Supplemental Information for:

Characterization of reactions between water soluble trialkylphosphines and thiol alkylating reagents: Implications for protein conjugation reactions

Terrence Kantner, Andrew G Watts^{*}

Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.

* Corresponding author: <u>a.watts@bath.ac.uk</u>

Table of Contents

General Methods	4
Synthetic methods:	
Synthesis of N ⁶ -[3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)propanoyl]-L-lysine (5)	5
Synthesis of N ⁶ -(3-{2,5-dioxo-3-[tris(2-carboxyethyl)- λ^5 -phosphanylidene]pyrrolidin-1-	6
yl}propanoyl)-L-lysine (6)	
Synthesis of 3,3',3''-[(1-ethyl-2,5-dioxopyrrolidin-3-ylidene, 4-deutero)- λ^5 -	7
phosphanetriyl]tripropanoic acid (9)	
Synthesis of N ⁶ -[3-(2,5-dioxopyrrolidin-1-yl)propanoyl]-L-lysine (8)	8
Synthesis of 1-ethyl-3-dideutero-(4R,S)-deutero-pyrrolidine-2,5-dione (11)	9
Reactivity of the Ylene (4) towards thiol nucleophiles	10
Maleimide PEGylation of a model protein	11
Synthesis of N-(5-isocyanatopentyl)maleimide (S3).	11
Synthesis of Pn6B-maleimide (15)	12
Synthesis of Pn6B-maleimide-TCEP adduct (16)	13
Supplemental References	13

Analytical data:

Data for compound 4:	¹ H NMR, ¹³ C NMR, HMBC, ³¹ P NMR, HRMS, IR, HPLC	14
Data for compound S1 : ¹	H NMR, ¹³ C NMR, HRMS, IR, HPLC	20
Data for compound 5:	¹ H NMR, ¹³ C NMR, HRMS, IR	24
Data for compound 6:	¹ H NMR, ¹³ C NMR, ³¹ P NMR, HRMS, IR, HPLC	27
Data for compound 7:	¹ H NMR, ¹³ C NMR	32
Data for compound 8:	¹ H NMR, ¹³ C NMR, HRMS, IR, HPLC	34
Data for compound 9 :	¹ H NMR, ¹³ C NMR, ³¹ P NMR, HRMS, IR, HPLC	38
Data for compound 11 :	¹ H NMR, ¹³ C NMR, HPLC	43

Data for compound 13 : ¹ H NMR, ¹³ C NMR, ³¹ P NMR, HRMS, IR, HPLC	46
Data for compound S3 : ¹ H NMR, ¹³ C NMR, HRMS, IR	55
³¹ P NMR spectrum of compound 15	58
³¹ P NMR spectrum of compound 16	59

EXPERIMENTAL PROCEDURES

General

Chemical reagents were purchased from Sigma-Aldrich unless specifically stated. Anhydrous solvents were purchased from Sigma-Aldrich and used without further purification. All other solvents were purchased from Fisher Scientific. Yeast enolase protein was purchased from Sigma-Aldrich (Product; E6126). Pneumococcal capsular polysaccharide type 6B (Pn6B) was purchased from American Type Culture Collection (Rockville, Md.). Analytical thin layer chromatography (TLC) was carried out on Merck aluminium backed TLC plates silica gel 60 F254 (0.25 mm thickness), viewed using UV light of wavelength 254 nm or stained with potassium permanganate solution. Silica gel chromatography was performed on silica gel 60 Å (200-400 mesh) from Sigma-Aldrich. Standard work up is referring to diluting the reaction residue in appropriate organic solvent (mentioned), washing with an aqueous saturated sodium bicarbonate solution, followed by washing with brine. The organic phases were then combined and dried over anhydrous magnesium sulfate, filtered and the filtrate concentrated in vacuo. SDS-PAGE was performed using pre-cast 4-12% Bis-Tris NuPage gels (Invitrogen). Reverse phase chromatography (C-18) was performed using a VersaFlash hand held column (23 x 110 mm) from Supelco. Melting points were obtained using a Thermo Fisher IA9000 digital melting point apparatus. ¹H, ¹³C and ³¹P NMR spectra were recorded using Bruker Advance III (400 and 500 MHz) spectrometers with acquisition frequencies of 400 or 500 MHz for ¹H; 100 or 125 MHz for ¹³C; and 162 MHz for ³¹P. Deuterated solvents were purchased from Cambridge Isotope Laboratories. The NMR chemical shifts δ are recorded in parts per million (ppm) with reference to tetramethylsilane for ¹H and ¹³C and phosphoric acid for ³¹P NMR spectroscopy. The multiplicities are assigned as a singlet (s). doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of doublets (ddd), doublet of triplets (dt), triplet of doublets (td), broad (br) and multiplet (m). High resolution mass spectrometry was performed using a BrukerMicrOTOF electrospray ionisation mass spectrometer. Infrared spectra were recorder on a PerkinElmer Spectrum 65 FT-IR spectrometer. HPLC was performed on a Dionex Ultimate 3000 instrument equipped with a variable wavelength detector. SDS-PAGE was performed utilising an Invitrogen xCell

