## Supporting Information for Intersystem Crossing in Diplatinum Complexes

**Table S1.** Fluorescence decay times and quantum yields in microcrystalline Pt(pop-BF<sub>2</sub>) as a function of temperature. The non-radiative decay rate is completely attributed to  ${}^{1}A_{2u} \rightarrow {}^{3}A_{2u}$  ISC ( $k_{ISC} = (1 - \phi_{fl}) / \tau_{fl}$ ).

| Temperature [K] | $\tau_{fl}$ [ns] | $\Phi$ (Fluorescence) | $k_{ISC} [10^8 \text{ s}^{-1}]$ |
|-----------------|------------------|-----------------------|---------------------------------|
| 5               | 3.22             | 0.88                  | 0.372                           |
| 10              | 3.22             | 0.89                  | 0.338                           |
| 30              | 3.22             | 0.89                  | 0.329                           |
| 40              | 3.22             | 0.89                  | 0.342                           |
| 50              | 3.20             | 0.90                  | 0.319                           |
| 60              | 3.17             | 0.89                  | 0.337                           |
| 70              | 3.16             | 0.89                  | 0.336                           |
| 80              | 3.13             | 0.89                  | 0.361                           |
| 90              | 3.11             | 0.88                  | 0.382                           |
| 100             | 3.10             | 0.88                  | 0.403                           |
| 110             | 3.09             | 0.85                  | 0.482                           |
| 120             | 3.07             | 0.84                  | 0.538                           |
| 130             | 3.04             | 0.82                  | 0.608                           |
| 140             | 3.00             | 0.80                  | 0.683                           |
| 150             | 2.96             | 0.76                  | 0.811                           |
| 160             | 2.91             | 0.72                  | 0.965                           |
| 170             | 2.84             | 0.68                  | 1.11                            |
| 180             | 2.72             | 0.64                  | 1.33                            |
| 190             | 2.62             | 0.58                  | 1.59                            |
| 200             | 2.49             | 0.55                  | 1.82                            |
| 210             | 2.35             | 0.50                  | 2.12                            |
| 220             | 2.20             | 0.45                  | 2.50                            |
| 230             | 2.05             | 0.41                  | 2.88                            |
| 240             | 1.91             | 0.36                  | 3.34                            |
| 250             | 1.73             | 0.32                  | 3.92                            |
| 260             | 1.57             | 0.29                  | 4.53                            |
| 270             | 1.40             | 0.25                  | 5.40                            |
| 280             | 1.23             | 0.21                  | 6.41                            |
| 290             | 1.09             | 0.18                  | 7.53                            |
| 300             | 0.95             | 0.15                  | 8.95                            |
| 310             | 0.83             | 0.13                  | 10.5                            |

## An Alternative Formalism for Multiphonon Radiationless Transitions

Treating non-radiative decay as a multiphonon transition from thermally equilibrated vibrational levels of the  ${}^{1}A_{2u}$  state into densely spaced vibrational levels of a final state, Englman and Jortner derived equation (S1) as the expression for non-radiative decay rates in the strong coupling limit, where the potential energy surface of the final state is substantially displaced from

that of <sup>1</sup>A<sub>2u</sub>.<sup>S1</sup> The quantitative criterion for strong coupling is  $\lambda \gg \hbar \langle \omega \rangle \tanh\left(\frac{\hbar \langle \omega \rangle}{2k_BT}\right)$ .

$$k_{nr} = \frac{C^2 \sqrt{2\pi}}{\hbar \sqrt{\lambda k_B T^*}} \exp\left(-\frac{E_a}{k_B T^*}\right)$$

$$T^* = \frac{\hbar \langle \omega \rangle}{2k_B} \coth\left(\frac{\hbar \langle \omega \rangle}{2k_B T}\right)$$
(S1)

In equation (S1), C denotes the electronic coupling term (denoted H<sub>AB</sub> in the manuscript),  $\lambda$  the reorganization energy, and  $E_a$  the apparent activation energy. Fitting the k<sub>nr</sub> data in Table S1 (Figure S1),  $E_a = 2024$  cm<sup>-1</sup>,  $\hbar \langle \omega \rangle = 367$  cm<sup>-1</sup>. Since spectroscopic evidence such as vibronic progressions indicates that  ${}^{1}A_{2u}$  and  ${}^{3}A_{2u}$  have similar equilibrium geometries and vibrational frequencies, they are likely weakly coupled. Equation (S1), therefore, is most consistent with decay via a strongly displaced intermediate state. Unfortunately, no information about either  $\Delta E$  or  $\lambda$  is available from equation (S1), making it impossible to determine C and the Huang-Rhys displacement parameter  $S = \lambda/\hbar \langle \omega \rangle$  in this model.



**Figure S1.** Temperature dependence of the nonradiative decay rate constant of the  ${}^{1}A_{2u}$  excited state of Pt(pop-BF<sub>2</sub>). Red: Fit to eq. S1:  $E_a = 2026 \text{ cm}^{-1}$ ;  $\hbar \langle \omega \rangle = 367 \pm 17 \text{ cm}^{-1}$ ;  $(C^2/\hbar) (4\pi/\lambda \hbar \langle \omega \rangle)^{1/2} = 2.57 \times 10^{12} \text{ s}^{-1}$ .

## Franck-Condon Analysis of Pt(pop-BF<sub>2</sub>) Fluorescence and Minimum Linewidth Factor

Vibrational progressions in the Pt(pop-BF<sub>2</sub>) fluorescence spectrum being associated with phonon satellites of ca. 35 cm<sup>-1</sup>,<sup>S2</sup> the reorganization energy for the lattice modes ( $\lambda$ ) can be estimated to be 25 cm<sup>-1</sup> assuming a Huang-Rhys parameter of 0.7 for the phonon modes. Since we treat lattice modes classically at all temperatures, a minimum linewidth factor (MLW) is added to the Gaussian function to avoid an infinitesimal emission linewidth at low temperature:

$$I(h\nu) = \sum_{n=0}^{\infty} \frac{S^n e^{-S}}{n!} exp\left[-\frac{(h\nu - E_{00} - n\hbar\omega)^2}{4\lambda kT + MLW}\right]$$
(S1)

Franck-Condon analysis of the  $Pt(pop-BF_2)$  fluorescence spectrum recorded at 10 K showed that MLW is ca. 2000 cm<sup>-2</sup> (Figure S2).



**Figure S2.** Top: Simulated fluorescence spectrum of  $Pt(pop-BF_2)$  at 10 K (Eq S1: S = 6, E\_{00} = 26210 cm<sup>-1</sup>, MLW = 2000 cm<sup>2</sup>). Bottom: High-resolution excitation and emission spectra of  $Pt(pop-BF_2)$  at 10 K in the  ${}^{1}A_{1g} \leftrightarrow {}^{1}A_{2u}$  energy region.<sup>S2</sup>

## References

S1. Englman, R.; Jortner, J. Molec. Phys. 1970, 18, 145-164.

S2. Hofbeck, T.; Lam, Y. C.; Kalbac, M.; Zalis, S.; Vlcek, A.; Yersin, H., *Inorganic Chemistry* **2016**, *55*, 2441-2449.