data_x1 _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C3 H10 Cl3 N Sn' _chemical_formula_weight 285.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Sn' 'Sn' -0.6537 1.4246 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Cmc21 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z+1/2' '-x, y, z' 'x, -y, z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z+1/2' '-x+1/2, y+1/2, z' 'x+1/2, -y+1/2, z+1/2' _cell_length_a 9.476(5) _cell_length_b 8.290(5) _cell_length_c 12.340(5) _cell_angle_alpha 90.000(5) _cell_angle_beta 90.000(5) _cell_angle_gamma 90.000(5) _cell_volume 969.4(9) _cell_formula_units_Z 4 _cell_measurement_temperature 296 _cell_measurement_reflns_used 1238 _cell_measurement_theta_min 3.23 _cell_measurement_theta_max 22.43 _exptl_crystal_description plate _exptl_crystal_colour colorless _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.13 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.954 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 544 _exptl_absorpt_coefficient_mu 3.385 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.4299 _exptl_absorpt_correction_T_max 0.6673 _exptl_absorpt_process_details sadabs _exptl_special_details ; ? ; _diffrn_ambient_temperature 296 _diffrn_radiation_wavelength 0.71069 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX-II CCD' _diffrn_measurement_method '\f and \w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 5372 _diffrn_reflns_av_R_equivalents 0.0189 _diffrn_reflns_av_sigmaI/netI 0.0161 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -15 _diffrn_reflns_limit_l_max 15 _diffrn_reflns_theta_min 3.26 _diffrn_reflns_theta_max 27.57 _reflns_number_total 1169 _reflns_number_gt 1138 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker APEX2' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0195P)^2^+0.5551P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0065(4) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.02(3) _refine_ls_number_reflns 1169 _refine_ls_number_parameters 46 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0177 _refine_ls_R_factor_gt 0.0171 _refine_ls_wR_factor_ref 0.0435 _refine_ls_wR_factor_gt 0.0432 _refine_ls_goodness_of_fit_ref 1.098 _refine_ls_restrained_S_all 1.097 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Sn Sn 0.0000 0.03894(3) 0.6235 0.05777(11) Uani 1 2 d S . . Cl1 Cl 0.0000 0.01987(15) 0.82445(10) 0.0742(3) Uani 1 2 d S . . Cl2 Cl 0.18446(9) 0.25331(10) 0.62889(13) 0.0822(2) Uani 1 1 d . . . C3 C 1.0000 0.5849(10) 0.7844(8) 0.168(6) Uani 1 2 d S . . H3A H 0.9074 0.6040 0.7556 0.252 Uiso 0.50 1 calc PR . . H3B H 1.0666 0.5774 0.7260 0.252 Uiso 0.50 1 calc PR . . H3C H 1.0260 0.6723 0.8314 0.252 Uiso 0.50 1 calc PR . . N1 N 1.0000 0.4370(4) 0.8445(3) 0.0533(7) Uani 1 2 d S . . C2 C 0.8743(7) 0.4164(9) 0.9077(7) 0.150(3) Uani 1 1 d . . . H2A H 0.8671 0.3061 0.9307 0.224 Uiso 1 1 calc R . . H2B H 0.7934 0.4439 0.8646 0.224 Uiso 1 1 calc R . . H2C H 0.8782 0.4855 0.9701 0.224 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sn 0.07975(18) 0.04893(14) 0.04464(13) -0.00823(14) 0.000 0.000 Cl1 0.1104(10) 0.0641(6) 0.0480(6) 0.0040(4) 0.000 0.000 Cl2 0.0804(4) 0.0740(4) 0.0923(5) -0.0020(8) 0.0168(7) -0.0134(3) C3 0.317(19) 0.067(4) 0.120(8) 0.033(4) 0.000 0.000 N1 0.0614(19) 0.0465(16) 0.0520(17) -0.0018(13) 0.000 0.000 C2 0.135(5) 0.138(5) 0.176(7) -0.075(5) 0.091(5) -0.037(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Sn Cl1 2.4845(16) . ? Sn Cl2 2.4935(13) . ? Sn Cl2 2.4935(13) 3 ? C3 N1 1.432(8) . ? N1 C2 1.434(6) 3_755 ? N1 C2 1.434(6) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cl1 Sn Cl2 91.08(4) . . ? Cl1 Sn Cl2 91.08(4) . 3 ? Cl2 Sn Cl2 89.01(6) . 3 ? C3 N1 C2 112.5(5) . 3_755 ? C3 N1 C2 112.5(5) . . ? C2 N1 C2 112.3(9) 3_755 . ? _diffrn_measured_fraction_theta_max 0.990 _diffrn_reflns_theta_full 27.57 _diffrn_measured_fraction_theta_full 0.990 _refine_diff_density_max 0.403 _refine_diff_density_min -0.450 _refine_diff_density_rms 0.048