/ ¹ LLCT	
S ₃₅	354	0.0858	HOMO-3→LUMO+4	55%	¹ MLCT/ ¹ LLCT	
	(3.50)		HOMO-2→LUMO+5	33%	¹ MLCT/ ¹ LLCT	
			HOMO-3→LUMO+3	7%	¹ MLCT/ ¹ LLCT	
S ₃₉	344	0.0358	HOMO-11→LUMO	74%	¹ LLCT	
	(3.61)		HOMO-10→LUMO	11%	¹ LLCT	
			HOMO-13→LUMO	8%	¹ IL/ ¹ LLCT/ ¹ MLCT	
S48	328	0.0209	HOMO-4→LUMO+5	80%	¹ MLCT/ ¹ LLCT	310
	(3.78)		HOMO-9→LUMO+1	13%	¹ LLCT	
S ₅₂	325	0.0203	HOMO-17→LUMO+1	30%	¹ IL/ ¹ LLCT/ ¹ MLCT	
	(3.82)		HOMO-15→LUMO+1	25%	¹ MLCT/ ¹ LLCT	
			HOMO-16→LUMO+1	22%	¹ MLCT/ ¹ LLCT	

Table S11. Absorption and emission transition properties for the two-molecule model of $1 \cdot 1/8$ (CH₂Cl₂) in the solid state by TD-DFT method at the PBE1PBE level.

			HOMO-13→LUMO	10%	¹ IL/ ¹ LLCT/ ¹ MLCT	
S ₅₃	321	0.0228	HOMO-13→LUMO	44%	¹ IL/ ¹ LLCT/ ¹ MLCT	
	(3.86)		HOMO-12→LUMO+1	29%	¹ LLCT	
			HOMO-11→LUMO	13%	¹ LLCT	
			HOMO-14→LUMO	12%	¹ IL/ ¹ LLCT/ ¹ MLCT	
S ₆₀	313 (3.96)	0.0465	HOMO-14→LUMO	86%	¹ IL/ ¹ LLCT/ ¹ MLCT	

orbital	energy (eV)	I	MO contribution (%	(o)
		Pt(s/p/d)	C≡CPh-Et-4	DiBrbpy
LUMO+7	-1.15	4.36(24/50/26)	1.99	93.65
LUMO+6	-1.29	2.78(16/79/5)	1.43	95.79
LUMO+5	-1.32	2.45(9/77/14)	1.83	95.72
LUMO+4	-1.53	4.38(55/38/7)	1.29	94.33
LUMO+3	-1.59	4.28(7/91/2)	43.87	51.85
LUMO+2	-2.07	4.31(19/37/44)	4.25	91.44
LUMO+1	-2.45	5.22(75/18/7)	4.54	90.24
LUMO	-2.54	6.70(42/49/9)	4.53	88.77
НОМО	-5.16	54.74(31/0/69)	42.55	2.71
HOMO-1	-5.18	19.09(3/9/88)	78.59	2.32
HOMO-2	-5.23	24.54(21/8/71)	72.97	2.49
HOMO-3	-5.40	22.50(6/5/89)	70.76	6.74
HOMO-4	-5.45	18.65(1/2/97)	77.73	3.62
HOMO-5	-5.59	42.24(24/3/73)	50.86	6.90
HOMO-6	-5.61	33.81(4/3/93)	60.90	5.29

Table S12. Partial molecular orbital compositions (%) in the ground state for the three-molecule model of $1 \cdot 1/8$ (CH₂Cl₂) in the solid state by TD-DFT method at the PBE1PBE level.

