SUPPORTING INFORMATION for Manuscript

Efficient Low-Temperature H₂ Production from HCOOH/HCOO⁻ by [Pd⁰@SiO₂-Gallic-Acid] Nanohybrids: Catalysis and the Underlying Thermodynamics & Mechanism

Panagiota Stathi¹, Maria Louloudi¹, Yiannis Deligiannakis²*

²Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45100, Panepistimioupoli, Ioannina, Greece.

Figure S1. Thermographs of the Pd⁰-GA and Pd⁰@SiO₂-GA materials

¹Laboratory of Biomimetic Catalysis, Department of Chemistry, University of Ioannina, 45100, Panepistimioupoli, Ioannina, Greece.

Figure S2. EDS spectra of the prepared nanocatalysts (A) Pd^0 -GA (top) (B) Pd^0 @SiO₂-GA (bottom).

XRD analysis of the particles after catalytic use

Figure S3. XRD patterns of Pd⁰@SiO2-GA after use in catalytic reaction (red line). Significant amounts of NaHOC3 have been deposited on the particles as results of the catalytic cycle, see Scheme-2. These carbonates could be washed out by a simple rinsing with water (black line).

Calculation of the Pd-atoms exposed on the particle surface

$$particle\ surface = 4\pi \left(\frac{d_{XRD}}{2}\right)^2$$

$$particle\ volume\ = \frac{4}{3}\pi \left(\frac{d_{XRD}}{2}\right)^3$$

$$Pd\ mol\ per\ particle\ = \frac{particle\ volume}{Pd\ atomic\ volume} * N_{avog}$$

mass of NP = pd moles per particle * Pd atomic mass

Pd NPs per mass of material =
$$\frac{mass\ of\ the\ material}{mass\ of\ NP}$$

$$Pd\ mol\ exposed\ per\ NP = \frac{particle\ surface}{Pd\ atom\ surface} * N_{avog}$$

$$\begin{aligned} \text{Pd mol exposed per mass of material} \\ &= \frac{\text{particle surface}}{\text{Pd atom surface}} \, N_{avog} * \frac{\text{mass of the material}}{\text{mass of the particle}} \end{aligned}$$

Calculations of TONs and TOFs

$$TONs = \frac{\text{mol of Gasses}}{\text{mol ofPd exposed}} = \frac{\frac{\text{Vgasses}}{(\text{aH2+aCO2})}}{\text{mol of Pd exposed}}$$
 (s1)

$$TOF = \frac{TONs}{t}$$
 (s2)

Table S1. TONs and TOFs from catalytic results					
Pd ⁰ @SiO ₂ -GA			Pd⁰-GA		
Temp.(°C)	TONs	TOFs(h ⁻¹)	Temp.(°C)	TONs	TOFs(h ⁻¹)
60	874	777	60	227	130
75	874	984	80	635	300
80	874	1499	90	663	349
90	874	2873			