Supporting Information

Palladium/Lewis Acid Co-catalyzed Divergent Asymmetric Ring Opening Reactions of Azabenzonorbornadienes with Alcohols

Fan Yang,[†] Jingchao Chen,[†] Jianbin Xu, Fujie Ma, Yongyun Zhou, Madhuri Vikas Shinde, and Baomin Fan^{*}

YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, 650500 (Kunming) China. E-mail: adams.bmf@hotmail.com

Table of Contents

A: General Information	S2
B: Table S1. Reaction condition optimizations	S2
C: Proposed mechanism for the divergent ARO reactions	S3
D: Procedure for the Reactions	S 4
E: Characterization Data of Products	S5
F: NMR Spectra of Products	S16
G: HPLC Spectra of Products	S44
H: X-Ray Crystallography of Compound 3ae	S71

A: General Information

The reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox (Mikrouna, Supper 1220/750). Anhydrous toluene was distilled from sodium benzophenone ketyl prior to use. Anhydrous DCM (Dichloromethane) was distilled from calcium hydride and stored under argon. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-Avance 400 MHz spectrometer. CDCl₃ or CH₃OD was used as solvent. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and *J* values were given in Hz. The enantioselective excesses were determined by Agilent 1260 Series HPLC using Daicel AD-H, AS-H, OJ-H and OD-H chiral columns eluted with a mixture of isopropyl alcohol and hexane. Melting points were measured on X-4 melting point apparatus and uncorrected. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. Column chromatography was performed with silica gel (200-300 mesh) with petroleum ether and ethyl acetate as eluents.

B: Table S1. Reaction condition optimizations

Entry	Ligand	Lewis acid	Methanol	Time 3aa			4a	
			amount (eq.)	(h)	Yield (%) ^b	Ee(%) ^c	Yield (%) ^b	Ee(%) ^c
1	(R)-Binap	AgBF ₄	3	8	89	92	5	
2	(R)-P-Phos	AgBF ₄	3	7	95	72	2	
3	(R)-Segphos	AgBF ₄	3	48	8	95	0	
4	(<i>R</i>)-SDP	AgBF ₄	3	3	63	70	29	59
5	(<i>R,R</i>)-BDPP	AgBF ₄	3	48	68	75	13	46
6	(<i>R</i> , <i>R</i>)-DIOP	AgBF ₄	3	1.5	60	0	36	4
7	(R)-Phanephos	AgBF ₄	3	1	34	79	65	60
8	(R)-Difluorphos	AgBF ₄	3	5	96	97	trace	
9	(R)-Difluorphos	AgOTf	3	15	61	98	32	69
10	(R)-Difluorphos	CuOTf	3	48	20	97	76	68
11	(R)-Difluorphos	Cu(OTf) ₂	3	8	83	97	16	70

12	(R)-Difluorphos	Zn(OTf) ₂	3	26	42	96	55	71
13	(R)-Binap	Zn(OTf) ₂	3	48	30	90	38	38
14	(R)-Segphos	Zn(OTf) ₂	3	48	25	94	18	63
15	(<i>R</i> , <i>R</i>)-DIOP	Zn(OTf) ₂	3	3	45	8	61	3
16	(<i>R</i>)-SDP	Zn(OTf) ₂	3	1.5	67	81	trace	
17	(<i>R,R</i>)-BDPP	Zn(OTf) ₂	3	48	76	85	8	81
18	(R)-P-Phos	Zn(OTf) ₂	3	9	20	90	79	68
19	(R)-Phanephos	Zn(OTf) ₂	3	0.6	trace		94	93
20 ^{<i>d</i>}	(R)-Phanephos	Zn(OTf) ₂	3	1.5	trace		94	96
21 ^e	(R)-Phanephos	Zn(OTf) ₂	3	5.5	7	97	89	94
22 ^{<i>d</i>}	(R)-Phanephos	Zn(OTf) ₂	5	0.7	trace		94	96
23 ^{<i>d</i>}	(R)-Phanephos	Zn(OTf) ₂	10	0.5	trace		94	96
24 ^{<i>d</i>}	(R)-Phanephos	Zn(OTf) ₂	20	0.5	trace		94	95
25 ^d	(R)-Phanephos	Zn(OTf) ₂	2 ml	3	trace		94	90

^{*a*}Reaction conditions: $Pd(OAc)_2(0.01 \text{ mmol})$, $AgBF_4(0.02 \text{ mol})$, and chiral ligand (0.012 mol) in toluene (1 mL) was stirred at room temperature for 30 min under Ar. **1a** (0.2 mmol) and **2a** (0.6 mmol) were added, and the reaction mixture was stirred at 60 °C for indicated period of time. ^{*b*}Yields were calculated based on ¹H-NMR using 1,3-benzodioxole as internal standard. ^{*c*}Determined by HPLC analysis. ^{*d*}The reaction was performed at 40 °C. ^{*e*}The reaction was performed at room temperature.

C: Proposed mechanism for the divergent ARO reactions

On the basis of the deuterium labeling experiments, a proposed mechanism is outlined in figure S1. The additional ARO catalytic cycle for the ring opening reaction is initiated by the coordination of $Pd(OAc)_2$ with (*R*)-difluorphos to generate the chiral complex **A**, which coordinates with azabenzonorbornadiene (**1a**), CD₃OH and silver ion to yield the complex **B**. The subsequently intramolecular addition of **B** affords **C**, and the following rearrangement gives **D**, which then disassociates to yield the additional ring opening product **3-D**. And the reductive ARO catalytic cycle is initiated by the coordination of $Pd(OAc)_2$ with (*R*)-Phanephos to generate the chiral palladium complex **E**, the following addition of **E** into the C-D bond of CD₃OH affords the intermediate **F**. Subsequently, the additionreaction between **F** and azabenzonorbornadiene (**1a**) generates intermediate **G**, which then undergoes β -elimination to give the ring-opened species **H**. Finally, the product **4-D** is formed by disassociation. And the relative configuration of **4-D** was confirmed by two-dimensional NMR experiments.

Figure S1. Proposed mechanism for the ARO reactions of azabenzonorbornadiene 1a with CD₃OH.

D: Procedure for the reactions

D₁: Typical procedure for the asymmetric ring opening reaction of azabenzonorbornadienes: $Pd(OAc)_2$ (2.3 mg, 0.01 mmol), (*R*)-Difluorphos (8.2 mg, 0.012 mmol) and 1.0 mL toluene were added to a Schlenk tube under argon atmosphere. The resulting solution was stirred at room temperature for 30 min, then AgBF₄ (3.9 mg, 0.02mmol) was added and stirred for additional 10 min, then a solution of *N*-Boc-azabenzonorbornadiene **1a** (48.6 mg, 0.2 mmol) in toluene (1.0 mL) was added, and the mixture was stirred for additional 10 min. After the addition of methanol **2a** (24 µL, 0.6 mmol), the mixture was stirred at 40 °C under argon atmosphere with TLC monitoring until the complete consumption of **1a**. The residue was purified by chromatography on a silica gel column to afford the desired product **3aa** (53 mg, 96% yield).

D₂: Typical procedure for the asymmetric transfer hydrogenation reaction of

azabenzonorbornadienes: $Pd(OAc)_2$ (2.3 mg, 0.01 mmol), (*R*)-Phanephos (6.9 mg, 0.012 mmol) and 1.0 mL toluene were added to a Schlenk tube under argon atmosphere. The resulting solution was stirred at room temperature for 30 min, then $Zn(OTf)_2$ (7.3 mg, 0.02mmol) was added and stirred for an additional 10 min, then a solution of *N*-Boc-azabenzonorbornadiene **1a** (48.6 mg, 0.2 mmol) in toluene (1.0 mL) was added, and the mixture was stirred for additional 10 min. After the addition of methanol **2a** (40µL, 0.6 mmol), the mixture was stirred at 40 °C under argon atmosphere with TLC monitoring until the complete consumption of **1a**. The residue was purified by chromatography on a silica gel column to afford the desired product **4** (46 mg, 95% yield).

D₃: Preparing of (S)-1,2,3,4-Tetrahydro-1-naphthylamine (5)

Compound **4a** (98mg, 0.4mmol), 10% palladium on carbon (22 mg, 0.02mmol) and ethanol (3 mL) were added into a Schlenk tube. After degassing and H₂-filling procedures, the reaction mixture was stirred at room temperature for 17 hours. The resultant suspension was diluted with 10 mL ethanol, and filtered through a Celite cake. The residues on Celite were washed with ethanol. The combined ethanol solution was concentrated under reduced pressure to give compound **5-Boc** (98mg, 99% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, 1H), 7.08 (d, 2H), 7.00 (s, 1H), 4.76 (s, 1H), 2.73 - 2.62 (m, 2H), 1.95 (s, 1H), 1.73 (s, 3H), 1.40 (s, 9H).

To a solution of compound 5-Boc (98mg, 0.4 mmol) in DCM (2 mL) at room temperature was added dropwise a solution of CF₃SO₃H (400 mg, 1.7 mmol) in DCM (3 mL). The resulting mixture was then stirred at room temperature for 2 hours. A solution of 5% NaOH was added and the mixture was stirred for an additional 5 minutes. After separation of the organic phase, the aqueous phase was back-extracted with dichloromethane (2×5 mL) and the combined organic phases were dried over anhydrous sodium sulfate. After filtration, the solvents were removed under reduced pressure and the residue was chromatographed on silica gel (petroleum ether Ethyl acetate = 1 2) to afford • (S)-1,2,3,4-Tetrahydro-1-naphthylamine (51 mg, 88% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ7.32 (d, J = 2.8 Hz, 1H), 7.15 (d, 2H), 7.07 (s, 1H), 4.22 (s, 1H), 4.04 (s, 1H), 2.77 - 2.66 (m, 2H), 2.04 - 1.66 (m, 4H). The ee of 5 was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 82/18, 1 mL/min, 254 nm; t_{major} = 8.7 min, t_{minor} = 9.9 min. $[\alpha]_D^{22}$ = +5.3 (c = 0.72, EtOH).