States	<i>E</i> , nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T ₁	707	0.0000	HOMO→LUMO	94%	³ MMLCT/ ³ LLCT	1022
\mathbf{S}_1	666 (1.86)	0.0271	HOMO→LUMO HOMO-2→LUMO	84% 9%	¹ MLCT/ ¹ LLCT	761
Sa	641	0.0152	$HOMO \rightarrow I UMO+1$	70%	1 MLCT/ 1 LLCT	670
52	(1.93)	0.0152	HOMO $2 \rightarrow UMO+1$	80/2	1 MLCT/ 1 LLCT	070
			HOMO-2 \rightarrow LUMO+1	070 7%	1 MLCT/ 1 LLCT	
S ₂	631	0 0263	HOMO- $2 \rightarrow LUMO$	50%	1 MLCT/ 1 LLCT	
03	(1.96)	0.0200	HOMO-1 \rightarrow LUMO	37%	1 MLCT/ 1 LLCT	
			HOMO→LUMO	7%	1 MLCT/ 1 LLCT	
S ₆	563	0.0321	HOMO-3→LUMO	36%	1 MLCT/ 1 LLCT	534
50	(2.20)		HOMO-4 \rightarrow LUMO+1	18%	¹ MLCT/ ¹ LLCT	551
			HOMO-4→LUMO	13%	¹ MLCT/ ¹ LLCT	
			HOMO-3→LUMO+1	10%	¹ MLCT/ ¹ LLCT	
			HOMO-2→LUMO+1	8%	¹ MLCT/ ¹ LLCT	
			HOMO-6→LUMO	8%	¹ MLCT/ ¹ LLCT	
S10	536	0.0331	HOMO-3→LUMO+1	45%	¹ MLCT/ ¹ LLCT	
10	(2.31)		HOMO-2→LUMO+1	22%	¹ MLCT/ ¹ LLCT	
			HOMO-5→LUMO	13%	¹ MLCT/ ¹ LLCT	
			HOMO-5→LUMO+1	10%	¹ MLCT/ ¹ LLCT	
S ₁₂	525	0.0578	HOMO-6→LUMO	49%	¹ MLCT/ ¹ LLCT	
	(2.36)		HOMO-5→LUMO	16%	¹ MLCT/ ¹ LLCT	
			HOMO-3→LUMO	14%	¹ MLCT/ ¹ LLCT	
			HOMO-4→LUMO	10%	¹ MLCT/ ¹ LLCT	
S ₁₆	499	0.0736	HOMO-6→LUMO+1	54%	¹ MLCT/ ¹ LLCT	494
	(2.48)		HOMO-5→LUMO	14%	¹ MLCT/ ¹ LLCT	
			HOMO-3→LUMO+1	11%	¹ MLCT/ ¹ LLCT	
			HOMO-5→LUMO+1	8%	¹ MLCT/ ¹ LLCT	
			HOMO-2→LUMO+2	8%	¹ MLCT/ ¹ LLCT	
S19	479	0.0249	HOMO-5→LUMO+1	53%	¹ MLCT/ ¹ LLCT	
	(2.60)		HOMO-3→LUMO+1	19%	¹ MLCT/ ¹ LLCT	
			HOMO-4→LUMO+1	11%	¹ MLCT/ ¹ LLCT	
			HOMO-3→LUMO+2	9%	¹ MLCT/ ¹ LLCT	
S ₂₀	467	0.0305	HOMO-3→LUMO+2	78%	¹ MLCT/ ¹ LLCT	
	(2.66)		HOMO-4→LUMO+2	15%	¹ MLCT/ ¹ LLCT	
S ₂₄	440	0.0626	HOMO-6→LUMO+2	88%	¹ MLCT/ ¹ LLCT	423
	(2.82)		HOMO-5→LUMO+2	9%	¹ MLCT/ ¹ LLCT	

Table S13. Absorption and emission transition properties for the three-molecule model of $1 \cdot 1/8(CH_2Cl_2)$ in the solid state by TD-DFT method at the PBE1PBE level.

					¹ MLCT/ ¹ LLCT	
S45	385	0.0205	HOMO-1→LUMO+6	21%	¹ MLCT/ ¹ LLCT	
	(3.22)		HOMO-4→LUMO+3	18%	¹ MLCT/ ¹ LLCT	
			HOMO-5→LUMO+3	13%	¹ IL/ ¹ MLCT/ ¹ LLCT	
			HOMO-3→LUMO+4	10%	¹ MLCT/ ¹ LLCT	
			HOMO-6→LUMO+3	9%	¹ IL/ ¹ MLCT/ ¹ LLCT	
			HOMO-1→LUMO+7	8%	¹ MLCT/ ¹ LLCT	
S47	384	0.0233	HOMO-2→LUMO+5	26%	¹ MLCT/ ¹ LLCT	
	(3.23)		HOMO-1→LUMO+5	26%	¹ MLCT/ ¹ LLCT	
			HOMO-3→LUMO+4	13%	¹ MLCT/ ¹ LLCT	
			HOMO-6→LUMO+3	13%	¹ IL/ ¹ LLCT/ ¹ MLCT	
S ₅₂	375	0.0549	HOMO-6→LUMO+3	47%	¹ IL/ ¹ LLCT/ ¹ MLCT	356
	(3.31)		HOMO-5→LUMO+3	16%	¹ IL/ ¹ LLCT/ ¹ MLCT	
			HOMO-2→LUMO+5	8%	¹ MLCT/ ¹ LLCT	
			HOMO-4→LUMO+3	8%	¹ IL/ ¹ LLCT/ ¹ MLCT	

orbital	energy (eV)	Ν	IO contribution (%	(o)
		Pt(s/p/d)	C≡CPh-Et-4	DiBrbpy
LUMO+7	-1.24	26.97(9/85/6)	2.76	70.27
LUMO+6	-1.25	17.91(8/81/11)	3.21	78.88
LUMO+5	-1.48	54.02(46/51/3)	2.15	43.83
LUMO+4	-1.51	40.47(38/52/10)	4.84	54.69
LUMO+3	-1.93	21.09(83/5/12)	4.97	73.94
LUMO+2	-2.20	12.58(43/32/25)	5.23	82.19
LUMO+1	-2.39	19.96(58/21/21)	3.93	76.11
LUMO	-2.41	13.70(22/46/32)	3.96	82.34
НОМО	-4.98	84.63(30/3/67)	12.08	3.29
HOMO-1	-5.14	30.28(5/5/90)	66.10	3.62
HOMO-2	-5.16	28.15(1/7/92)	68.52	3.33
HOMO-3	-5.31	43.84(16/5/79)	51.33	4.83
HOMO-4	-5.32	28.18(4/4/92)	67.48	4.34
HOMO-5	-5.36	36.33(8/5/87)	55.70	7.97
HOMO-6	-5.41	27.94(1/3/96)	67.05	5.01
HOMO-7	-5.46	46.86(24/7/69)	45.29	7.85
HOMO-8	-5.54	34.15(11/9/80)	58.41	7.44
HOMO-9	-5.88	43.56(6/4/90)	52.02	4.42
HOMO-10	-5.89	39.93(0/3/97)	55.46	4.61

Table S14. Partial molecular orbital compositions (%) in the ground state for the four-molecule model of $1 \cdot 1/8$ (CH₂Cl₂) in the solid state by TD-DFT method at the PBE1PBE level.

States	<i>E</i> , nm (eV)	0.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T_1	719	0.0000	HOMO→LUMO	77%	³ MMLCT/ ³ LLCT/ ³ MC	1022
	(1.73)		HOMO→LUMO+2	10%	³ MMLCT/ ³ LLCT/ ³ MC	-
			HOMO-3→LUMO+1	7%	³ MMLCT/ ³ LLCT/ ³ MC	
S_1	681	0.0608	HOMO→LUMO	81%	¹ MLCT/ ¹ LLCT/ ¹ MC	761
	(1.82)		HOMO→LUMO+2	7%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₅	612	0.0289	HOMO-2→LUMO	48%	¹ MLCT/ ¹ LLCT/ ¹ MC	670
	(2.03)		HOMO-1→LUMO+1	48%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S_{14}	521	0.0967	HOMO-3→LUMO+1	45%	¹ MLCT/ ¹ LLCT/ ¹ MC	534
	(2.38)		HOMO-7→LUMO	22%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-4→LUMO+2	14%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S_{15}	518	0.0413	HOMO-4→LUMO+2	55%	¹ MLCT/ ¹ LLCT/ ¹ MC	
	(2.39)		HOMO-3→LUMO+1	11%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-2→LUMO+3	8%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₁₉	505	0.0203	HOMO-6→LUMO+2	34%	¹ MLCT/ ¹ LLCT/ ¹ MC	
	(2.46)		HOMO-5→LUMO+2	15%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-4→LUMO+1	11%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-2→LUMO	11%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-1→LUMO+1	11%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S_{21}	488	0.0348	HOMO-5→LUMO+1	29%	¹ MLCT/ ¹ LLCT/ ¹ MC	494
	(2.5)		HOMO-2→LUMO+2	16%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-4→LUMO	15%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-8→LUMO	13%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-8→LUMO+2	7%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S_{24}	482	0.0342	HOMO-6→LUMO+1	20%	¹ MLCT/ ¹ LLCT/ ¹ MC	
	(2.57)		HOMO-8→LUMO	17%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-9→LUMO+1	11%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-10→LUMO	11%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-8→LUMO+2	10%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-4→LUMO+2	10%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-4→LUMO	8%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₃₂	460	0.0291	HOMO-8→LUMO+2	45%	¹ MLCT/ ¹ LLCT/ ¹ MC	
	(2.67)		HOMO-8→LUMO	17%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-6→LUMO+1	10%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-7→LUMO	8%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-7→LUMO+2	7%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₃₃	457	0.0854	HOMO-3→LUMO+3	45%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-5→LUMO+3	37%	¹ MLCT/ ¹ LLCT/ ¹ MC	

Table S15. Absorption and emission transition properties for the four-molecule model of $1 \cdot 1/8$ (CH₂Cl₂) in the solid state by TD-DFT method at the PBE1PBE level.

	(2.69)		HOMO-6→LUMO+3	7%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₃₆	447 (2.77)	0.0304	HOMO→LUMO+4	83%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₄₁	431 (2.88)	0.0185	HOMO-5→LUMO+3 HOMO-3→LUMO+3 HOMO-7→LUMO+2	33% 31% 15%	¹ MLCT/ ¹ LLCT/ ¹ MC ¹ MLCT/ ¹ LLCT/ ¹ MC ¹ MLCT/ ¹ LLCT/ ¹ MC	423

orbital	energy (eV)	MO contribution (%)			
		Pt(s/p/d)	C≡CPh-Et-4	DiBrbpy	
LUMO+6	-1.48	46.45(45/49/6)	3.34	50.21	
LUMO+5	-1.50	44.65(27/67/6)	3.14	52.30	
LUMO+4	-1.90	21.45(75/12/13)	4.80	73.75	
LUMO+3	-2.00	22.51(65/22/13)	4.93	72.56	
LUMO+2	-2.19	27.90(60/29/11)	4.40	67.70	
LUMO+1	-2.39	19.15(51/27/22)	3.97	76.88	
LUMO	-2.46	24.84(69/17/14)	4.44	70.72	
НОМО	-4.89	88.39(31/1/68)	8.19	3.42	
HOMO-1	-5.12	30.02(4/5/91)	66.32	3.66	
HOMO-2	-5.14	31.84(11/6/83)	64.22	3.94	
HOMO-3	-5.21	32.21(6/7/87)	63.23	4.56	
HOMO-4	-5.22	58.98(20/6/74)	38.09	2.93	
HOMO-5	-5.33	30.59(5/9/86)	61.55	7.86	
HOMO-6	-5.35	29.17(6/6/88)	65.31	5.52	
HOMO-7	-5.37	26.24(6/4/90)	68.04	5.72	
HOMO-8	-5.42	38.85(18/8/74)	53.00	8.15	
HOMO-9	-5.46	40.55(11/7/82)	53.48	5.97	
HOMO-10	-5.52	36.09(15/7/78)	56.50	7.41	
HOMO-11	-5.77	70.82(24/4/72)	21.78	7.40	

Table S16. Partial molecular orbital compositions (%) in the ground state for the five-molecule model of $1 \cdot 1/8$ (CH₂Cl₂) in the solid state by TD-DFT method at the PBE1PBE level.

States	E, nm (eV)	O.S.	Component	Contri.	Assignment	Measured Wavelength (nm)
T ₁	742	0.0000	HOMO→LUMO	65%	³ MMLCT/ ³ LLCT/ ³ MC	1022
	(1.67)		HOMO→LUMO+2	11%		
\mathbf{S}_1	708	0.0715	HOMO→LUMO	73%	¹ MLCT/ ¹ LLCT/ ¹ MC	761
	(1.75)		HOMO→LUMO+2	8%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₂	684	0.0171	HOMO→LUMO+1	70%	¹ MLCT/ ¹ LLCT/ ¹ MC	670
	(1.81)		HOMO-4→LUMO+1	7%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S_{14}	542 (2.29)	0.049	HOMO-8→LUMO	24%	¹ MLCT/ ¹ LLCT/ ¹ MC	534
			HOMO-4→LUMO	17%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-2→LUMO+2	9%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-3→LUMO+2	8%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S_6	529	0.074	HOMO-5→LUMO+1	24%	¹ MLCT/ ¹ LLCT/ ¹ MC	
	(2.34)		HOMO-4→LUMO+1	21%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-8→LUMO+1	14%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-6→LUMO+1	14%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₂₆	493	0.0431	HOMO-5→LUMO+2	17%	¹ MLCT/ ¹ LLCT/ ¹ MC	494
	(2.52)		HOMO-3→LUMO+3	12%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-9→LUMO+1	7%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-6→LUMO+2	6%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-10→LUMO+1	5%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S40	466	0.0343	HOMO-4→LUMO+4	37%	¹ MLCT/ ¹ LLCT/ ¹ MC	
	(2.66)		HOMO-7→LUMO+3	13%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-10→LUMO+2	6%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S45	452	0.0376	HOMO→LUMO+5	49%	¹ MLCT/ ¹ LLCT/ ¹ MC	
	(2.74)		HOMO→LUMO+6	24%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₄₆	450 (2.76)	0.0258	HOMO-11→LUMO	23%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO→LUMO+6	10%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-10→LUMO+1	8%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-8→LUMO+3	8%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-11→LUMO+2	7%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S ₄₈	449	0.0291	HOMO-11→LUMO	12%	¹ MLCT/ ¹ LLCT/ ¹ MC	
	(2.76)		HOMO-6→LUMO+4	11%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO→LUMO+6	11%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-8→LUMO+2	8%	¹ MLCT/ ¹ LLCT/ ¹ MC	
S_{51}	444	0.037	HOMO-10→LUMO+1	28%	¹ MLCT/ ¹ LLCT/ ¹ MC	423
	(2.79)		HOMO-10→LUMO+3	14%	¹ MLCT/ ¹ LLCT/ ¹ MC	
			HOMO-9→LUMO+1	13%	¹ MLCT/ ¹ LLCT/ ¹ MC	

Table S17. Absorption and emission transition properties for the five-molecule model of $1 \cdot 1/8$ (CH₂Cl₂) in the solid state by TD-DFT method at the PBE1PBE level.

HOMO-9→LUMO+3	8%	¹ MLCT/ ¹ LLCT/ ¹ MC
HOMO-10→LUMO+2	7%	¹ MLCT/ ¹ LLCT/ ¹ MC

Figure S1. The π - π stacking interactions within the quasi-dimeric structure of 1·DMSO (a) and dimeric structure of 1·1/2(CH₃CN) (b), and one dimeric unit showing the π - π stacking interactions in the 1-D linear chain of 1·1/8(CH₂Cl₂) (c). The hydrogen atoms are omitted for clarity. Symmetry code: a. 2-x, 1-y, 2-z; b. 1-x, -y, -z; c. 1-x, 1-y,1-z; d. -x, 1-y, 1-z.

Figure S2. The interactions between adjacent dimeric structures in complex $1 \cdot 1/2$ (CH₃CN). The hydrogen atoms not participate in hydrogen bond are omitted for clarity. Symmetry code: a. -x, -y, -z; b. -2+x, -1+y, -1+z.

Figure S3. The hydrogen bonds between solvate molecules and Pt(II) moieties in complex $1 \cdot DMSO$ and $1 \cdot 1/2(CH_3CN)$. The hydrogen atoms not important are omitted for clarity. Symmetry code: a. x, y, 1+z; b. -x, -y, -z; c. -1+x, y, z.

Figure S4. Packing diagrams of $1 \cdot DMSO$ (a) and $1 \cdot 1/2(CH_3CN)$ (b), showing the Pt(II) moieties are well separated by the solvent molecules in the two phases.

Figure S5. The stacking diagram of $1 \cdot 1/8$ (CH₂Cl₂), showing the CH₂Cl₂ solvate molecules located in space of crystal lattice.

Figure S6. The Pt···Pt distances and interplanar distances in the stacking structures of $1 \cdot DMSO$ (a), $1 \cdot 1/2(CH_3CN)$ (b), and $1 \cdot 1/8(CH_2Cl_2)$ (c).

Figure S7. Low-energy absorption (dash lines) and emission spectra (solid lines) of 1 in various solvents at ambient temperature.

