Supporting Information ## Controlled growth of nanostructured biotemplates with cobalt and nitrogen codoping as a binderless, lithium-ion battery anode Tyler M. Huggins[†], Justin M. Whiteley[‡], Corey T. Love^Ω, Kwangwon Lee^Δ, Se-Hee Lee[‡], Zhiyong Jason Ren^{*†}, and Justin C. Biffinger^{*Ω} Corresponding Authors email addresses: <u>Justin.biffinger@nrl.navy.mil</u>; <u>Jason.ren@colorado.edu</u> [†]Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA [‡]Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA ^oChemistry Department, US Naval Research Laboratory, Washington DC., 20375, USA [△]Department of Biology, Rutgers University, Camden, NJ 08102, USA. Figure S1 SEM images of fungal mats and mycelia structure from (A) NO-40, (B) FCCE-S. **Figure S2** Cobalt concentration (bar) and biomass production (line) of 48 h *N. crassa* cultures grown in different molar concentrations of Co and Mg. **Figure S3** Weight loss and differential data from the pyrolysis of fungal mats of *N. crassa* grown at 20°C min⁻¹. **Figure S4** Incremental pore volume (dashed) and incremental pore area (solid) for FCCE and NO-40 electrode materials. **Figure S5** XPS spectra for Co2p transition from graphitic electrodes generated from fungal mats cultured with 10 mM $Co(NO_3)_2$ (FCCE) and autoclaved fungal mats soaked with $Co(NO_3)_2$ (FCCE-S). **Figure S6** XPS spectra for FCCE-S. N 1S labels are N1: pyridinic; N2: amine or imine; N3: pyrrolic; N4: quaternary; N5: pyridinic-N-oxide. **Figure S7** (a) Cycling behavior of three samples without lyophilization. Voltage ranges is 0.005 - 1V. 1^{st} cycle CE and long cycling average CE is displayed in table. (b) 1^{st} cycle voltage profile of three samples. (c) 10^{th} cycle voltage profile of three samples.