E: Characterization Data of Products

tert-butyl ((15,25)-2-methoxy-1,2-dihydronaphthalen-1-yl)carbamate (3aa)

White solid, 52.8 mg, 96% yield, 97% *ee*. $[\alpha]_D^{22} = -212.1$ (c = 1.02, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.26 (d, *J* = 6.8 Hz, 1H), 7.18-7.13 (m, 2H), 7.01 (d, *J* = 6.8 Hz, 1H), 6.50 (d, *J* = 9.6 Hz, 1H), 5.99 (dd, *J* = 9.6, 4 Hz, 1H), 4.91 (s, 1 Hz, 1H), 4.59 (d, *J* = 7.2 Hz, 1H), 3.93 (s, 1H), 3.36 (s, 3H), 1.37 (s, 9H). The *ee* of **3aa** was determined by HPLC analysis using two Daicel Chiralcel OD-H columns (2 × 25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 1.0 mL/min, 254 nm; t_{major} = 19.0 min, t_{minor} = 20.2 min.

tert-butyl ((15,25)-2-ethoxy-1,2-dihydronaphthalen-1-yl)carbamate (3ab)

Colorness oil, 53.8 mg, 93% yield, 97% *ee*. $[\alpha]_D^{22} = 252.7$ (c = 0.86, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, *J* = 6.4 Hz, 1H), 7.19 - 7.14 (m, 2H), 7.02 (d, *J* = 6.8 Hz, 1H), 6.49 (d, *J* = 9.6 Hz, 1H), 5.98 (dd, *J* = 9.2, 3.6 Hz, 1H), 4.90 (s, 1H), 4.54 (d, *J* = 6.8 Hz, 2H), 4.03 (s, 1H), 3.63 (q, *J* = 7.2 Hz, 2H), 1.38 (s, 9H), 1.12 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100MHz): δ 155.41, 134.17, 132.07, 129.64, 128.23, 127.05, 126.67, 79.63, 75.65, 64.28, 51.74, 28.41, 15.62. HRMS calcd for C₁₇H₂₃NO₃ [M]⁺: 289.1678. Found: 289.1682. The *ee* of **3ab** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; *t*_{major} = 5.3 min, *t*_{minor} = 5.8 min.

tert-butyl ((15,25)-2-(heptyloxy)-1,2-dihydronaphthalen-1-yl)carbamate (3ac)

White solid, 62.7 mg, 84% yield, 97% *ee*. Mp 62-64 °C. $[\alpha]_D^{22}$ = 148.3 (c = 0.325, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.2 Hz, 1H), 7.18 - 7.12 (m, 2H), 7.02 (d, *J* = 6.0 Hz, 1H), 6.48 (d, *J* = 10.0 Hz, 1H), 5.98 (dd, *J* = 9.6, 4.0 Hz, 1H), 4.92 (t, *J* = 6.4 Hz, 1H), 4.53 (d, *J* = 8.0 Hz, 1H), 4.01(s, 1H), 3.53 (t, *J* = 6.4 Hz, 2H), 1.47 (t, *J* = 4.4 Hz, 2H), 1.38 (s, 9H), 1.17 (s, 10H), 0.80 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.43, 134.35, 132.12, 129.54, 128.16, 128.04, 126.99, 126.87, 79.59, 175.92, 68.97, 51.83, 31.83, 30.09, 29.44, 29.25, 28.41, 26.10, 22.66, 14.10. HRMS calcd for

 $C_{23}H_{35}NO_3$ [M]⁺: 373.2617. Found: 373.2613. The *ee* of **3ac** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 0.5 mL/min, 254 nm; t_{major} = 12.9 min, t_{minor} = 17.3 min.

tert-butyl ((15,25)-2-isopropoxy-1,2-dihydronaphthalen-1-yl)carbamate (3ad)

White solid, 50.9 mg, 84% yield, 97% *ee*. Mp 117-119 °C. $[\alpha]_D^{22} = 161.9$ (c = 1.22, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 6.8 Hz, 1H), 7.15 - 7.14 (m, 2H), 7.01 (d, J = 6.8 Hz, 1H), 6.45 (d, J = 9.6 Hz, 1H), 5.93 (dd, J = 9.6, 4.0 Hz, 1H), 4.81 (t, J = 6.8 Hz, 1H), 4.52 (d, J = 7.6 Hz, 1H), 4.06 (t, J = 4.8 Hz, 1H), 3.85 (t, J = 6.0 Hz, 1H), 1.38 (s, 9H), 1.10 (t, J = 6.4 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.36, 134.13, 132.16, 129.15, 128.24, 128.17, 128.10, 127.56, 127.01, 79.55, 73.72, 70.82, 52.81, 28.42, 23.03, 22.71. HRMS calcd for C₁₈H₂₅NO₃ [M]⁺: 303.1834. Found: 303.1845. The *ee* of **3ad** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; $t_{major} = 6.9$ min, $t_{minor} = 9.1$ min.

tert-butyl ((15,25)-2-(cyclohexyloxy)-1,2-dihydronaphthalen-1-yl)carbamate (3ae)

White solid, 50.8 mg, 74% yield, >99% *ee*. Mp 102-104 °C. $[\alpha]_D^{22}$ = 212.6 (c = 0.94, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 6.8 Hz, 1H), 7.17 - 7.11 (m, 2H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.44 (d, *J* = 9.6, 1H), 5.93 (dd, *J* = 9.6, 3.6 Hz, 1H), 4.82 (t, *J* = 6.8 Hz, 1H), 4.54 (d, *J* = 8.0 Hz, 1H), 4.12 (t, *J* = 4.4 Hz, 1H), 3.46 (s, 1H), 1.83 (t, *J* = 9.6 Hz, 2H), 1.65 (s, 2H), 1.46 (s, 1H), 1.38(s, 9H), 1.27-1.08 (m, 5H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.34, 133.42, 131.19, 127.88, 126.00, 126.79, 125.87, 78.44, 72.75, 52.16, 32.03, 31.94, 27.38, 24.65, 23.25, 23.19. HRMS calcd for C₂₁H₂₉NO₃ [M]⁺: 343.2147. Found: 343.2152. The *ee* of **3ae** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; *t*_{maior} = 6.3 min.

tert-butyl ((15,25)-2-(benzyloxy)-1,2-dihydronaphthalen-1-yl)carbamate (3af)

Transparent solid, 51.3 mg, 73% yield, 96% *ee*. Mp 88-90 °C. $[\alpha]_D^{22}$ = 215.2 (c = 1.06, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 - 7.11 (m, 8H), 7.00 (d, *J* = 7.2 Hz, 1H), 6.48 (d, *J* = 9.6 Hz, 1H), 5.95 (dd, *J* = 9.6, 3.6 Hz, 1H), 5.02 (t, *J* = 7.2 Hz, 1H), 4.65-4.53 (m, 3H), 4.11 (t, 1H), 1.38 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.37, 137.34, 133.11, 131.03, 128.75, 127.24, 126.96, 126.86, 126.51, 125.94, 125.43, 78.58, 74.22, 69.33, 50.90, 27.35. HRMS calcd for C₂₂H₂₅NO₃ [M]⁺: 351.1834. Found: 351.1837. The *ee* of **3af** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; *t*_{minor} = 12.3 min, *t*_{major} = 14.3min.

tert-butyl ((1S,2S)-2-phenethoxy-1,2-dihydronaphthalen-1-yl)carbamate (3ag)

White solid, 60 mg, 82% yield, 96% *ee*. Mp 80-82 °C. $[\alpha]_D^{22} = 197.5$ (c = 1.18, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 6.8 Hz, 1H), 7.19 - 7.09 (m, 7H), 7.01 (d, *J* = 6.8 Hz, 1H), 6.47 (d, *J* = 9.6 Hz, 1H), 5.92 (dd, *J* = 9.6, 4.0 Hz, 1H), 4.90 (t, *J* = 6.8 Hz, 1H), 4.51 (d, *J* = 8.0 Hz, 1H), 4.03 (s, 1H), 3.76 (t, *J* = 7.2 Hz, 2H), 2.79 (t, *J* = 6.8 Hz, 2H), 1.38 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.33, 137.78, 133.12, 130.98, 128.68, 127.93, 127.24, 127.15, 127.04, 125.94, 125.48, 125.09, 78.58, 74.92, 68.65, 50.80, 35.64, 27.35. HRMS calcd for C₂₃H₂₇NO₃ [M]⁺: 365.1991. Found: 365.1982. The *ee* of **3ag** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 254 nm; t_{major} = 22.6 min, t_{minor} = 26.8 min.

tert-butyl (1*S*,2*S*)-2-((4-methoxybenzyl)oxy)-1,2-dihydronaphthalen-1-yl)carbamate (3ah)

White solid, 51.1 mg, 67% yield, 98% *ee*. Mp 85-87 °C. $[\alpha]_D^{22}$ = 223.5 (c = 0.78, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 5.2 Hz, 1H), 7.21 - 7.11 (m, 4H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 2H), 6.47 (d, *J* = 9.6 Hz, 1H), 5.93 (dd, *J* = 9.6, 3.6 Hz, 1H), 5.00 (t, *J* = 7.2 Hz, 1H), 4.49-4.51 (m, 3H), 4.09 (t, *J* = 4.4 Hz, 1H), 3.70 (s, 3H), 1.39 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.21, 155.47, 134.21, 132.14, 130.50, 129.75, 129.62, 128.23, 128.09, 127.02, 126.67, 113.75, 79.64, 74.84, 70.07, 55.27, 51.94, 28.45. HRMS calcd for C₂₃H₂₇NO₄ [M]⁺: 381.1940. Found: 381.1953. The *ee* of **3ah** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm; *t*_{minor} =10.8 min, *t*_{maior} = 11.7 min.

tert-butyl ((1*S*,2*S*)-2-((4-chlorobenzyl)oxy)-1,2-dihydronaphthalen-1-yl)carbamate (3ai)

White solid, 44.7 mg, 58% yield, 98% *ee*. Mp 96-98 °C. $[\alpha]_D^{22} = 203.2$ (c = 0.9, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, *J* = 5.6Hz, 1H), 7.28 - 7.23 (m, 6H), 7.12 - 7.10 (m, 1H), 6.60 (d, *J* = 10.0 Hz, 1H), 6.03 (dd, *J* = 9.6, 4.0 Hz, 1H), 5.08 (dd, *J* = 8.4, 6.0 Hz, 1H), 4.71 - 4.59 (m, 3H), 4.17 (t, *J* = 5.2Hz, 1H), 1.46 (s, 9H). ¹³C NMR (CDCl₃, 100MHz): δ 155.39, 136.95, 133.86, 133.31, 132.01, 130.12, 129.24, 128.45, 128.38, 128.25, 127.12, 126.02, 79.79, 75.25, 69.60, 51.72, 28.41. HRMS calcd for C₂₂H₂₄ClNO₃ [M]⁺: 385.1445. Found: 385.1460. The *ee* of **3ai** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 254 nm; $t_{minor} = 16.7 min, t_{major} = 17.7 min.$

tert-butyl ((1*S*,2*S*)-2-((3-chlorobenzyl)oxy)-1,2-dihydronaphthalen-1-yl)carbamate (3aj)

White solid, 47.0 mg, 61% yield, 99% *ee*. Mp 71-73 °C. $[\alpha]_D^{22} = 249.7$ (c = 6.4, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.0 Hz, 2H), 7.19 - 7.14 (m, 5H), 7.03 - 7.01 (m, 1H), 6.51 (d, *J* = 9.6 Hz, 1H), 5.95 (dd, *J* = 9.6, 4.0 Hz, 1H), 5.00 (dd, *J* = 8.4, 6.0 Hz, 1H), 4.63 - 4.55 (m, 3H), 4.11 (t, *J* = 5.2 Hz, 1H), 1.38 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.33, 139.48, 133.14, 132.84, 130.94, 129.04, 128.50, 127.28, 127.08, 126.78, 126.62, 126.03, 124.93, 124.77, 78.72, 74.42, 68.46, 50.72, 27.34. HRMS calcd for C₂₂H₂₄ClNO₃ [M]⁺: 385.1445. Found: 385.1449. The *ee* of **3aj** was determined by HPLC analysis using two Daicel Chiralcel OD-H columns (2 × 25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 254 nm; *t*_{minor} = 24.0 min, *t*_{major} = 25.2 min.

tert-butyl ((1*S*,2*S*)-2-((2-chlorobenzyl)oxy)-1,2-dihydronaphthalen-1-yl)carbamate (3ak)

Colorless oil, 28.5 mg, 37% yield, >99% ee. [α]_D²² = 250.2 (c = 0.84, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, J = 1.6 Hz, 1H), 7.29 (t, J = 4.8 Hz, 1H), 7.23 (d, J = 1.6 Hz, 1H), 7.18-7.09 (m, 4H), 7.03 (t, J = 3.6 Hz, 1H), 6.51 (d, J = 10.0 Hz, 1H), 6.04 (dd, J = 10.0 Hz), 6.04 (dd, J = 10.0 Hz),

10.0, 4.0 Hz, 1H), 5.06 (t, J = 8.0 Hz, 1H), 4.74 - 4.67 (m, 2H), 4.59 (d, J = 8.4 Hz, 1H), 4.20 (t, J = 5.6 Hz, 1H), 1.38 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.42, 135.01, 133.20, 131.87, 131.05, 128.10, 127.61, 127.22, 127.19, 126.73, 125.99, 125.67, 125.22, 78.65, 75.27, 66.70, 51.19, 27.36. HRMS calcd for C₂₂H₂₄ClNO₃ [M]⁺: 385.1445. Found: 385.1434. The *ee* of **3ak** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.8 mL/min, 254 nm; $t_{major} = 16.8$ min.

tert-butyl ((1*S*,2*S*)-2-((4-bromobenzyl)oxy)-1,2-dihydronaphthalen-1-yl)carbamate (3al)

White solid, 58.4 mg, 68% yield, 99% *ee*. $[\alpha]_D^{22} = 188.5$ (c = 1.14, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 5.6 Hz, 1H), 7.25 - 7.12 (m, 4H), 7.03 - 7.01 (m, 1H), 6.50 (d, *J* = 9.6 Hz, 1H), 5.93 (dd, *J* = 9.6, 4.4 Hz, 1H), 4.99 (dd, *J* = 8.4, 6.0 Hz, 1H), 4.61-4.53 (m, 3H), 4.09 (t, *J* = 4.8 Hz, 1H), 1.38 (s, 9H). The *ee* of **3al** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 0.5 mL/min, 254 nm; *t*_{minor} = 30.2 min, *t*_{major} = 30.9 min.

tert-butyl ((1*S*,2*S*)-2-(benzo[*d*][1,3]dioxol-5-ylmethoxy)-1,2-dihydronaphthalen-1-yl) carbamate (3am)

White solid, 56.1 mg, 71% yield, >99% *ee*. Mp 77-79 °C. $[\alpha]_D^{22} = 196.5$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 5.6 Hz, 1H), 7.17 - 7.13 (m, 2H), 7.05 (d, *J* = 6.8 Hz, 1H), 6.77 (s, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.47 (d, *J* = 9.6 Hz, 1H), 5.93 (dd, *J* = 9.6, 4.0 Hz, 1H), 5.82 (s, 2H), 4.99 (t, *J* = 7.2 Hz, 1H), 4.55 - 4.47 (m, 2H), 4.08 (t, 1H), 1.39 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.36, 146.62, 146.03, 133.02, 131.14, 131.01, 128.72, 127.16, 126.97, 125.94, 125.41, 120.53, 107.70, 106.89, 99.84, 78.61, 73.84, 69.16, 50.81, 27.34. HRMS calcd for C₂₃H₂₅NO₅ [M]⁺: 395.1733. Found: 395.1735. The *ee* of **3am** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; *t*_{major} = 16.4 min.

tert-butyl ((1*S*,2*S*)-6,7-dibromo-2-methoxy-1,2-dihydronaphthalen-1-yl)carbamate (3ba)

White solid, 76.1 mg, 88% yield, 84% *ee*. Mp 50-52 °C. $[\alpha]_D^{22} = 75.5$ (c = 0.74, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.34 (s, 1H), 6.47 (d, *J* = 9.6 Hz, 1H), 6.16 (dd, *J* = 9.2, 2.8 Hz, 2H), 4.91 (t, 1H), 4.70 (d, *J* = 8.0 Hz, 1H), 4.02 (s, 1H), 3.44 (s, 3H), 1.47 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.27, 135.05, 133.00, 132.69, 131.53, 128.40, 127.93, 124.26, 123.79, 80.18, 56.54, 51.01, 28.36. HRMS calcd for C₁₆H₁₉Br₂NO₃ [M]⁺: 430.9732. Found: 430.9728. The *ee* of **3ba** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.3 mL/min, 254 nm; *t*_{minor} = 26.8min, *t*_{major} = 30.9 min.

tert-butyl ((1*S*,2*S*)-2-methoxy-6,7-dimethyl-1,2-dihydronaphthalen-1-yl)carbamate (3ca)

White solid, 54.6 mg, 90% yield, 95% *ee*. Mp 43-45 °C. $[\alpha]_D^{22} = 197.1$ (c = 0.86, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.04 (s, 1H), 6.81 (s, 1H), 6.48 (d, *J* = 9.6 Hz, 1H), 5.94 (dd, *J* = 9.2, 4.0 Hz, 1H), 4.83 (t, 1H), 4.51 (d, *J* = 7.2 Hz, 1H), 3.88 (s, 1H), 3.36 (s, 3H), 2.15 (d, *J* = 8.8 Hz, 6H), 1.37 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.34, 136.84, 136.54, 131.26, 130.21, 129.98, 129.52, 128.46, 124.67, 79.57, 76.53, 56.36, 50.75, 28.42, 19.63, 19.38. HRMS calcd for C₁₈H₂₅NO₃ [M]⁺: 303.1834. Found: 303.1839. The *ee* of **3ca** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; *t*_{major} = 7.1 min *t*_{minor} = 7.9 min.

White solid, 62.3 mg, 93% yield, 99% *ee*. Mp 40-42 °C. $[\alpha]_D^{22}$ = 202.1 (c = 1.22, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, 1H), 6.57 (s, 1H), 6.46 (d, *J* = 9.6 Hz, 1H), 5.93 (dd,

J = 8.4, 3.6 Hz, 1H), 4.81 (s, 1H), 4.55 (d, J = 7.6 Hz, 1H), 3.86 (t, 1H), 3.80 (d, J = 11.6 Hz, 6H), 3.38 (s, 3H), 1.38 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.30, 147.85, 147.68, 128.98, 125.44, 123.65, 122.30, 111.17, 109.47, 78.66, 75.13, 55.40, 55.01, 54.98, 49.74, 27.34. HRMS calcd for C₁₈H₂₅NO₅ [M]⁺: 335.1733. Found: 335.1754. The *ee* of **3da** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; $t_{major} = 10.5 \text{ min}, t_{minor} = 12.2 \text{ min}.$

tert-butyl ((6*S*,7*S*)-7-methoxy-2,3,6,7-tetrahydronaphtho[2,3-*b*][1,4]dioxin-6-yl) carbamate (3ea)

White solid, 58.6 mg, 88% yield, >99% *ee*. Mp 58-60 °C. $[\alpha]_{D}^{22}$ = 165.6 (c = 1.04, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 6.62 (s, 1H), 6.47 (d, *J* = 9.6 Hz, 1H), 5.97 (dd, *J* = 9.2, 4.0 Hz, 1H), 4.86 (t, 1H), 4.62 (d, *J* = 7.6 Hz, 1H), 4.22 (s, 4H), 3.94 (s, 1H), 3.44 (s, 3H), 1.45 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.28, 143.30, 143.18, 129.53, 127.44, 125.70, 124.14, 117.72, 115.98, 79.60, 76.51, 64.43, 64.35, 56.35, 50.74, 28.41. HRMS calcd for C₁₈H₂₃NO₅ [M]⁺: 333.1576. Found: 333.1585. The *ee* of **3ea** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =80/20, 1 mL/min, 254 nm; *t*_{major} = 13.5 min.

tert-butyl ((5*S*,6*S*)-6-methoxy-5,6-dihydronaphtho[2,3-*d*][1,3]dioxol-5-yl)carbamate (3fa)

White solid, 57.4 mg, 90% yield, 98% *ee*. Mp 55-57 °C. $[\alpha]_D^{22} = 181.7$ (c = 1.08, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.78 (s, 1H), 6.52 (s, 1H), 6.40 (d, *J* = 9.6 Hz, 1H), 5.90 (dd, *J* = 8.8, 3.6 Hz, 1H), 5.84 (d, *J* = 8.4 Hz, 2H), 4.79 (t, 1H), 4.58 (d, 1H), 3.86 (s, 1H), 3.36 (s, 3H), 1.37 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.27, 147.39, 147.30, 129.97, 126.09, 123.65, 109.46, 107.61, 101.14, 79.72, 76.33, 56.38, 51.15, 28.39. HRMS calcd for C₁₇H₂₁NO₅ [M]⁺: 319.1420. Found: 319.1413. The *ee* of **3fa** was determined by HPLC analysis using Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; *t*_{major} = 7.4 min, *t*_{minor} = 9.6 min.

(S)-tert-butyl (1,2-dihydronaphthalen-1-yl)carbamate (4a)

Prepared following typical procedure **B**₂ using methanol as reductant. Colorless oil, 46.1 mg, 94% yield, 95% *ee*. $[\alpha]_D^{22} = -38.7$ (c = 0.86, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 6.8 Hz, 1H), 7.22 (m, 2H), 7.08 (dd, *J* = 7.2, 1.6 Hz, 1H), 6.52 (d, *J* = 9.6 Hz, 1H), 5.99 - 4.95 (m, 1H), 4.89 (t, 2H), 2.60 - 2.46 (m, 2H), 1.44 (s, 9H). The *ee* of **4a** was determined by HPLC analysis using Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 1 mL/min, 254 nm; $t_{minor} = 6.4 \text{ min}$, $t_{major} = 7.4 \text{ min}$.

(S)-tert-butyl (6,7-dibromo-1,2-dihydronaphthalen-1-yl)carbamate (4b)

Prepared following typical procedure **B**₂ using methanol as reductant. Colorless oil, 60.4 mg, 75% yield, 90% *ee*. $[\alpha]_D^{22} = -21.7$ (c = 1.14, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.33 (s, 1H), 6.43 (d, *J* = 10.0 Hz, 1H), 6.08 - 6.04 (m, 1H), 4.84 (s, 2H), 2.58 - 2.40 (m, 2H), 1.45 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.02, 135.93, 133.87, 131.77, 131.04, 127.95, 126.12, 123.85, 122.92, 79.96, 46.87, 30.31, 28.38. HRMS calcd for C₁₅H₁₇Br₂NO₂ [M]⁺: 400.9626. Found: 400.9624. The *ee* of **4c** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 254 nm; *t*_{minor} = 17.4 min, *t*_{major} = 19.3 min .

(S)-tert-butyl (6,7-dimethyl-1,2-dihydronaphthalen-1-yl)carbamate (4c)

Prepared following typical procedure **B**₂ using methanol as reductant. Colorless oil, 51.9 mg, 95% yield, 96% *ee*. $[\alpha]_D^{22} = -26.7$ (c = 1.02, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.10 (s, 1H), 6.87 (s, 1H), 6.48 (d, *J* = 9.6 Hz, 1H), 5.90 (t, *J* = 4.8 Hz, 1H), 4.83 (d, *J* = 9.6 Hz, 2H), 2.57 - 2.42 (m, 2H), 2.24 (d, *J* = 9.6 Hz, 6H), 1.44(s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.12, 136.16, 136.05, 132.46, 130.83, 128.50, 127.80, 127.54, 124.81, 79.30, 47.25, 30.79, 28.45, 19.64, 19.43. HRMS calcd for C₁₇H₂₃NO₂ [M]⁺: 273.1729. Found: 273.1729. The *ee* of **4b** was determined by HPLC analysis using Daicel

Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; t_{minor} = 11.2 min, t_{major} = 12.6 min .

(S)-tert-butyl (6,7-dimethoxy-1,2-dihydronaphthalen-1-yl)carbamate (4d)

Prepared following typical procedure **B**₂ using methanol as reductant. Colorless oil, 50.1 mg, 82% yield, 95% *ee*. $[\alpha]_D^{22} = -57.8$ (c = 0.82, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.81 (s, 1H), 6.55 (s, 1H), 6.36 (d, *J* = 9.6 Hz, 1H), 5.81 - 5.76 (m, 1H), 4.84 (d, *J* = 8.8 Hz, 1H), 4.74 - 4.69 (m, 1H), 3.80 (d, *J* = 6.8 Hz, 6H), 2.51 - 2.37 (m, 2H), 1.36 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.20, 148.53, 148.24, 127.67, 127.25, 126.07, 123.62, 111.04, 109.87, 79.40, 56.13, 56.02, 47.30, 30.55, 28.45. HRMS calcd for C₁₇H₂₃NO₄ [M]⁺: 305.1627. Found: 305.1627. The *ee* of **4d** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; *t*_{minor} = 13.7 min, *t*_{major} = 14.7 min.

(S)-tert-butyl (2,3,6,7-tetrahydronaphtho[2,3-b][1,4]dioxin-6-yl)carbamate (4e)

Prepared following typical procedure **B**₂ using methanol as reductant. Colorless oil, 50.3 mg, 83% yield, 96% *ee*. $[\alpha]_D^{22} = -22.3$ (c = 1.04, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 6.60 (s, 1H), 6.39 (d, *J* = 9.6 Hz, 1H), 5.87 - 5.83 (m, 1H), 4.85 (m, 2H), 4.23 (s, 4H), 2.55 - 2.37 (m, 2H), 1.44 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.08, 142.91, 142.70, 128.78, 127.06, 124.11, 116.06, 115.78, 79.33, 64.45, 64.40, 47.26, 30.58, 28.44. HRMS calcd for C₁₇H₂₁NO₄ [M]⁺: 303.1471. Found: 303.1472. The *ee* of **4e** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5 mL/min, 254 nm; *t*_{major} = 21.6 min, *t*_{minor} = 24.3 min.

Prepared following typical procedure **B**₂ using methanol as reductant. Colorless oil, 46.3 mg, 80% yield, 94% *ee*. $[\alpha]_{D}^{22} = -49.5$ (c = 0.56, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 6.57 (s, 1H), 6.39 (d, *J* = 9.6 Hz, 1H), 5.92 (s, 2H), 5.85 (t, *J* = 4.8 Hz, 1H), 4.93 (d, *J* = 6.4 Hz, 1H), 4.75 (d, *J* = 6.8 Hz, 1H), 2.54 - 2.41 (m, 2H), 1.43 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.06, 147.07, 146.63, 129.16, 127.47, 127.40, 123.71, 108.17, 106.98, 100.96, 79.40, 47.40, 47.60, 30.45, 28.42. HRMS calcd for C₁₆H₁₉NO₄ [M]⁺: 289.1314. Found: 289.1316. The *ee* of **4f** was determined by HPLC analysis using Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5 mL/min, 254 nm; *t*_{major} = 15.0 min, *t*_{minor} = 20.2 min.

tert-butyl ((1*R*,2*S*)-2-deuterium-1,2-dihydronaphthalen-1-yl)carbamate (4-D³)

Prepared following typical procedure **B**₂ using CD₃OH as reductant. The relative stereochemistry of 4-D³ was determined by 2D NMR spectrums (page S42-43). Colorless oil, 45.3 mg, 92% yield, 95% *ee*. $[\alpha]_D^{22} = -70.4$ (c = 0.72, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 6.8 Hz, 1H), 7.26 - 7.19 (m, 2H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.52 (d, *J* = 9.6 Hz, 1H), 5.97 (d, *J* = 9.2 Hz, 1H), 4.89 (t, 2H), 2.55 (s, 1H), 1.44 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.14, 134.00, 133.16, 128.03, 127.81, 127.69, 127.14, 126.47, 125.86, 79.43, 79.40, 47.43, 30.38, 30.18, 29.97, 28.44. HRMS calcd for C₁₆H₁₈DNO₄ [M]⁺: 246.1479. Found [M]⁺+Na: 269.1370. The *ee* of **4-D**³ was determined by HPLC analysis using Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 1 mL/min, 254 nm; *t*_{minor} = 6.3 min, *t*_{major} = 7.3 min.

F: NMR Spectra of Products

2D NMR spectrums of 4-D³

G: HPLC Spectra of Products

Note: All of the racemic products were prepared by using (\pm) -binap as ligand.