SureLock[™] cell and a Biorad PowePac HV. Specific rotations were determined on an Optical Activity Ltd.: AA-10 automatic polarimeter.

Synthesis of N^6 -[3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)propanoyl]-L-lysine (5).

 N^2 -(tert-Butoxycarbonyl)-L-lysine (190 mg, 0.77 mmol) was dissolved in anhydrous DMF (5 mL). Triethylamine (108 µL, 0.77 mmol) and 3-maleimidopropionic acid Nhydroxysuccinimide ester (1.2 eq., 247 mg, 0.93 mmol) were added and the reaction was stirred at room temperature while under nitrogen gas for 18 hours. The solution was concentrated and purified by silica gel chromatography (5% MeOH/DCM \rightarrow 20% MeOH/DCM) to yield N^2 -(tert-butoxycarbonyl)- N^6 -[3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1yl)propanoyl]-L-lysine (**S1**) as a white sticky solid (261 mg, 85 %). ¹H NMR, CD₃OD, 400 MHz: δ 1.37-1.55 (m, 13H, CHCH₂CH₂CH₂CH₂, 3 x CH₃), 1.60-1.84(m, 2H, CHCH₂CH₂), 2.45 (t, 2H, COCH₂CH₂, J = 7.0 Hz), 3.12 (m, 2H, NHCH₂CH₂), 3.77 (t, 2H, NCH₂, J = 7.0 Hz), 3.98 (m, 1H, NHCHCO₂H), 6.83 (s, 2H, COCHCHCO). ¹³C NMR, CD₃OD, 100 MHz: δ 24.26 (CHCH₂CH₂CH₂), 28.78 (CCH₃), 29.91 (NHCH₂CH₂CH₂), 33.08 (CHCH₂CH₂), 35.48 (NCH₂CH₂), 35.81 (NHCOCH₂CH₂), 40.22 (NHCH₂CH₂), 56.08 (NHCHCO₂H), 80.28 (OCCH₃), 135.50 (2 x COCH), 158.03 (NHCO₂C), 172.13 (2 x COCH), 172.86 (NHCOCH₂), 179.14 (CHCO₂H). HRMS: Expected for $C_{18}H_{26}N_{3}O_7$ (M-H⁺) = m/z 396.1776. Found: m/z 396.1809. Infrared (KBr): 3370, 1713, 1649 cm⁻¹. HPLC: column: Waters Symmetry Shield-RP8 (100 x 4.60 mm), gradient elution: (1.0 mL/min) 90 % water/MeCN containing 0.1 % TFA \rightarrow 90 % MeCN/H₂O over 13 minutes, retention time, 6.15 mins., purity: 97%. Detection at 225 nm.

The Boc-protected derivative **S1** (80.0 mg, 0.20 mmol) was suspended in THF (1 mL) and cooled to 0 °C. TFA (4 mL) was slowly added to the solution which was left to warm to room

temperature and then stirred for a further 5 hours. The solution was concentrated and the residue was redissolved in 2 mL of water. The solution was neutralised with K₂CO₃ and subsequently purified by C-18 chromatography (100 % H₂O \rightarrow 20 % MeOH/H₂O) to yield (**5**) as a transparent solid (43 mg, 71 %). ¹H NMR, D₂O, 400 MHz: δ 1.33 (m, 2H, CHCH₂CH₂), 1.45 (m, 2H, NHCH₂CH₂CH₂), 1.85 (m, 2H, CHCH₂CH₂), 2.48 (t, 2H, COCH₂CH₂, *J* = 6.4 Hz), 3.12 (t, 2H, NHCH₂CH₂, *J* = 6.9 Hz), 3.72 (t, 1H, NHCHCO₂H, *J* = 5.9 Hz), 3.79 (t, 2H, NCH₂CH₂, *J* = 7.0 Hz), 6.87 (s, 2H, COCHCHCO). ¹³C NMR, D₂O, 100 MHz: δ 21.76 (CHCH₂CH₂CH₂), 27.88 (NHCH₂CH₂CH₂), 30.02 (CHCH₂CH₂), 34.53 (NCH₂CH₂), 34.76 (COCH₂CH₂), 38.96 (NHCH₂CH₂), 54.62 (NHCHCO₂H), 134.45 (2 x NCOCH), 172.57 (2 x NCOCH), 173.37 (NHCOCH₂), 174.67 (CHCO₂H). HRMS: Expected for C₁₃H₁₈N₃O₅ (M-H⁺) = *m/z* 296.1252. Found: *m/z* 296.1229. Infrared (KBr): 3325, 1714, 1630 cm⁻¹. HPLC: column: Phenomenex Luna-NH₂ (250 x 4.60 mm), gradient elution: (1.0 mL/min) 10 % MeCN in water containing 0.1 % TFA \rightarrow 100 % MeCN over 20 minutes, retention time, 2.63 mins., purity: 100 %. Detection at 225 nm.

