Supporting Information for:

Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH₃)₃SnX₃ (X= CI, Br)

Yangyang Dang,[†] Cheng Zhong,[‡] Guodong Zhang,[†] Dianxing Ju,[†]Lei Wang,[†] Shengqing Xia,[†] Haibing Xia[†] and Xutang Tao^{*†}

[†]State Key Laboratory of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan, 250100, P. R. China.

[‡]Solar and Photovoltaic Engineering Research Center (SPERC), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.

*E-mail: txt@sdu.edu.cn.

Experimental Section

Figure S1. Schematic illustrations for the growth equipment of bulk $NH(CH_3)_3SnX_3$ (X= Cl,

Br) single crystals.

Figure S2. The photos of opaque NH(CH₃)₃SnX₃ (X=Cl, Br) single crystals.

Figure S3. (a) The powder SHG signal of NH(CH₃)₃SnX₃ (X= CI, Br) compared with KH₂PO₄ (KDP) (particle size: 75-100 μ m). (b) Particle size dependence of SHG intensity for NH(CH₃)₃SnX₃ (X= CI, Br).

Figure S4. Temperature dependence of the SHG intensity of NH(CH₃)₃SnX₃ (X=CI, Br) measured on crystalline powder samples, compared with the KDP crystalline powder samples.

Figure S5. Powder and calculated X-ray diffraction patterns of NH(CH₃)₃SnX₃ (X= CI, Br) at different temperature.

Figure S6. Powder and calculated X-ray diffraction patterns of $NH(CH_3)_3SnX_3$ (X= CI, Br) when exposure to air for one month.

Experimental Section

Single-Crystal X-ray Diffraction and Powder X-ray diffraction. Single-crystal X-ray diffraction measurements were executed on a *Bruker SMART APEX-II* diffractometer equipped with a CCD detector (graphite-monochromated Mo-Kα radiation, $\lambda = 0.71073$ Å) at different temperature. Data integration and refinements were carried out with *APEX2* software.^[1] All the crystal structures were determined by direct methods and refined by full-matrix least-squares on F² using the *SHELXTL* program package.^[2] All the atom displacements in the crystal structure were fixed with anisotropic thermal parameters, and the refinements converged for Fo²>2σ (Fo²). Symmetry analysis on the model using *PLATON* functions ^[3] of the *WinGX* platform ^[4] showed that no evident space group alternation was required. *ISOTROPY* software^[5] was used to calculate the group-subgroup relationships and to find the correct space group. X-Ray powder diffraction (XRD) of polycrystalline material taken from the reaction solution was also collected using a *Bruker-AXS D8 ADVANCE X*-Ray diffractometer with Cu-Kα₁ radiation ($\lambda = 1.54186$ Å) in the range of 10°-90° (2θ) with a time setting of 0.1 second per step and a step length of 0.002°.

UV-vis diffuse reflectance spectra measurements. UV-vis diffuse reflectance spectroscopy was carried out using a Shimadzu UV-3101PC spectrophotometer equipped with an integrating sphere over the spectral range 200-800 nm. A BaSO₄ plate was used as the standard (100% reflectance). The absorption spectrum was calculated from the reflectance spectrum using the Kubelka-Munk function: $F(R) = \alpha/S = (1-R)^2/(2R)$,^[6] where α is the absorption coefficient, *S* is the scattering coefficient, and R is the reflectance.

Second-Harmonic Generation (SHG) measurements. The SHG effect of the NH(CH₃)₃SnX₃ (X= Cl, Br) powder samples was investigated using a Kurtz-Perry powder technique.^[7] A pulsed Q-switched Nd: YAG laser was utilized to generate fundamental 1064 nm light with a pulse width of pulse width of 10 ns, pulse duration of 1 Hz and pulse energy of 10 mJ. Polycrystalline samples of NH(CH₃)₃SnX₃ (X= Cl, Br) and KH₂PO₄ (KDP) were grinded and sieved to obtain distinct grain sizes ranges (40-60, 60-80, 125-175, 225-275, 275-325 μ m) in Figure S3. Microcrystalline KDP was served as the references. Besides, the temperature-dependent-SHG measurements were described elsewhere.^{17, 18}