Racemic:

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
I						
1	18.934	ΒV	0.3101	3291.27246	159.94156	49.5230
2	20.083	VВ	0.3209	3354.67334	159.14153	50.4770

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.968	BV	0.3046	4025.25488	200.13960	98.3738
2	20.170	MM	0.3583	66.53922	3.09507	1.6262

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	5.293	ΒV	0.1363	2397.55029	270.77722	49.2032
2	5.693	VB	0.1636	2475.19897	231.81474	50.7968

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area
1	5.288	вv	0.1386	6217.96094	693.28442	98.7454
2	5.763	VВ	0.1742	79.00145	6.76842	1.2546

3ac

Racemic:

Peak	RetTime '	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.100	вв	0.3010	7347.11133	372.65503	49.8612
2	17.661	BBA	0.5164	7388.00342	220.75735	50.1388

Enantioenriched:

Peak #	RetTime 7 [min]	Гуре	Width [min]	Area [mAU*s]	Height [mAU]	Area
1	6.886	ΒV	0.1803	2719.03369	232.70789	50.0522
2	9.033	BB	0.3254	2713.36401	129.50873	49.9478

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.335	BB	0.1555	3755.31445	372.92151	49.9308
2	8.993	BB	0.3130	3765.72363	186.96271	50.0692

Peak	RetTime '	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.348	вв	0.1690	4959.19678	451.91028	100.0000

Peak	RetTime '	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.996	BB	0.3569	2819.96606	120.98866	50.0766
2	13.939	BBA	0.4310	2811.34009	100.91968	49.9234

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	12.336	вв	0.3676	104.26031	4.36565	1.7056
2	14.311	вв	0.4320	6008.53955	215.02243	98.2944

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
•						
1	22.609	вв	0.8302	2.01705e4	378.18042	97.9452
2	26.805	BВ	1.0164	423.16547	6.10692	2.0548

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		I	I			
1	10.723	ΒV	0.3959	822.36383	32.10005	49.3133
2	12.066	VВ	0.4852	845.26660	26.56570	50.6867

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	10.848	ΒV	0.3598	43.48345	1.90174	1.0809
2	11.742	VВ	0.4703	3979.35303	128.84181	98.9191

Peak RetTime Type Height Width Area Area # [min] [min] [mAU*s] [mAU] 욯 1 16.542 BV 0.4386 4688.32715 163.95755 49.3300 2 17.799 VB 0.5010 4815.67139 147.47113 50.6700

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.681	ΒV	0.4297	224.38802	8.06283	0.9002
2	17.688	VВ	0.4932	2.47012e4	763.96924	99.0998

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	23.598	BV	0.6560	5066.55811	117.75548	48.5301
2	25.119	VВ	0.7247	5373.46680	112.00275	51.4699

Peak	RetTime Ty	vpe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	-				
1	24.009 M	м 0.5846	17.91962	5.10874e-1	0.6822
2	25.154 в	BA 0.6799	2608.79150	58.20523	99.3178

Peak	RetTime T	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	-					
1	L 16.727	BВ	0.8829	1.13702e4	196.54770	49.5226
2	20.376	BBA	1.1189	1.15894e4	162.53705	50.4774

Peak	RetTime 7	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.837	вв	0.9760	1.13769e4	176.50842	100.0000

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	30.178	ΒV	0.7320	1.73659e4	365.69983	49.3331
2	31.936	VBA	0.8286	1.78354e4	329.96570	50.6669

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	30.127	BB	0.6064	114.14535	2.85553	0.6092
2	31.912	BB	0.7968	1.86223e4	356.89352	99.3908

Peak	RetTime	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.979	вв	0.4372	2.02983e4	712.93085	49.9932
2	16.317	вв	0.5281	2.03039e4	589.06305	50.0068

Enantioenriched:

 Peak
 RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- ---- ---- ---- ---- ----

 1
 16.363
 BB
 0.5240
 4847.18994
 142.08702
 100.0000

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	26.763	VB	0.5642	4436.21875	119.74636	7.7935
2	30.934	вв	0.6597	5.24860e4	1213.20178	92.2065

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.160	BВ	0.1956	8852.20605	695.02826	49.6356
2	7.938	ΒV	0.2555	8982.17480	544.38635	50.3644

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
					I	
1	7.110	ΒV	0.1965	5862.82666	457.53226	97.5592
2	7.887	vv	0.2618	146.68231	8.56527	2.4408

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	-	-			
1	l 10.490 BV	0.5208	2980.07275	86.73942	50.8818
2	2 12.161 VB	0.6127	2876.78247	72.53736	49.1182

Peak	RetTime Typ	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	- -				
:	1 10.488 в	в 0.5105	3503.63208	105.77065	99.6665
2	2 12.237 M	м 0.3801	11.72240	5.13997e-1	0.3335

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
						I
1	13.505	VB	0.4696	9434.62207	310.39920	49.6452
2	23.476	BВ	1.1221	9569.46777	131.94962	50.3548

Peak	RetTime T	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	-					
1	7.468 B	в	0.2393	2133.60889	136.53616	49.8366
2	9.572 в	в	0.3378	2147.60254	96.82796	50.1634

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.425	вв	0.2370	2321.18042	150.41811	99.1258
2	9.630	MM	0.2719	20.47004	1.25488	0.8742

Peak	RetTime 1	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.305	BB	0.1467	2661.73340	280.64432	49.9734
2	7.279	BB	0.1844	2664.57227	221.38438	50.0266

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	6.427	 BB	0.1523	199.81676	19.87626	2.2822
2	7.419	вv	0.1890	8555.73730	683.70776	97.7178

Peak	RefTime Ty	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
1	17.772 в	v 0.6320	3.71309e4	896.95837	49.1831
2	19.498 VY	v 0.6413	3.83643e4	926.13885	50.8169

Peak	RetTime Type	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
		·			
1	17.435 BV	0.5844	859.58087	21.78228	4.8874
2	19.303 VB	0.6369	1.67281e4	396.75577	95.1126

[mAU]	
323.10321	50.2005
247.63959	49.7995
-	[mAU] 323.10321 247.63959

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
				I	
1	11.250 MM	0.3490	346.26215	16.53514	2.2425
2	12.580 MM	0.4327	1.50949e4	581.45178	97.7575

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	-					I
1	13.669 B	ΒV	0.4141	252.32999	9.37283	2.5622
2	14.688 1	VВ	0.5348	9595.91309	271.87543	97.4378

RetTime 7	Гуре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	8
				I	
21.761	BV	0.6631	2.24345e4	528.68958	50.1713
24.130	MM	0.9356	2.22812e4	396.91205	49.8287
	RetTime [[min] 21.761 24.130	RetTime Type [min] 21.761 BV 24.130 MM	RetTime Type Width [min] [min] ! ! 21.761 BV 0.6631 24.130 MM 0.9356	RetTime Type Width Area [min] [min] [mAU*s] 21.761 BV 0.6631 2.24345e4 24.130 MM 0.9356 2.22812e4	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] ! ! ! ! 21.761 BV 0.6631 2.24345e4 528.68958 24.130 MM 0.9356 2.22812e4 396.91205

Enantioenriched:

24.287 MM

2

132.63789

1.87988

2.1957

1.1759

Peak	RetTime 7	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.953	вв	0.4708	5689.81104	182.46301	97.9674
2	20.207	BВ	0.7113	118.04913	2.38574	2.0326

#	[min]		[min]	[mAU*s]	[mAU]	8
I						
1	6.379	ΒV	0.1500	2987.78003	303.02585	49.8479
2	7.429	VBA	0.1931	3006.00781	235.25735	50.1521

Note: Racemic **5** was derived from the racemic **4a**, which was prepared by following the typical procedure B_2 using (±)-Binap as ligand.

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
I					
1	8.662 VB	0.2215	4963.88086	331.85876	50.5641
2	9.885 BV	0.2649	4853.12646	276.26273	49.4359

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.747	мм	0.3110	2162.11938	115.88654	97.3458
2	9.910	MM	0.2519	58.95088	3.89969	2.6542

(R)-1,2,3,4-tetrahydronaphthalen-1-amine (purchased from J&K corporation):

(S)-1,2,3,4-tetrahydronaphthalen-1-amine (purchased from J&K corporation):

#	[min]		[min]	[mAU*s]	[mAU]	8
I						
1	8.628	вv	0.2328	8991.78418	577.07391	100.0000

H: X-Ray Crystallography of Compound 3ae

The absolute configuration of the ring opening products was determined by crystallization of **3ae**.

 Table 1.
 Crystal data and structure refinement for yf412.

Identification code	cu_yf412_0m	
Empirical formula	C21 H29 N O3	
Formula weight	343.45	
Temperature	100(2) K	
Wavelength	1.54178 A	
Crystal system, space group	Monoclinic, P 21	
Unit cell dimensions	a = 12.0136(3) A b = 8.8743(2) A c = 18.0879(4) A	alpha = 90 deg. beta = 92.8950(10) deg. gamma = 90 deg.
Volume	1925.93(8) A	^3
Z, Calculated density	4, 1.184 Mg/m^3	3
Absorption coefficient	0.621 mm^-1	
F(000)	744	
Crystal size	1.35 x 0.58 x 0.38	3 mm
Theta range for data collection	2.45 to 69.45 deg.	
Limiting indices	-14<=h<=14, -10<	:=k<=10, -21<=l<=21
Reflections collected / unique	18477 / 6242 [R(int)	= 0.0403]
Completeness to theta = 69.45	96.5 % S72	
Absorption correction	Semi-empirical from equivalents	
--------------------------------	----------------------------------	
Max. and min. transmission	0.7981 and 0.4876	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	6242 / 1 / 457	
Goodness-of-fit on F^2	1.118	
Final R indices [I>2sigma(I)]	R1 = 0.0422, wR2 = 0.1102	
R indices (all data)	R1 = 0.0423, wR2 = 0.1104	
Absolute structure parameter	0.13(14)	
Largest diff. peak and hole	0.260 and -0.440 e.A^-3	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for yf412.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
O(1)	2010(1)	4428(2)	4123(1)	28(1)
O(2)	4280(1)	2558(1)	2383(1)	26(1)
O(3)	1346(1)	2295(2)	3548(1)	31(1)
O(4)	1610(1)	9082(1)	1302(1)	27(1)
O(5)	3971(1)	9364(2)	3271(1)	26(1)
O(6)	3391(1)	7131(1)	2762(1)	23(1)

