Supporting Information

Exploring the Scope of Asymmetric Synthesis of β-Hydroxy- γ-lactams via Noyori-type Reductions

Denis Lynch, ${ }^{\dagger}$ Rebecca E. Deasy, ${ }^{\dagger}$ Leslie-Ann Clarke, ${ }^{\dagger}$ Catherine N. Slattery, ${ }^{\dagger}$ U. B. Rao Khandavilli, ${ }^{\dagger}$ Simon E. Lawrence, ${ }^{\dagger}$ Anita R. Maguire ${ }^{*, \ddagger}$ Nicholas A. Magnus, ${ }^{\S}$ and Humphrey A. Moynihan"
${ }^{\dagger}$ Department of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
${ }^{\dagger}$ Department of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
${ }^{s}$ Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States

"Eli Lilly SA, