for

Synthesis of hydroxyapatite substrates: Bridging the gap between model surfaces and enamel

Christian Zeitz, ${ }^{1}$ Thomas Faidt, ${ }^{1}$ Samuel Grandthyll, ${ }^{1}$ Hendrik Hähl, ${ }^{1}$ Nicolas Thewes, ${ }^{1}$ Christian Spengler, ${ }^{1}$ Jörg Schmauch, ${ }^{1}$ Michael Johannes Deckarm, ${ }^{1}$ Carsten Gachot, ${ }^{2}$ Harald Natter, ${ }^{3}$ Matthias Hannig, ${ }^{4}$ Frank Müller, ${ }^{*, 1}$ Karin Jacobs ${ }^{*, 1}$
${ }^{1}$ Experimental Physics, Saarland University, 66123 Saarbrücken, Germany,
${ }^{2}$ Department of Materials Science, Saarland University, 66123 Saarbrïcken, Germany,
${ }^{3}$ Physical Chemistry, Saarland University, 66123 Saarbrücken, Germany,
${ }^{4}$ Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421
Homburg, Germany
* Corresponding authors. Email addresses: f.mueller@mx.uni-saarland.de (F. Müller), k.jacobs@physik.uni-saarland.de (K. Jacobs)

Figure S1: AFM data on PLS prepared samples (a) after final polishing with $\mathbf{3 0} \mathbf{n m}$ diamond suspension and subsequent ultrasonic bathing in water for 5 minutes. (b) Enlarged image of the same area with white dots representing residues from the diamond suspension. The size of the white dots ranges from $\mathbf{2 5} \mathbf{n m}$ to $\mathbf{5 0} \mathbf{n m}$ in accordance with the nominal size of 30 nm for the nano-diamonds. (c) Similar data from another sample after additional etching in a sodium acetate/acetic acid buffer at pH 4.5 for 10 s . Compared to the not etched samples, the difference in domain heights (i.e. without pores and polishing residues) has increased by more than one order of magnitude.

Figure S2: Grey scale image quality maps of the EBSD data (a) from the FAST sample in Figure 5 b and (b) from the PLS sample in Figure 5e. Irrespective of an absolute quality scaling, diffraction appears homogeneous throughout the individual domains.

	HAP powder	FAST sample	PLS sample
$\mathrm{D}_{\text {volume }}{ }^{(\mathrm{a})}$	$61 \mathrm{~nm}(002)$ $56 \mathrm{~nm}(004)$	$232 \mathrm{~nm}(002)$	$670 \mathrm{~nm}(002)$
	$79 \mathrm{~nm}(004)$	$598 \mathrm{~nm}(004)$	
$\mathrm{D}_{\text {volume }}{ }^{(\mathrm{b})}$	(c)	256 nm	477 nm
$\mathrm{D}_{\text {volume }}{ }^{(\mathrm{c})}$	86 nm	-	-
$\left\langle\varepsilon^{2}\right\rangle^{(\mathrm{b})}$	0.22%	0.009%	0.012%
$\left\langle\varepsilon^{2}\right\rangle^{(\mathrm{c})}$	0.30%	n.a.	n.a.
$\mu^{(\mathrm{c})}$	74.13 nm	n.a.	n.a.
$\sigma{ }^{(c)}$	1.23	n.a.	n.a.

Table T1: Volume-weighted average crystallite size $D_{\text {volume, }}$, strain $\left\langle\varepsilon^{2}\right\rangle$, mean crystallite size μ and asymmetry parameter σ as obtained from analysis of the XRD data in Fig. 3 and Fig. 7 using (a) the Scherrer method, (b) the Williamson-Hall method and (c) a modified Warren-Averbach method. The values in parentheses in the first row denote the reflections used for analysis.