N(1)	2338(1)	4050(2)	2945(1)	23(1)
N(2)	3762(1)	9200(2)	2066(1)	21(1)
C(1)	1872(2)	2709(3)	5172(1)	43(1)
C(2)	1449(1)	4149(2)	4814(1)	27(1)
C(3)	1853(1)	3477(2)	3538(1)	23(1)
C(4)	2353(1)	3224(2)	2256(1)	23(1)
C(5)	3491(1)	3383(2)	1922(1)	24(1)
C(6)	5342(1)	3283(2)	2504(1)	26(1)
C(7)	6206(2)	2078(2)	2698(1)	40(1)
C(8)	7351(2)	2802(3)	2855(2)	51(1)
C(9)	7338(2)	3978(3)	3457(1)	43(1)
C(10)	203(2)	4152(4)	4659(1)	52(1)
C(11)	1398(1)	3662(2)	1704(1)	25(1)
C(12)	411(1)	4252(2)	1929(1)	30(1)
C(13)	-470(2)	4551(2)	1417(1)	39(1)
C(14)	-358(2)	4243(3)	675(1)	41(1)
C(15)	616(2)	3624(2)	445(1)	36(1)
C(16)	1510(2)	3340(2)	952(1)	29(1)
C(17)	2562(2)	2746(2)	708(1)	32(1)
C(18)	3482(2)	2772(2)	1145(1)	29(1)
C(19)	6457(2)	5163(3)	3277(1)	36(1)
C(20)	5315(2)	4436(2)	3122(1)	33(1)
C(21)	1816(2)	5487(3)	5288(1)	48(1)
C(22)	-1247(2)	9291(3)	2584(1)	43(1)
C(23)	-1344(2)	9715(2)	1769(1)	34(1)
C(24)	-198(1)	10035(2)	1470(1)	28(1)
C(25)	565(1)	8677(2)	1590(1)	25(1)
C(26)	2371(1)	7862(2)	1235(1)	23(1)
C(27)	3543(1)	8541(2)	1342(1)	22(1)
C(28)	3676(1)	8440(2)	2707(1)	20(1)
C(29)	3723(1)	9009(2)	4040(1)	26(1)
C(30)	2473(1)	8863(2)	4100(1)	27(1)
C(31)	4342(2)	7609(3)	4312(1)	35(1)
C(32)	4170(2)	10394(3)	4442(1)	35(1)
C(33)	4442(1)	7424(2)	1125(1)	22(1)

C(34)	5508(1)	7440(2)	1459(1)	26(1)
C(35)	6327(2)	6464(2)	1224(1)	32(1)
C(36)	6088(2)	5475(2)	646(1)	33(1)
C(37)	5027(2)	5467(2)	300(1)	31(1)
C(38)	4205(2)	6439(2)	531(1)	26(1)
C(39)	3074(2)	6427(2)	179(1)	29(1)
C(40)	2229(1)	7087(2)	500(1)	28(1)
C(41)	680(2)	8286(3)	2410(1)	33(1)
C(42)	-462(2)	7949(3)	2714(1)	42(1)

Table 3. Bond lengths [A] and angles [deg] for yf412.

O(1)-C(3)	1.359(2)
O(1)-C(2)	1.470(2)
O(2)-C(5)	1.432(2)
O(2)-C(6)	1.435(2)
O(3)-C(3)	1.214(2)
O(4)-C(26)	1.426(2)
O(4)-C(25)	1.428(2)
O(5)-C(28)	1.343(2)
O(5)-C(29)	1.470(2)
O(6)-C(28)	1.216(2)
N(1)-C(3)	1.346(2)
N(1)-C(4)	1.447(2)
N(1)-H(1)	0.8800
N(2)-C(28)	1.350(2)
N(2)-C(27)	1.447(2)
N(2)-H(2)	0.8800
C(1)-C(2)	1.510(3)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(10)	1.509(3)

C(2)-C(21)	1.518(3)
C(4)-C(5)	1.528(2)
C(4)-C(11)	1.533(2)
C(4)-H(4)	1.0000
C(5)-C(18)	1.507(2)
C(5)-H(5)	1.0000
C(6)-C(20)	1.517(3)
C(6)-C(7)	1.520(2)
C(6)-H(6A)	1.0000
C(7)-C(8)	1.531(3)
C(7)-H(7A)	0.9900
С(7)-Н(7В)	0.9900
C(8)-C(9)	1.510(4)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(19)	1.515(3)
C(9)-H(9A)	0.9900
С(9)-Н(9В)	0.9900
C(10)-H(10A)	0.9800
С(10)-Н(10В)	0.9800
С(10)-Н(10С)	0.9800
C(11)-C(12)	1.377(3)
C(11)-C(16)	1.402(3)
C(12)-C(13)	1.397(3)
С(12)-Н(12)	0.9500
C(13)-C(14)	1.383(3)
C(13)-H(13)	0.9500
C(14)-C(15)	1.376(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.399(3)
C(15)-H(15)	0.9500
C(16)-C(17)	1.459(3)
C(17)-C(18)	1.325(3)
C(17)-H(17)	0.9500
C(18)-H(18)	0.9500

C(19)-C(20)	1.529(3)
C(19)-H(19A)	0.9900
C(19)-H(19B)	0.9900
C(20)-H(20A)	0.9900
C(20)-H(20B)	0.9900
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-C(23)	1.521(3)
C(22)-C(42)	1.530(3)
C(22)-H(22A)	0.9900
С(22)-Н(22В)	0.9900
C(23)-C(24)	1.531(2)
C(23)-H(23A)	0.9900
C(23)-H(23B)	0.9900
C(24)-C(25)	1.523(2)
C(24)-H(24A)	0.9900
C(24)-H(24B)	0.9900
C(25)-C(41)	1.523(3)
C(25)-H(25)	1.0000
C(26)-C(40)	1.499(3)
C(26)-C(27)	1.534(2)
C(26)-H(26)	1.0000
C(27)-C(33)	1.532(2)
C(27)-H(27)	1.0000
C(29)-C(32)	1.513(3)
C(29)-C(31)	1.516(3)
C(29)-C(30)	1.517(2)
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800
C(31)-H(31C)	0.9800
C(32)-H(32A)	0.9800

C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-C(34)	1.389(2)
C(33)-C(38)	1.403(3)
C(34)-C(35)	1.394(3)
C(34)-H(34)	0.9500
C(35)-C(36)	1.383(3)
C(35)-H(35)	0.9500
C(36)-C(37)	1.392(3)
C(36)-H(36)	0.9500
C(37)-C(38)	1.391(3)
C(37)-H(37)	0.9500
C(38)-C(39)	1.471(3)
C(39)-C(40)	1.330(3)
C(39)-H(39)	0.9500
C(40)-H(40)	0.9500
C(41)-C(42)	1.533(3)
C(41)-H(41A)	0.9900
C(41)-H(41B)	0.9900
C(42)-H(42A)	0.9900
C(42)-H(42B)	0.9900
C(3)-O(1)-C(2)	120.35(13)
C(5)-O(2)-C(6)	114.57(13)
C(26)-O(4)-C(25)	114.77(13)
C(28)-O(5)-C(29)	121.90(13)
C(3)-N(1)-C(4)	121.33(14)
C(3)-N(1)-H(1)	119.3
C(4)-N(1)-H(1)	119.3
C(28)-N(2)-C(27)	123.88(14)
C(28)-N(2)-H(2)	118.1
C(27)-N(2)-H(2)	118.1
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5

C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(1)-C(2)-C(10)	109.66(15)
O(1)-C(2)-C(1)	110.42(15)
C(10)-C(2)-C(1)	112.94(19)
O(1)-C(2)-C(21)	102.50(15)
C(10)-C(2)-C(21)	111.13(19)
C(1)-C(2)-C(21)	109.70(17)
O(3)-C(3)-N(1)	125.15(17)
O(3)-C(3)-O(1)	125.14(16)
N(1)-C(3)-O(1)	109.70(14)
N(1)-C(4)-C(5)	110.12(13)
N(1)-C(4)-C(11)	113.05(14)
C(5)-C(4)-C(11)	111.99(14)
N(1)-C(4)-H(4)	107.1
C(5)-C(4)-H(4)	107.1
C(11)-C(4)-H(4)	107.1
O(2)-C(5)-C(18)	109.43(14)
O(2)-C(5)-C(4)	107.59(13)
C(18)-C(5)-C(4)	111.76(14)
O(2)-C(5)-H(5)	109.3
C(18)-C(5)-H(5)	109.3
C(4)-C(5)-H(5)	109.3
O(2)-C(6)-C(20)	111.27(13)
O(2)-C(6)-C(7)	108.15(15)
C(20)-C(6)-C(7)	110.06(16)
O(2)-C(6)-H(6A)	109.1
C(20)-C(6)-H(6A)	109.1
C(7)-C(6)-H(6A)	109.1
C(6)-C(7)-C(8)	110.16(18)
C(6)-C(7)-H(7A)	109.6
C(8)-C(7)-H(7A)	109.6
C(6)-C(7)-H(7B)	109.6
C(8)-C(7)-H(7B)	109.6