Thermogravimetric analysis and Differential scanning calorimetry (DSC) measurements. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were carried out using a TGA/DSC1/1600HT analyzer (*METTLER TOLEDO* Instruments). The NH(CH₃)₃SnX₃ (X= CI, Br) powder samples were placed in a platinum crucible, and heated at a rate of 10 °C min⁻¹ from room temperature to 800 °C under flowing N₂ gas, respectively. Differential Scan calorimetry (DSC) measurements were performed on Polyma Instruments (*DSC-200-F3 Maia*). The NH(CH₃)₃SnX₃ (X= CI, Br) powder samples were placed in a platinum crucible, and heated at a rate of 10 °C min⁻¹ from room temperature to 10 °C min⁻¹ from room temperature to 800 °C under samples were placed in a platinum crucible, and heated at a rate of 10 °C min⁻¹ from room temperature to 150 °C, and then cooled to -70 °C in liquid N₂ atmosphere and shifted back to room temperature under flowing N₂ gas.

X-ray photoelectron spectroscopy (XPS) measurements. XPS measurements of the NH(CH₃)₃SnX₃ (X= CI, Br) on four samples with $3 \times 3 \times 1 \text{ mm}^3$ (newly synthesized and exposure to air one month) were performed on *ESCALAB* 250 (*ThermoFisher SCIENTIFIC*) instrument under vacuum atmosphere (1.7×10⁻¹⁰ mbar).

Band structure calculations. The initial single crystal structures for NH(CH₃)₃SnX₃ (X= CI, Br) were obtained from single-crystal X-ray crystallographic data. All the calculations were performed using VASP 5.3.3 software ^[9-12] and then the atomic positions were optimized at PBE ^[13-14]/PAW ^[15-16] level with k points set as 2*2*2. Based on the optimized structure, the band structure were calculated along the path G (0.0, 0.0, 0.0)-F (0.0, 0.5, 0.0)-Q (0.0, 0.5, 0.5)-Z (0.0, 0.0, 0.5)-G at the same the level of theory.

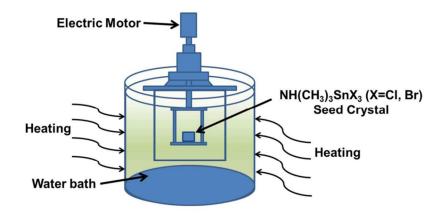
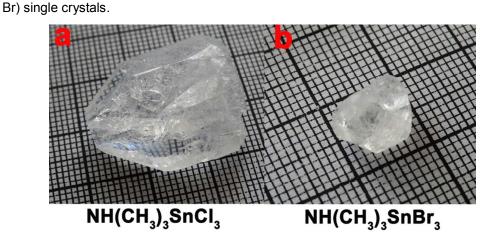
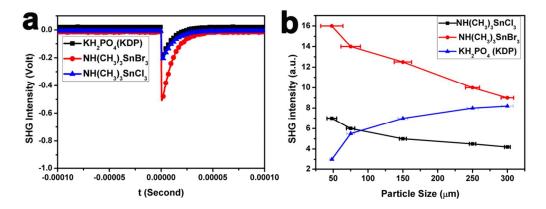
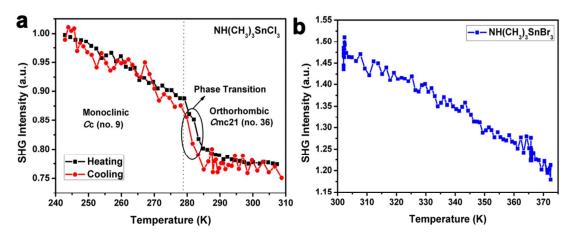
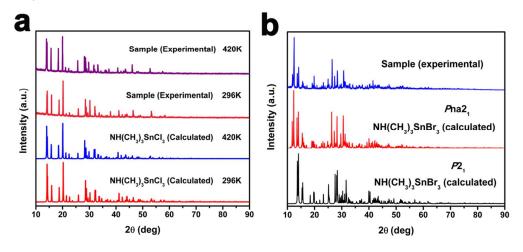


Figure S1. Schematic illustrations for the growth equipment of bulk NH(CH₃)₃SnX₃ (X= Cl,


Figure S2. The photos of opaque NH(CH₃)₃SnX₃ (X=Cl, Br) single crystals.

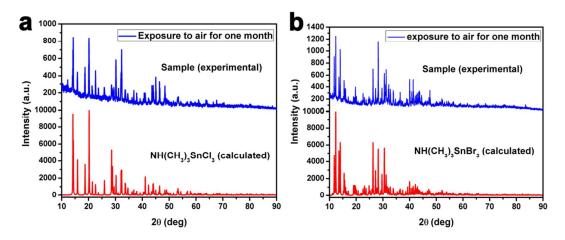

Figure S3. (a) The powder SHG signal of NH(CH₃)₃SnX₃ (X= Cl, Br) compared with KH₂PO₄ (KDP) (particle size: 75-100 μ m). (b) Particle size dependence of SHG intensity for NH(CH₃)₃SnX₃ (X= Cl, Br) compared with KH₂PO₄ (KDP).

Figure S4. Temperature dependence of the SHG intensity of $NH(CH_3)_3SnX_3$ (X=Cl, Br) measured on crystalline powder samples, compared with the KDP crystalline powder samples.

Figure S5. Powder and calculated X-ray diffraction patterns of NH(CH₃)₃SnX₃ (X= CI, Br). (a) Powder and calculated X-ray diffraction patterns of NH(CH₃)₃SnCl₃ at different temperature; (b) Powder and calculated X-ray diffraction patterns with space group Pna2₁ by NH(CH₃)₃SnBr₃ single crystal measurements, and calculated X-ray diffraction pattern with space group P2₁ reported by Thiele, et al.^[8]

Figure S6. Powder and calculated X-ray diffraction patterns of $NH(CH_3)_3SnX_3$ (X= Cl, Br) when exposure to air for one month.

References

- [1]Bruker, APEX2, Bruker Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA, 2005.
- [2]Sheldrick, G. M. SHELXTL, version 6.12, Bruker Analytical X-ray Instruments, Inc., Madison, WI, 2001.
- [3]Spek, A. L. J. Appl. Crystallogr., 2003, 36, 7-13.
- [4]Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837-838.
- [5] Stokes H. T.; Hatch, D. M.; Campbell, B. J. *ISOTROPY*; Department of Physics and Astronomy, Brigham Young University: Provo, Utah, 2007; stokes.byu.edu/isotropy.html.
- [6]Wendlandt, W. M.; Hecht, H. G. *Reflectance Spectroscopy*, Interscience, New York, 1966, p. 62.
- [7]Kurtz, S. K. and Perry, T. T. J. Appl. Phys. 1968, 39, 3798-3813.
- [8]Thiele, G.; Seer, B. R. Z. Kristallogr., 1996, 211, 46.
- [9]Kresse, G. and Hafner, J. Phys. Rev. B, 1993, 47, 558-561.
- [10]Kresse G. and Hafner, J. Phys. Rev. B, 1994, 49, 14251-14269.
- [11]Kresse G. and Furthmüller, J. Comput. Mat. Sci., 1996, 6, 15-50
- [12]Kresse G. and Furthmüller, J. Phys. Rev. B, 1996, 54, 11169-11186.
- [13]Perdew, J.; P. Burke, K. and Ernzerhof, M. Phys. Rev. Lett., 1996, 77, 3865-3868.
- [14]Perdew, J.; P. Burke, K. and Ernzerhof, M. Phys. Rev. Lett., 1997, 78, 1396.
- [15]Blochl, P. E. Phys. Rev. B, 1994, 50, 17953-17979.
- [16]Kresse, G. and Joubert, D. Phys. Rev. B, 1999, 59, 1758-1775.
- [17]Ye, H. Y. et al. J. Am. Chem. Soc., 2014,136, 10033-10040.
- [18]Zhang, Y. et al. Angew. Chem. Int. Ed., 2014, 53, 5064-5068.