Reaction between TCEP and Maleimide:

Synthesis of N^6 -(3-{2,5-dioxo-3-[tris(2-carboxyethyl)- λ^5 -phosphanylidene]pyrrolidin-1yl}propanoyl)-L-lysine (**6**).

Compound **5** (15 mg, 0.052 mmol) and TCEP (**1**, 0.9 eq., 13.4 mg, 0.0466 mmol) was dissolved in 2 mL of argon purged aqueous sodium phosphate (0.1 M, pH = 7). The reaction was stirred, under argon, and at room temperature for 1 hour. The reaction was subsequently purified by C-18 chromatography (100 % water). The product was lyophilised to give (**6**) as an amorphous white solid (18 mg, 70 %). ¹H NMR, D₂O, 400 MHz: δ 1.33-1.45 (m, 2H, CHCH₂CH₂CH₂), 1.47-1.55 (m, 2H, NHCH₂CH₂CH₂), 1.83-1.90 (m, 2H, CHCH₂CH₂), 2.51 (t, 2H, NHCOCH₂, *J* = 6.6 Hz), 2.74-2.79 (m, 12H, 3 x CH₂CH₂CO), 3.14 (t, 2H, NHCH₂CH₂, *J* =

6.9 Hz), 3.21-3.34 (m, 2H, CCH₂CO), 3.76 (t, 1H, NH₂CHCO₂H, J = 6.3 Hz), 3.80 (t, 2H, NCH₂CH₂, J = 6.6 Hz). ¹³C NMR, D₂O, 100 MHz: δ 15.0 (d, PCH₂CH₂, J = 49.5 Hz), 21.7 (CHCH₂CH₂CH₂), 26.9 (d, 3 x CH₂CH₂CO₂H, J = 3.8 Hz), 27.8 (NHCH₂CH₂CH₂), 29.9 (CHCH₂CH₂), 29.5 (COCH₂C), 33.2 (COCH₂CH₂), 34.0 (m, COCCH₂), 36.4 (NCH CH₂), 39.0 (NHCH₂CH₂), 54.4 (NH₂CHCO₂H), 172.7 (d, NCOC, J = 3.4 Hz), 172.8 (NHCOCH₂), 174.5 (CHCO₂H), 175.5 (d, 3 x CH₂CO₂H, J = 11.8 Hz), 175.6 (d, NCOCH₂, J = 8.7 Hz). ³¹P NMR, D₂O, 162 MHz: δ 38.9. HRMS: Expected for C₂₂H₃₃N₃O₁₁P₁ (M-H⁺) = m/z 546.1858. Found: m/z 546.1864. Infrared (KBr): 3456, 1708, 1642 cm⁻¹. HPLC: column: Phenomenex Luna-C18 (250 x 4.60 mm), gradient elution: (0.7 mL/min) 100 % water containing 0.1 % TFA \rightarrow 100 % MeCN over 16 minutes, retention time, 11.68 mins, purity, 87%). Detection at 225 nm.