H(7A)-C(7)-H(7B)	108.1
C(9)-C(8)-C(7)	112.42(18)
C(9)-C(8)-H(8A)	109.1
C(7)-C(8)-H(8A)	109.1
C(9)-C(8)-H(8B)	109.1
C(7)-C(8)-H(8B)	109.1
H(8A)-C(8)-H(8B)	107.9
C(8)-C(9)-C(19)	110.91(18)
C(8)-C(9)-H(9A)	109.5
C(19)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
C(19)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	108.0
C(2)-C(10)-H(10A)	109.5
C(2)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(2)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(16)	119.37(16)
C(12)-C(11)-C(4)	122.06(16)
C(16)-C(11)-C(4)	118.39(16)
C(11)-C(12)-C(13)	120.68(19)
C(11)-C(12)-H(12)	119.7
C(13)-C(12)-H(12)	119.7
C(14)-C(13)-C(12)	119.96(19)
C(14)-C(13)-H(13)	120.0
C(12)-C(13)-H(13)	120.0
C(15)-C(14)-C(13)	119.86(18)
C(15)-C(14)-H(14)	120.1
C(13)-C(14)-H(14)	120.1
C(14)-C(15)-C(16)	120.65(19)
C(14)-C(15)-H(15)	119.7
C(16)-C(15)-H(15)	119.7
C(15)-C(16)-C(11)	119.44(18)

C(15)-C(16)-C(17)	120.99(18)
C(11)-C(16)-C(17)	119.56(16)
C(18)-C(17)-C(16)	121.53(17)
C(18)-C(17)-H(17)	119.2
C(16)-C(17)-H(17)	119.2
C(17)-C(18)-C(5)	121.93(16)
C(17)-C(18)-H(18)	119.0
C(5)-C(18)-H(18)	119.0
C(9)-C(19)-C(20)	110.93(18)
C(9)-C(19)-H(19A)	109.5
C(20)-C(19)-H(19A)	109.5
C(9)-C(19)-H(19B)	109.5
C(20)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	108.0
C(6)-C(20)-C(19)	111.59(15)
C(6)-C(20)-H(20A)	109.3
C(19)-C(20)-H(20A)	109.3
C(6)-C(20)-H(20B)	109.3
C(19)-C(20)-H(20B)	109.3
H(20A)-C(20)-H(20B)	108.0
C(2)-C(21)-H(21A)	109.5
C(2)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(2)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(23)-C(22)-C(42)	110.95(17)
C(23)-C(22)-H(22A)	109.4
C(42)-C(22)-H(22A)	109.4
C(23)-C(22)-H(22B)	109.4
C(42)-C(22)-H(22B)	109.4
H(22A)-C(22)-H(22B)	108.0
C(22)-C(23)-C(24)	111.20(16)
C(22)-C(23)-H(23A)	109.4
C(24)-C(23)-H(23A)	109.4

C(22)-C(23)-H(23B)	109.4
C(24)-C(23)-H(23B)	109.4
H(23A)-C(23)-H(23B)	108.0
C(25)-C(24)-C(23)	110.43(16)
C(25)-C(24)-H(24A)	109.6
C(23)-C(24)-H(24A)	109.6
C(25)-C(24)-H(24B)	109.6
C(23)-C(24)-H(24B)	109.6
H(24A)-C(24)-H(24B)	108.1
O(4)-C(25)-C(24)	106.44(14)
O(4)-C(25)-C(41)	111.93(14)
C(24)-C(25)-C(41)	110.03(15)
O(4)-C(25)-H(25)	109.5
C(24)-C(25)-H(25)	109.5
C(41)-C(25)-H(25)	109.5
O(4)-C(26)-C(40)	112.26(14)
O(4)-C(26)-C(27)	106.23(13)
C(40)-C(26)-C(27)	110.75(14)
O(4)-C(26)-H(26)	109.2
C(40)-C(26)-H(26)	109.2
C(27)-C(26)-H(26)	109.2
N(2)-C(27)-C(33)	113.30(13)
N(2)-C(27)-C(26)	113.36(13)
C(33)-C(27)-C(26)	111.57(14)
N(2)-C(27)-H(27)	106.0
C(33)-C(27)-H(27)	106.0
C(26)-C(27)-H(27)	106.0
O(6)-C(28)-O(5)	125.93(16)
O(6)-C(28)-N(2)	125.49(16)
O(5)-C(28)-N(2)	108.57(14)
O(5)-C(29)-C(32)	101.34(14)
O(5)-C(29)-C(31)	111.32(14)
C(32)-C(29)-C(31)	110.69(15)
O(5)-C(29)-C(30)	109.58(13)
C(32)-C(29)-C(30)	111.25(15)

C(31)-C(29)-C(30)	112.16(16)
C(29)-C(30)-H(30A)	109.5
C(29)-C(30)-H(30B)	109.5
H(30A)-C(30)-H(30B)	109.5
C(29)-C(30)-H(30C)	109.5
H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5
C(29)-C(31)-H(31A)	109.5
C(29)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31B)	109.5
C(29)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
C(29)-C(32)-H(32A)	109.5
C(29)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(29)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(34)-C(33)-C(38)	119.13(16)
C(34)-C(33)-C(27)	121.91(15)
C(38)-C(33)-C(27)	118.76(15)
C(33)-C(34)-C(35)	120.68(17)
C(33)-C(34)-H(34)	119.7
C(35)-C(34)-H(34)	119.7
C(36)-C(35)-C(34)	120.20(17)
C(36)-C(35)-H(35)	119.9
C(34)-C(35)-H(35)	119.9
C(35)-C(36)-C(37)	119.53(17)
C(35)-C(36)-H(36)	120.2
C(37)-C(36)-H(36)	120.2
C(38)-C(37)-C(36)	120.64(18)
C(38)-C(37)-H(37)	119.7
C(36)-C(37)-H(37)	119.7
C(37)-C(38)-C(33)	119.79(17)

C(37)-C(38)-C(39)	121.30(17)
C(33)-C(38)-C(39)	118.88(16)
C(40)-C(39)-C(38)	121.12(17)
C(40)-C(39)-H(39)	119.4
C(38)-C(39)-H(39)	119.4
C(39)-C(40)-C(26)	122.25(16)
C(39)-C(40)-H(40)	118.9
C(26)-C(40)-H(40)	118.9
C(25)-C(41)-C(42)	110.78(15)
C(25)-C(41)-H(41A)	109.5
C(42)-C(41)-H(41A)	109.5
C(25)-C(41)-H(41B)	109.5
C(42)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41B)	108.1
C(22)-C(42)-C(41)	110.43(19)
C(22)-C(42)-H(42A)	109.6
C(41)-C(42)-H(42A)	109.6
C(22)-C(42)-H(42B)	109.6
C(41)-C(42)-H(42B)	109.6
H(42A)-C(42)-H(42B)	108.1

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for yf412.
The anisotropic displacement factor exponent takes the form:
-2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U23	L	J13	U12
O(1)	32(1)	30(1)	23(1)	-2(1)	6(1)	-8(1)	
O(2)	22(1)	21(1)	35(1)	5(1)	-1(1)	1(1)	

O(3)	34(1)	25(1)	33(1)	-1(1)	4(1)	-8(1)
O(4)	19(1)	22(1)	39(1)	4(1)	0(1)	1(1)
O(5)	30(1)	25(1)	24(1)	-2(1)	0(1)	-6(1)
O(6)	23(1)	19(1)	26(1)	2(1)	-2(1)	0(1)
N(1)	24(1)	19(1)	25(1)	0(1)	1(1)	-3(1)
N(2)	21(1)	16(1)	26(1)	0(1)	0(1)	-1(1)
C(1)	61(1)	40(1)	27(1)	5(1)	9(1)	15(1)
C(2)	28(1)	29(1)	25(1)	2(1)	7(1)	0(1)
C(3)	17(1)	22(1)	28(1)	1(1)	-1(1)	2(1)
C(4)	23(1)	18(1)	27(1)	0(1)	-1(1)	0(1)
C(5)	24(1)	18(1)	30(1)	2(1)	0(1)	0(1)
C(6)	22(1)	25(1)	30(1)	2(1)	3(1)	1(1)
C(7)	30(1)	32(1)	59(1)	-5(1)	0(1)	8(1)
C(8)	24(1)	48(1)	79(2)	-14(1)	-2(1)	11(1)
C(9)	30(1)	48(1)	50(1)	1(1)	-12(1)	5(1)
C(10)	28(1)	79(2)	50(1)	-4(1)	10(1)	11(1)
C(11)	26(1)	18(1)	31(1)	2(1)	-5(1)	-5(1)
C(12)	25(1)	27(1)	37(1)	0(1)	-3(1)	-2(1)
C(13)	27(1)	32(1)	56(1)	-1(1)	-8(1)	2(1)
C(14)	39(1)	31(1)	51(1)	3(1)	-24(1)	-6(1)
C(15)	45(1)	31(1)	32(1)	2(1)	-14(1)	-7(1)
C(16)	36(1)	20(1)	31(1)	0(1)	-5(1)	-6(1)
C(17)	45(1)	25(1)	26(1)	-2(1)	5(1)	-4(1)
C(18)	33(1)	22(1)	32(1)	0(1)	7(1)	0(1)
C(19)	30(1)	37(1)	40(1)	-7(1)	-8(1)	4(1)
C(20)	26(1)	34(1)	39(1)	-3(1)	-3(1)	9(1)
C(21)	70(2)	41(1)	33(1)	-6(1)	14(1)	-14(1)
C(22)	37(1)	51(1)	44(1)	-1(1)	11(1)	16(1)
C(23)	24(1)	37(1)	43(1)	-3(1)	1(1)	8(1)
C(24)	24(1)	26(1)	35(1)	-2(1)	-6(1)	2(1)
C(25)	19(1)	25(1)	30(1)	-3(1)	-3(1)	0(1)
C(26)	20(1)	21(1)	28(1)	2(1)	-1(1)	1(1)
C(27)	22(1)	20(1)	23(1)	3(1)	0(1)	0(1)
C(28)	15(1)	20(1)	25(1)	-2(1)	0(1)	1(1)
C(29)	26(1)	28(1)	22(1)	0(1)	-2(1)	0(1)

C(30)	26(1)	27(1)	27(1)	-2(1)	-1(1)	1(1)
C(31)	35(1)	41(1)	30(1)	-1(1)	-6(1)	13(1)
C(32)	33(1)	40(1)	32(1)	-8(1)	0(1)	-5(1)
C(33)	24(1)	20(1)	24(1)	5(1)	5(1)	-1(1)
C(34)	22(1)	27(1)	29(1)	1(1)	4(1)	-3(1)
C(35)	23(1)	34(1)	40(1)	8(1)	5(1)	1(1)
C(36)	31(1)	28(1)	41(1)	3(1)	16(1)	6(1)
C(37)	38(1)	25(1)	31(1)	-2(1)	12(1)	-3(1)
C(38)	30(1)	23(1)	24(1)	4(1)	6(1)	-3(1)
C(39)	37(1)	28(1)	23(1)	-2(1)	-2(1)	-5(1)
C(40)	28(1)	26(1)	29(1)	4(1)	-7(1)	-4(1)
C(41)	29(1)	40(1)	30(1)	2(1)	-2(1)	9(1)
C(42)	40(1)	50(1)	38(1)	8(1)	12(1)	15(1)

Table 5. Hydrogen coordinates (\times 10⁴) and isotropic displacement parameters (A² \times 10³) for yf412.

	x	У	Z	U(eq)
H(1)	2652	4945	2977	27
H(2)	3962	10153	2091	25
H(1A)	1630	1847	4866	64
H(1B)	1571	2611	5664	64
H(1C)	2687	2733	5221	64
H(4)	2254	2135	2377	27
H(5)	3709	4470	1919	29
H(6A)	5542	3799	2037	31
H(7A)	6245	1357	2283	48
H(7B)	5987	1515	3141	48
H(8A)	7896	2008	3003	61
H(8B)	7598	3275	2395	61

H(9A)	8078	4466	3513	52
H(9B)	7184	3488	3933	52
H(10A)	-16	5064	4384	78
H(10B)	-171	4131	5129	78
H(10C)	-14	3261	4366	78
H(12)	328	4458	2439	36
H(13)	-1146	4965	1577	47
H(14)	-952	4458	324	50
H(15)	683	3387	-63	44
H(17)	2589	2330	226	38
H(18)	4155	2395	962	35
H(19A)	6665	5745	2838	43
H(19B)	6419	5870	3698	43
H(20A)	5076	3940	3577	40
H(20B)	4763	5228	2983	40
H(21A)	2630	5486	5359	71
H(21B)	1483	5416	5771	71
H(21C)	1572	6422	5042	71
H(22A)	-1994	9032	2754	52
H(22B)	-962	10164	2877	52
H(23A)	-1820	10621	1703	41
H(23B)	-1705	8882	1482	41
H(24A)	-282	10268	935	34
H(24B)	138	10922	1727	34
H(25)	245	7796	1307	30
H(26)	2256	7115	1638	28
H(27)	3570	9392	981	26
H(30A)	2100	9728	3859	40
H(30B)	2298	8836	4624	40
H(30C)	2214	7931	3858	40
H(31A)	4013	6719	4066	53
H(31B)	4283	7515	4849	53
H(31C)	5128	7689	4197	53
H(32A)	4973	10477	4381	52
H(32B)	4031	10310	4970	52

H(32C)	3794	11292	4237	52
H(34)	5681	8123	1853	31
H(35)	7051	6478	1461	39
H(36)	6645	4805	488	40
H(37)	4862	4793	-98	38
H(39)	2945	5939	-285	35
H(40)	1511	7067	254	33
H(41A)	1030	9140	2686	40
H(41B)	1170	7395	2481	40
H(42A)	-787	7045	2465	51
H(42B)	-373	7735	3251	51

Table 6. Torsion angles [deg] for yf412.

C(3)-O(1)-C(2)-C(10)	-59.6(2)
C(3)-O(1)-C(2)-C(1)	65.4(2)
C(3)-O(1)-C(2)-C(21)	-177.76(17)
C(4)-N(1)-C(3)-O(3)	-4.0(2)
C(4)-N(1)-C(3)-O(1)	176.38(13)
C(2)-O(1)-C(3)-O(3)	-6.9(2)
C(2)-O(1)-C(3)-N(1)	172.74(14)
C(3)-N(1)-C(4)-C(5)	-138.70(15)
C(3)-N(1)-C(4)-C(11)	95.20(18)
C(6)-O(2)-C(5)-C(18)	98.66(16)
C(6)-O(2)-C(5)-C(4)	-139.72(14)
N(1)-C(4)-C(5)-O(2)	69.77(17)
C(11)-C(4)-C(5)-O(2)	-163.53(14)
N(1)-C(4)-C(5)-C(18)	-170.07(14)
C(11)-C(4)-C(5)-C(18)	-43.37(19)
C(5)-O(2)-C(6)-C(20)	82.87(18)
C(5)-O(2)-C(6)-C(7)	-156.13(15)
O(2)-C(6)-C(7)-C(8)	-178.36(17)
C(20)-C(6)-C(7)-C(8)	-56.6(2)

C(6)-C(7)-C(8)-C(9)	56.2(3)
C(7)-C(8)-C(9)-C(19)	-55.0(3)
N(1)-C(4)-C(11)-C(12)	-25.4(2)
C(5)-C(4)-C(11)-C(12)	-150.54(17)
N(1)-C(4)-C(11)-C(16)	159.52(15)
C(5)-C(4)-C(11)-C(16)	34.4(2)
C(16)-C(11)-C(12)-C(13)	-0.9(3)
C(4)-C(11)-C(12)-C(13)	-175.93(17)
C(11)-C(12)-C(13)-C(14)	0.5(3)
C(12)-C(13)-C(14)-C(15)	0.9(3)
C(13)-C(14)-C(15)-C(16)	-1.8(3)
C(14)-C(15)-C(16)-C(11)	1.4(3)
C(14)-C(15)-C(16)-C(17)	-177.31(19)
C(12)-C(11)-C(16)-C(15)	0.0(3)
C(4)-C(11)-C(16)-C(15)	175.19(16)
C(12)-C(11)-C(16)-C(17)	178.70(17)
C(4)-C(11)-C(16)-C(17)	-6.1(2)
C(15)-C(16)-C(17)-C(18)	165.36(18)
C(11)-C(16)-C(17)-C(18)	-13.3(3)
C(16)-C(17)-C(18)-C(5)	1.4(3)
O(2)-C(5)-C(18)-C(17)	146.74(17)
C(4)-C(5)-C(18)-C(17)	27.7(2)
C(8)-C(9)-C(19)-C(20)	54.2(3)
O(2)-C(6)-C(20)-C(19)	177.42(16)
C(7)-C(6)-C(20)-C(19)	57.5(2)
C(9)-C(19)-C(20)-C(6)	-56.3(2)
C(42)-C(22)-C(23)-C(24)	-55.8(3)
C(22)-C(23)-C(24)-C(25)	57.0(2)
C(26)-O(4)-C(25)-C(24)	-168.71(14)
C(26)-O(4)-C(25)-C(41)	71.04(19)
C(23)-C(24)-C(25)-O(4)	-179.50(15)
C(23)-C(24)-C(25)-C(41)	-58.0(2)
C(25)-O(4)-C(26)-C(40)	89.06(17)
C(25)-O(4)-C(26)-C(27)	-149.76(14)
C(28)-N(2)-C(27)-C(33)	-71.75(18)

C(28)-N(2)-C(27)-C(26)	56.71(19)
O(4)-C(26)-C(27)-N(2)	62.53(17)
C(40)-C(26)-C(27)-N(2)	-175.31(14)
O(4)-C(26)-C(27)-C(33)	-168.12(13)
C(40)-C(26)-C(27)-C(33)	-45.97(19)
C(29)-O(5)-C(28)-O(6)	-15.4(2)
C(29)-O(5)-C(28)-N(2)	165.41(13)
C(27)-N(2)-C(28)-O(6)	-1.3(2)
C(27)-N(2)-C(28)-O(5)	177.93(13)
C(28)-O(5)-C(29)-C(32)	-177.69(14)
C(28)-O(5)-C(29)-C(31)	64.59(19)
C(28)-O(5)-C(29)-C(30)	-60.1(2)
N(2)-C(27)-C(33)-C(34)	-20.8(2)
C(26)-C(27)-C(33)-C(34)	-150.16(15)
N(2)-C(27)-C(33)-C(38)	164.43(14)
C(26)-C(27)-C(33)-C(38)	35.1(2)
C(38)-C(33)-C(34)-C(35)	-1.8(3)
C(27)-C(33)-C(34)-C(35)	-176.53(16)
C(33)-C(34)-C(35)-C(36)	0.7(3)
C(34)-C(35)-C(36)-C(37)	0.3(3)
C(35)-C(36)-C(37)-C(38)	-0.3(3)
C(36)-C(37)-C(38)-C(33)	-0.8(3)
C(36)-C(37)-C(38)-C(39)	-178.94(17)
C(34)-C(33)-C(38)-C(37)	1.8(2)
C(27)-C(33)-C(38)-C(37)	176.71(15)
C(34)-C(33)-C(38)-C(39)	-179.99(16)
C(27)-C(33)-C(38)-C(39)	-5.1(2)
C(37)-C(38)-C(39)-C(40)	164.41(18)
C(33)-C(38)-C(39)-C(40)	-13.8(3)
C(38)-C(39)-C(40)-C(26)	-0.7(3)
O(4)-C(26)-C(40)-C(39)	149.73(17)
C(27)-C(26)-C(40)-C(39)	31.2(2)
O(4)-C(25)-C(41)-C(42)	176.60(16)
C(24)-C(25)-C(41)-C(42)	58.5(2)
C(23)-C(22)-C(42)-C(41)	55.6(3)

C(25)-C(41)-C(42)-C(22)

-57.2(2)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for yf412 [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(6)	0.88	2.18	3.0382(18)	165.9
N(2)-H(2)O(2)#1	0.88	2.23	3.0915(19)	167.4

Symmetry transformations used to generate equivalent atoms:

#1 x,y+1,z