Supporting Information for

A joint computational and experimental evaluation of $\mathrm{CaMn}_{2} \mathrm{O}_{4}$ polymorphs as cathode materials for Ca ion batteries

M. Elena Arroyo-de Dompablo ${ }^{1, *}$, Christopher Krich ${ }^{2}$, Jessica Nava-Avendaño ${ }^{3}$, Neven Biškup ${ }^{4}$, M. Rosa Palacín ${ }^{3}$ and Fanny Bardé ${ }^{2}$
${ }^{1}$ Malta Consolider Team, Departamento de Química Inorgánica, Universidad Complutense de Madrid, 28040 Madrid, (Spain)
${ }^{2}$ Toyota Motor Europe, Research \& Development 3, Advanced Technology 1, Battery team, Technical Centre, Hoge Wei 33 B, B-1930 Zaventem, (Belgium).
${ }^{3}$ Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB, E-08193
Bellaterra, Catalonia (Spain)
${ }^{4}$ Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, (Spain)

*Corresponding author: e.arroyo@quim.ucm.es

Figure S.1.- (a) SEM images of synthetized $\mathrm{CaMn}_{2} \mathrm{O}_{4}$ powder. (b) Comparison of XRD patterns of the electrodes before and after oxidation. The arrows indicate the diffraction peaks of the aluminium current collector. The broad feature indicated with * originates likely from solvent residues and carbon black present in the electrode as additive to enhance electronic conductivity.

TABLE I. Calculated lattice parameters (in \AA) for the spinel (SP) and the two post-spinel CM (S.G. Pbcm) and CF (S.G. Pnma) $\mathrm{Ca}_{\mathrm{x}} \mathrm{Mn}_{2} \mathrm{O}_{4}(\mathrm{x}=0,1)$ structures. Experimental values from this work are also listed.

x	method	a	b	c	$\mathrm{~V}\left(\AA^{3}\right)$
CF-1	GGA	10.681	9.256	3.089	305.39
	GGA+U	10.730	9.233	3.149	311.95
CF-0	GGA	10.309	8.586	2.837	254.16
	GGA+U	10.393	8.632	2.922	262.20
CM-1	GGA	3.207	10.132	9.754	317.02
	GGA+U	3.199	10.193	9.825	320.36
CM-0	GGA	2.838	9.489	9.299	250.50
	GGA+U	2.901	9.614	9.414	262.61
SP-1	GGA+U	5.949	5.949	10.219	361.73
SP-0	GGA + U	5.819	5.819	8.291	280.76
CM-1	Exp.	3.159	9.994	9.675	304.55

Figure S.2.- (a-c) Optimized crystal structures of the possible $\mathrm{Ca}_{0.5} \mathrm{Mn}_{2} \mathrm{O}_{4}$ configurations within the unit cell. The three configurations have positive formation energies. (d) Optimized crystal structure of the most stable $\mathrm{Ca}_{0.5} \mathrm{Mn}_{2} \mathrm{O}_{4}$ configuration found in this study ($2 a \times b \times c$ supercell)

Thermodynamics of $\mathrm{CaMn}_{2} \mathrm{O}_{4}$ polymorphs

As indicated in figure 3 of the main text, the CF and SP phases are both $0.3 \mathrm{eV} / \mathrm{f} . \mathrm{u}$. less stable than the CM phase. The CF has a greater density, this is to say, CF is the high-pressure polymorph. It is well documented ${ }^{1}{ }^{2}$ that the CM polymorph transforms to the high pressure CF-polymorph at 30 GPa (room temperature). With the present computational results, we can make a fast evaluation of the pressure required for the $\mathrm{CF} \rightarrow \mathrm{CM}$ transformation $(\mathrm{P}=\Delta \mathrm{E} / \Delta \mathrm{V})$. This yields a calculated pressure of $24 \mathrm{GPa}(0 \mathrm{~K})$, which is of the same order than the experimentally observed. The SP phase has lower density than the CM phase, thus, it is a potential high temperature polymorph, a possibility to examine by means of calculated equations of state of the CM and SP polymorphs. Figure 6 in the main text shows the calculated total energy vs. volume curves of the $\mathrm{CaMn}_{2} \mathrm{O}_{4}$ polymorphs; spinel (SP in red circles) and marokite (CM in black diamonds). Symbols correspond to the DFT calculated data, and lines show the fitting to the BirchMurnagham equation of state.