N-Ethyl maleimide (**3**, 10.0 mg, 0.0800 mmol) and TCEP (**1**, 0.9 eq., 20.6 mg, 0.0719 mmol) was dissolved in THF (1 mL) and argon purged deuterated aqueous sodium phosphate (0.1 M, pH = 7.0, 9 mL) and stirred under argon at room temperature for 1 hour. The reaction was concentrated *in vacuo* to 3 mL and then loaded onto a C-18 column for purification (100 % H₂O \rightarrow 20 % MeCN/H₂O) to yield **9** as a pale yellow sticky solid (21.4 mg, 79 %). ¹H NMR, D₂O, 400 MHz: δ 1.10 (t, 3H, CH₂CH₃, *J* = 7.3 Hz), 2.77-2.89 (m, 12H, 3 x CH₂CH₂CO₂H), 3.26-3.14 (m, 1H, CCHDCO), 3.54 (q, 2H, NCH₂CH₃, *J* = 7.3 Hz). ¹³C NMR, D₂O, 125 MHz: δ 11.5 (CH₂CH₃), 14.4 (d, 3 x CH₂CH₂CO₂H, *J* = 49.8 Hz), 25.8 (d, 3 x CH₂CH₂CO₂H, *J* = 4.0 Hz), 29.2 (m, COCHDC), 33.6 (m, COCCHD), 35.0 (NCH₂CH₃), 173.0 (d, NCOC, *J* = 3.5 Hz), 174.2 (d, CH₂CO₂H, *J* = 11.8 Hz), 176.0 (d, NCOCHD, *J* = 8.8 Hz). ³¹P NMR, D₂O, 162 MHz: δ 39.2.

HRMS: Expected for $C_{15}H_{22}D_1N_1O_8P_1$ (M+H⁺) = m/z 377.1219. Found: m/z 377.1222. Infrared (KBr): 3439, 1705 cm⁻¹. HPLC: column: Phenomenex Luna-C18 (250 x 4.60 mm), gradient elution (0.7 mL/min), water containing 0.1 % TFA \rightarrow 100 % MeCN over 16 minutes, retention time, 12.73 mins, purity, 91 %. Detection at 225 nm.

Reaction between THPP and Maleimide:

Synthesis of N^6 -[3-(2,5-dioxopyrrolidin-1-yl)propanoyl]-L-lysine (**8**).

Compound **5** (10.0 mg, 0.034 mmol) and THPP (**2**, 0.9 eq., 6.3 mg, 0.03 mmol) was dissolved in 1 mL of argon purged aqueous sodium phosphate (0.1 M, pH = 7). The reaction was stirred, under argon, and at room temperature for 1 hour. The reaction was subsequently purified by C-18 chromatography (100 % water \rightarrow 20 % MeCN/water). The product was lyophilised to give (**8**) as a white amorphous solid (5.35 mg, 59 %). ¹H NMR, D₂O, 400 MHz: δ 1.33-1.41 (m, 2H, CHCH₂CH₂CH₂), 1.43-1.55 (m, 2H, NHCH₂CH₂CH₂), 1.83 -1.91 (m, 2H, CHCH₂CH₂), 2.46 (t, 2H, NHCOCH₂CH₂, *J* = 6.8 Hz), 2.77 (s, 4H, COCH₂CH₂CO), 3.14 (t, 2H, NHCH₂CH₂, *J* = 6.8 Hz), 3.69-3.77 (m, 3H, NCH₂CH₂ & NH₂CHCO₂H). ¹³C NMR, D₂O, 100 MHz: δ 21.73 (CHCH₂CH₂CH₂), 27.84 (NHCH₂CH₂CH₂), 27.98 (2 x COCH), 30.02 (CHCH₂CH₂), 174.72 (CHCO₂H), 181.11 (2 x NCOCH). Expected for C₁₃H₂₀N₃O₅ (M-H⁺) = *m*/z 298.1408. Found: *m*/z 298.1412. Infrared (KBr): 3447, 1696 cm⁻¹. HPLC: column: Phenomenex Luna-NH₂ (250 x 4.60 mm), gradient elution: (1.0 mL/min) 10 % MeCN in water containing 0.1 % TFA \rightarrow 100 % MeCN over 20 minutes, retention time, 2.77 mins., purity, 97%). Detection at 225 nm.

Synthesis of 1-ethyl-3-dideutero-(4R,S)-deutero-pyrrolidine-2,5-dione (11).