Figure S8. Emission spectra of 1 in dichloromethane solution with different concentration.

Figure S9. The excitation spectra of solid samples $1 \cdot DMSO$, $1 \cdot 1/2(CH_3CN)$, and $1 \cdot 1/8(CH_2Cl_2)$ at ambient temperature.

Figure S10. Emission spectral changes of solid $1 \cdot DMSO$ in response to CH₃CN vapor (left) and $1 \cdot 1/2$ (CH₃CN) to DMSO vapor (right), showing gradual interconversions between two vibronic-structured emission bands (540 and 570 nm) and a broad unstructured emission band (625 nm).

Figure S11. The XRD diagrams recorded in a reversible vapochromic cycle $1 \cdot DMSO \Rightarrow 1 \cdot 1/2(CH_3CN)$, showing dynamic variations of XRD patterns from $1 \cdot DMSO \rightarrow 1 \cdot 1/2(CH_3CN)$ upon exposure of $1 \cdot DMSO$ into a saturated CH₃CN vapor, and the XRD patterns from $1 \cdot 1/2(CH_3CN) \rightarrow 1 \cdot DMSO$ by exposing $1 \cdot 1/2(CH_3CN)$ into DMSO vapor at ambient temperature.

Figure S12. Emission spectral changes (left is in visible region and right is in NIR region) of solid $1 \cdot 1/2$ (CH₃CN) sample in response to CH₂Cl₂ vapor (a) and $1 \cdot 1/8$ (CH₂Cl₂) in response to CH₃CN vapor (b), showing gradual interconversions between emission bands in visible region (625 nm) and in NIR region (1022 nm).

Figure S13. The XRD diagrams recorded in a reversible vapochromic cycle $1 \cdot 1/2(CH_3CN) \Rightarrow 1 \cdot 1/8(CH_2Cl_2)$, showing dynamic variations of XRD patterns from $1 \cdot 1/2(CH_3CN) \rightarrow 1 \cdot 1/8(CH_2Cl_2)$ upon exposure of $1 \cdot 1/2(CH_3CN)$ into a saturated CH_2Cl_2 vapor, and the XRD patterns from $1 \cdot 1/8(CH_2Cl_2) \rightarrow 1 \cdot 1/2(CH_3CN)$ by exposing $1 \cdot 1/8(CH_2Cl_2)$ into CH_3CN vapor at ambient temperature.

Figure S14. Thermogravimetric analysis curves of the three heated samples 1a, 1b and 1c.

LUMO+11

LUMO+8

LUMO+7

LUMO+6

LUMO+5

LUMO+4

LUMO+3

LUMO+2

LUMO+1

LUMO

НОМО

HOMO-1

Figure S15. Plots of the frontier molecular orbitals involved in the absorption transition for complex 1 in dichloromethane solution (isovalue = 0.02).

Figure S16. Plots of the frontier molecular orbitals involved in the absorption transition for the twomolecule model of $1 \cdot DMSO$ (isovalue = 0.02).

LUMO+5

LUMO+2

LUMO+1

LUMO

НОМО

НОМО-2

HOMO-3

HOMO-12

HOMO-13

Figure S17. Plots of the frontier molecular orbitals involved in the absorption transition for the twomolecule model of 1.1/2(CH₃CN) (isovalue = 0.02).

LUMO+3

LUMO+2

LUMO+1

НОМО

HOMO-2

НОМО-3

HOMO-4

НОМО-9

Figure S18. Plots of the frontier molecular orbitals involved in the absorption transition for twomolecule model of $1.1/8(CH_2Cl_2)$ (isovalue = 0.02).

LUMO+7

LUMO+4

LUMO+3

LUMO+2

LUMO+1

HOMO-1

స్తా

НОМО-2

НОМО-3

Figure S19. Plots of the frontier molecular orbitals involved in the absorption transition for threemolecule model of $1.1/8(CH_2Cl_2)$ (isovalue = 0.02).

Figure S20. Plots of the frontier molecular orbitals involved in the absorption transition for fourmolecule model of $1.1/8(CH_2Cl_2)$ (isovalue = 0.02).

HOMO-4

Figure S21. Plots of the frontier molecular orbitals involved in the absorption transition for fivemolecule model of $1.1/8(CH_2Cl_2)$ (isovalue = 0.02).