Parameters of Energy -Volume fitting to the Brich-Murnagham EOS

CM: $\quad \mathrm{E}_{0}=50.99 \mathrm{eV} / \mathrm{f} . \mathrm{u} \mathrm{V}_{0}=80.37 \mathrm{~A}^{3} / \mathrm{f} . \mathrm{u}$.
$\mathrm{B}_{0}=99.50 \mathrm{GPa} \mathrm{B}_{0}{ }^{\prime}=6.96$
reg.coef $=0.76 \mathrm{E}-05$
SP: $\quad \mathrm{E}_{0}=50.71 \mathrm{eV} / \mathrm{f} . \mathrm{u} \mathrm{V}_{0}=90.88 \mathrm{~A}^{3} / \mathrm{f} . \mathrm{u}$.
$\mathrm{B}_{0}=90.13 \mathrm{GPa} \mathrm{B}_{0}{ }^{\prime}=6.09$
reg.coef $=0.35 \mathrm{E}-05$

Energy -Volume fitting to the Brich-Murnagham EOS with Bo`fixed to 4

Figure S.3. Calculated total energy vs. volume curves of the $\mathrm{CM}-\mathrm{CaMn} \mathrm{n}_{2} \mathrm{O}_{4}$ and fitting to the Birch-Murnagham equation of state, with B' fixed to 4.

Yamanaka et al ${ }^{2}$ determined, experimentally, the bulk modulus of the marokite (CM) phase. The bulk moduli were calculated by the Birch-Murnaghan equation of state using the observed volumes as a function of pressure. The calculation provided $\mathrm{B}_{0}=155(2) \mathrm{GPa}$ for $\mathrm{CM}-\mathrm{CaMn}_{2} \mathrm{O}_{4}$. In the calculation $\mathrm{B}_{0}{ }^{\prime}$ was fixed to 4.0. For shake of comparison we performed a similar data analysis, fixing B_{0} 'to 4 , as shown in figure S.3. The parameters of Energy -Volume fitting to the Brich-Murnagham EOS $\left(\mathrm{B}_{0}^{\prime}\right.$ fixed to 4 GPa) are $\mathrm{E}_{0}=51.06 \mathrm{eV} /$ f.u $\mathrm{V}_{0}=79.63 \mathrm{~A}^{3} /$ f.u. and $\mathrm{B}_{0}=$ 139.75 GPa.

At $\mathrm{p}=0$, DFT calculations yield the enthalpy of the marokite \rightarrow spinel transition at 0 K :

$$
\begin{equation*}
\text { Marokite- } \mathrm{CaMn}_{2} \mathrm{O}_{4} \rightarrow \text { Spinel- } \mathrm{CaMn}_{2} \mathrm{O}_{4} \quad \Delta \mathrm{H}_{0}=27.02 \mathrm{~kJ} / \mathrm{mol} \tag{1}
\end{equation*}
$$

At constant pressure, and 300 K , the enthalpy of the transformation is expressed as:

$$
\begin{equation*}
\Delta H_{298}=\Delta H_{0}+\int_{0}^{298} \Delta C_{p} d T \tag{2}
\end{equation*}
$$

Where C_{p} is the heat capacity at constant pressure, and $\Delta \mathrm{C}_{\mathrm{p}}=\mathrm{Cp}$ (spinel)- Cp (marokite).

For solids, where expansion is relatively very small, Cp and Cv are very similar. Through the quasi-harmonic Debye model, one could calculate the thermodynamic quantities at any temperatures and pressures, from the calculated $\mathrm{E}-\mathrm{V}$ data (DFT refers to $\mathrm{T}=0 \mathrm{~K}$). By using this method, as implemented in the GIBBS code, we estimated the heat capacities, Cv , of the $\mathrm{CaMn}_{2} \mathrm{O}_{4}$ polymorphs. (157.3 and $158.9 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ for marokite and spinel, respectively, at $\mathrm{p}=0$ and $\mathrm{T}=298$ $\mathrm{K})$. Integration of $\Delta \mathrm{Cv}$ between 0 and 298 K gives an enthalpy variation of $0.2 \mathrm{~kJ} / \mathrm{mol}$. Then, according to equation (2), the enthalpy of the marokite-spinel transformation at 298 K is 27.22 $\mathrm{kJ} / \mathrm{mol}$. We have also estimated the entropy variation at 298 K :

$$
\text { Marokite-CaMn }{ }_{2} \mathrm{O}_{4} \rightarrow \text { Spinel-CaMn } \mathrm{O}_{4} \quad \Delta \mathrm{~S}_{298}=8.3 \mathrm{~J} / \mathrm{Kmol}
$$

(1) Wang, Z. W.; Saxena, S. K.; Neumeier, J. J. Raman scattering study on pressure-induced phase transformation of marokite (CaMn2O4). J. Solid State Chem. 2003, 170, 382-389.
(2) Yamanaka, T.; Uchida, A.; Nakamoto, Y. Structural transition of post-spinel phases CaMn2O4, CaFe 2 O 4 , and CaTi 2 O 4 under high pressures up to 80 GPa . Am. Mineral. 2008, 93, 1874-1881.