A solution of THPP (2, 0.9 eq., 29.9 mg, 0.144 mmol) was prepared in THF (1 mL) and purged deuterated aqueous sodium phosphate (0.1 M, pH = 7.0, 9 ml). N-Ethyl maleimide (3, 20.0 mg, 0.16 mmol) was added slowly to the rapidly stirring solution of THPP. The reaction was left to stir for 30 minutes at room temperature. A further 0.1 eq. of THPP was added and left to stir for an additional 30 minutes. The reaction was diluted with 25 mL of diethyl ether and extracted with water (30 mL). The aqueous layer was extracted with diethyl ether (2 x 30 mL). The organic extraction layers were combined and dried using MgSO₄. The mixture was filtered and the organic solution was concentrated (550 mbar, 25 °C). The crude was purified by silica gel chromatography (0 \rightarrow 2 % acetone/CH₂Cl₂) to yield **11** as a clear oil (10.8 mg, 52 %). ¹H NMR, CDCl₃, 400 MHz: δ 1.10 (t, 3H, CH₂CH₃, J = 7.2 Hz), 2.62 (br. s, 1H, COCHDCD₂), 3.50 (q, 2H, NCH₂CH₃, J = 7.2 Hz). ¹³C NMR, CDCl₃, 100 MHz: δ 12.9 (CH₂CH₃), 27.7 (m, COCHDCD₂CO), 33.5 (NCH₂CH₃), 177.1 (2 x NCO). ESI-HRMS: Expected for $C_6H_6D_3N_1O_2$ (M+Na⁺) = m/z 153.0714. Found: m/z 153.0704. Infrared (thin film): 1695 cm⁻¹. HPLC: column: Phenomenex Luna-NH₂ (250 x 4.60 mm), gradient elution: (1.0 mL/min) 10 % MeCN in water containing 0.1 % TFA \rightarrow 100 % MeCN over 20 minutes, retention time, 2.90 mins, purity 99 %. Detection at 225 nm.

Exploring the reactivity of the TCEP-maleimide Ylene (4) towards thiol nucleophiles

A) pH 4.

N-Ethyl maleimide (**3**, 3.9 mg, 0.032 mmol) was dissolved in argon purged deuterated aqueous citric acid/sodium phosphate (0.5 mL, 0.1 M, pH = 4). TCEP (**1**, 1 eq., 9.0 mg, 0.032 mmol) was added and the reaction was incubated at room temperature for 1 hour. The TCEP-maleimide adduct (**4**) was evident by ³¹P NMR (δ 38.9). Reduced glutathione (1.5 eq., 14.6 mg, 0.047 mmol) was added and the reaction was left at room temperature overnight. The reaction was monitored by ³¹P NMR. The δ 38.90 ppm signal for **4** was still evident, with no appearance of new peaks in the spectrum.

B) pH 7.

N-Ethyl maleimide (**3**, 8.0 mg, 0.064 mmol) was dissolved in argon purged aqueous sodium phosphate (1.0 mL, 0.1 M, pH = 7.0). TCEP (**1**, 1 eq., 18.3 mg, 0.064 mmol) was added and the reaction was incubated at room temperature for 1 hour. Reduced glutathione (1.2 eq., 23.6 mg, 0.077 mmol) was added and the reaction was stirred at room temperature overnight. The reaction was monitored by HRMS. No glutathione-maleimide product was evident. The TCEP-maleimide adduct [**4**, m/z 374.1040 (M-H⁺)] was still visible as well as unreacted glutathione [m/z 306.0787 (M-H⁺)].

C) pH 8.

N-Ethyl maleimide (**3**, 4.0 mg, 0.032 mmol) was dissolved in argon purged, deuterated aqueous sodium phosphate (0.5 mL, 0.1 M, pH = 8.0). TCEP (**1**, 1 eq., 9.2 mg, 0.032 mmol) was added and the reaction was incubated at room temperature for 1 hour. Reduced

10

glutathione (1.5 eq., 14.7 mg, 0.048 mmol) was added and the reaction was left at room temperature overnight. The reaction was monitored by ³¹P NMR. No change of the δ 38.90 ppm signal for **4** was evident.

The effect of not removing TCEP or THPP prior to maleimide PEGylation of a model protein.

Yeast enolase (1 mg/mL, Sigma Aldrich) was denatured in argon purged buffer (0.5 M Tris, pH = 7.2, 5 mM EDTA) containing 8 M urea at 85 °C for 15 minutes. The solution was allowed to cool to room temperature before aliquoting out 100 μ L samples for the experiments. Varying concentrations of TCEP or THPP (1-10 mM) were added to aliquots of protein solution (11 μ M) and incubated for 45 minutes at 25 °C. Maleimide-PEG2kDa (1 mM) was subsequently added and the reaction was incubated at 37 °C for 18 hours. Samples (15 μ L) were taken from each of the reactions and added to Laemmli sample buffer (15 μ L). Aliquots (9 μ L) of these solutions were loaded into a precast gradient gel (4-12 % Bis-Tris, Invitrogen) along with a protein ladder (EZ-Run, Fisher Scientific) and resolved by SDS Page electrophoresis [MOPS running buffer (Invitrogen), 180 V, 60 mins]. The precast gels were stained by Coomassie solution and destained using a water/ethanol/acetic acid (16:3:1) solution.

Synthesis of N-(5-isocyanatopentyl)maleimide (S3).

6-Maleimidohexanoic acid **S2** (0.25 g, 1.18 mmol) was dissolved in anhydrous THF (4 mL) containing triethylamine (0.3 mL). Diphenylphosphoryl azide (0.38 mL, 1.76 mmol) was added and the reaction was stirred at room temperature for 2 hours. Anhydrous toluene (100 mL) was subsequently added and the solution was concentrated to a volume of 5 mL. The solution was heated at 70 °C for 2 hours and then allowed to cool back to room

temperature. The solution was loaded directly onto a silica gel column for purification: 100 % petroleum ether \rightarrow 30 % EtOAc/petroleum ether to yield **S3** as a transparent oil (125.7 mg, 51 %). Spectral data was consistent with that reported in the literature.¹ ¹H NMR CDCl₃, 400 MHz: δ 1.37-1.42 (m, 2H, CH₂CH₂CH₂NCO), 1.58-1.66 (m, 4H, NCH₂CH₂ & CH₂CH₂CH₂NCO), 3.29 (t, 2H, CH₂CH₂NCO, *J* = 6.7 Hz), 3.52 (t, 2H, NCH₂CH₂, *J* = 7.2 Hz), 6.69 (s, 2H, COCHCHCO). ¹³C NMR CDCl₃, 100 MHz: δ 23.62 (OCNCH₂CH₂CH₂), 27.82 & 30.57 (CHCONCH₂CH₂ & OCNCH₂CH₂CH₂), 37.44 (NCH₂CH₂), 42.69 (CH₂NCO), 121.89 (CH₂NCO), 134.05 (2 x COCH), 170.78 (2 x COCH). ESI-MS: Expected for C₁₀H₁₂N₂Na₁O₃ (M+Na⁺) = *m/z* 231.0740. Found *m/z* 231.0739. Infrared (thin film): 2277, 1706 cm⁻¹.

Synthesis of Pn6B-maleimide (15).

Pn6B (10 mg) was added to 2 mL of water and stirred at room temperature until the carbohydrate dissolved. The viscous solution was then loaded onto an ion exchange column (Dowex 50W x 4, 200 mesh, tetrabutylammonium form) and incubated for 30 minutes before elution. The fractions containing carbohydrate were pooled and subsequently freeze dried to yield a white solid. The solid was added to 4 mL of anhydrous DMSO and stirred at 30 °C under N₂ overnight to dissolve the carbohydrate. An anhydrous DMSO solution (0.5 mL) of I (3 mg) was added to the carbohydrate solution and allowed to stir for 2 hours at room temperature. The solution was transferred to a dialysis bag (12-14 KDa cut-off) and dialysed against 5 litres of 0.1 M aqueous sodium phosphate (pH = 7), followed by 5 litres of 0.01 M aqueous sodium phosphate (pH = 7), and finally 5 litres of water. The solution within the dialysis bag was frozen and lyophilised to yield 6 mg of white solid (**15**). A portion of product (0.5 mg) was analysed by NMR spectroscopy to determine the maleimide/carbohydrate ratio. ³¹P NMR, D₂O, 162 MHz: δ -0.08.

Synthesis of Pn6B-maleimide-TCEP adduct (16).

Maleimide functionalised Pn6B (**15**, 1.0 mg) was dissolved in water (1 mL) containing TCEP (2.0 mg). The solution was left to stand at room temperature (1 hour) then purified using a PD-10 desalting column. The fractions containing carbohydrate were pooled and lyophilised. The lyophilised powder was redissolved in D₂O and analysed by ³¹P NMR spectroscopy. ³¹P NMR, D₂O, 162 MHz: δ -0.08, 38.4.

Supplemental References

 Chudzik, S. J., Chinn, J. A., Swann, D. G., Burkstrand, M. J., COATINGS FOR MEDICAL ARTICLES INCLUDING NATURAL BIODEGRADABLE POLYSACCHARIDES, US 2005/0255142 A I. 17/11/2005: United States Patent Application Publication.

Analytical spectra

¹³C NMR spectrum of compound (4)

15

HRMS for compound (4)

Confirmation	of	Expected	Formula
COMMINATION	UI.	LADEGLEU	i unnula

Sample-ID	wa_tk_tcepnem	Submitter	Terrence Kantner
Analysis Name	wa_tk_tcepnem_334404_12_01_37519.d	Supervisor	Andy Watts
Method used	Confirm Formula Negative 50to1500 loop inj.m	Acquisition Date	15/04/2013 11:21:53
Ionisation Mode	negative electrospray (ESI)		

 # meas.m/z
 theo.m/z
 Err[ppm]
 Sigma
 Formula

 1
 374.1029
 374.100478
 -4.90
 0.0188
 C 15 H 21 N 1 O 8 P 1

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

IR spectrum for compound (4)

2 tcepmal2 225 nm							
Sample Name: Vial Number: Sample Type:	tcepmal2 225 nm 2 unknown	Injection Volume: Channel: Wavelength:	20.0 UV_VIS_1 225				
Control Program:	thesis hplc purity	Bandwidth:	n.a.				
Quantif. Method:	U3000 test	Dilution Factor:	1.0000				
Recording Time:	6/4/2014 10:47	Sample Weight:	1.0000				
Run Time (min):	25.46	Sample Amount:	1.0000				

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	11.61	n.a.	230.949	27.871	6.96	n.a.	BMB*
2	12.81	n.a.	1392.828	372.825	93.04	n.a.	BMB*
Total:			1623.777	400.696	100.00	0.000	

BOCLYSMAL-13C 180 172.855 170 160 150 140 _ - 135.499 130 1 120 1 110 H 100 ¢ 90 4 80 70 -60 50 - 40.219 - 35.811 - 35.479 - 33.083 40 30 29.909 - 24,256 udd 1 PEROCNO DARCA PEROCNO DARCA TIME TIMETIME PEROCNO PEROPHI PEROPHI PEROPHI PEROPHI SOLVERT SOLV NUC1 P1 PL1 PL1W SPO1 Mar04-2014-TKS3 ch. CHANNEL f1 CHANNEL 200 CANNEL f1 -----13C 8.75 -2.00 58.91986084 100.6001970 24038.461 0.3656798 1.3631988 20.800 20.800 23.203.50 2.00000000 0.03000000 1.03000000 20140304 20.01 AVII1400 m PABBO BB-zgpg30 65536 MeOD 1000 dB dB W MHz i.

¹³C NMR spectrum of compound (S1)

HRMS for compound (**S1**)

-MS, 1.0-1.3min #(32-40), -Spectral Bkgrnd

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

IR spectrum for compound (S1)

HPLC chromatogram for compound (S1)

1 boclysmal1							
Sample Name: Vial Number:	boclysmal1 1	Injection Volume: Channel:	10.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	225				
Control Program:	thesis hplc purity c8 1	Bandwidth:	n.a.				
Quantif. Method:	U3000 test	Dilution Factor:	1.0000				
Recording Time: Run Time (min):	6/25/2014 11:34 11.97	Sample Weight: Sample Amount:	1.0000 1.0000				

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5.62	n.a.	46.276	4.299	0.60	n.a.	BMB*
2	6.15	n.a.	5073.021	687.347	96.62	n.a.	BMB*
3	8.19	n.a.	197.171	19.749	2.78	n.a.	BMB*
Total:			5316.468	711.395	100.00	0.000	

¹³C NMR spectrum of compound (5)

HRMS for compound (5)

-MS, 1.0-1.3min #(32-40), -Spectral Bkgrnd

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

IR spectrum for compound (5)

¹H NMR spectrum of compound (6)

¹³C NMR spectrum of compound (6)

³¹P NMR spectrum of compound (6)

Mar13-20140314 5 mm PABD0 EB- 25536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 86102.553 Hz 0.978127 Hz 0.078127 Hz	CHANNBL fl === 31P 9.40 usec 0.00 dB 23.83780289 W 161.9310633 MHz	CHANNEL £2 ===================================	
NAME RXCNO PROCNO PROCNO PROCNO PROBHD PULPROG SWH SULVENT NS FIDRES SWH FIDRES DM D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1	NUC1 PL PL1 PL1W SF01	CFDPRG2 CFDPRG2 NUC2 PCD2 PL13 PL13 PL13 PL13 PL13 PL13 PL13 ST ST ST ST ST ST ST DDMGB	
		- R	
		-20	
		- 9-	
		0	
		9	
		5	
		99	
78.8£		• 64	
31 P		- 22	
SMAL - TCEP -		09	
TX			

HRMS for compound (6)

Confirmation of Expected Formula

Sample-ID	wa_tk_lysmaitcep
Analysis Name	wa_tk_lysmaltcep_338873_98_01_42819.d
Method used	Confirm Formula Negative 50to1500 loop inj.m
Ionisation Mode	negative electrospray (ESI)

Submitter Terrence Kantner

Supervisor Andy Watts Acquisition Date 11/03/2014 12:57:53

-MS, 1.0-1.3min #(32-40), -Spectral Bkgrnd

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

IR spectra for compound (6)

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	11.31	n.a.	96.660	9.160	9.70	n.a.	BMB*
2	11.68	n.a.	444.008	81.973	86.78	n.a.	BMb*
3	12.01	n.a.	19.603	3.332	3.53	n.a.	bMB*
Total:			560.271	94.465	100.00	0.000	

¹H NMR spectrum of compound (7)

¹³C NMR spectrum of compound (7)

¹H NMR spectrum of compound (8)

HRMS for compound (8)

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

IR spectrum for compound (8)

4 lysmalthpp2						
Sample Name: Vial Number: Sample Type: Control Program:	lysmalthpp2 4 unknown thesis hplc purity c8 1	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Eastor:	10.0 UV_VIS_1 225 n.a. 1 0000			
Recording Time: Run Time (min):	6/25/2014 14:05 8.03	Sample Weight: Sample Amount:	1.0000 1.0000			

NO.	min	Feak Name	mAU	mAU⁺min	%	Anount	Type
1	1.75	n.a.	3.415	0.190	2.94	n.a.	BMB*
2	2.77	n.a.	85.105	6.273	97.06	n.a.	BMB*
Total:			88.520	6.464	100.00	0.000	

¹H NMR spectrum of compound (9)

HRMS for compound (9)

meas. m/z theo. m/z Err[ppm] Sigma Formula

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

IR spectrum for compound (9)

3 tcepmaldeutero 225 nm							
Sample Name: Vial Number:	tcepmaldeutero 225 nm 3	Injection Volume: Channel: Wavelength:	20.0 UV_VIS_1				
Sample Type: Control Program: Quantif. Method:	unknown thesis hplc purity U3000 test	Bandwidth: Dilution Factor:	n.a. 1.0000				
Recording Time: Run Time (min):	6/4/2014 12:00 25.05	Sample Weight: Sample Amount:	1.0000 1.0000				

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	11.35	n.a.	141.751	19.454	9.48	n.a.	BMB*
2	12.73	n.a.	726.486	185.819	90.52	n.a.	BMB*
Total:			868.237	205.273	100.00	0.000	

¹H NMR spectrum of compound (**11**)

HPLC chromatogram for compound (11)

6 nem3xD1						
Sample Name:	nem3xD1	Injection Volume:	10.0			
, Vial Number:	6	Channel:	UV_VIS_1			
Sample Type:	unknown	Wavelength:	225			
Control Program:	thesis hplc purity c8 1	Bandwidth:	n.a.			
Quantif. Method:	U3000 test	Dilution Factor:	1.0000			
Recording Time:	6/25/2014 15:05	Sample Weight:	1.0000			
Run Time (min):	8.33	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	1.62	n.a.	1.339	0.067	0.12	n.a.	BMB*
2	2.41	n.a.	3.517	0.325	0.56	n.a.	BMB*
3	2.90	n.a.	884.590	57.453	99.32	n.a.	BMB*
Total:			889.446	57.845	100.00	0.000	

¹H NMR spectrum of compound (**13**)

¹³C NMR spectrum of compound (13)

¹³C DEPT spectrum of compound (13)

COSY NMR spectrum of compound (13)

49

HSQC NMR spectrum of compound (13)

HMBC NMR spectrum of compound (13)

³¹P NMR spectrum of compound (13)

HRMS for compound (13)

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

IR spectrum for compound (13)

1 phvinsulfonetcep1						
Sample Name:	phvinsulfonetcep1	Injection Volume:	20.0			
Vial Number:	1	Channel:	UV_VIS_1			
Sample Type:	unknown	Wavelength:	280			
Control Program:	thesis hplc purity2	Bandwidth:	n.a.			
Quantif. Method:	U3000 test	Dilution Factor:	1.0000			
Recording Time:	6/4/2014 13:49	Sample Weight:	1.0000			
Run Time (min):	29.39	Sample Amount:	1.0000			

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12.43	n.a.	122,577	46.128	96.89	n.a.	BMB*
2	23.68	n.a.	3.860	1.482	3.11	n.a.	BMB*
Total:			126.437	47.610	100.00	0.000	

HRMS for compound (S3)

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

IR spectra for compound (S3)

57

³¹P NMR spectrum of compound (15)

³¹P NMR spectrum of compound (16)

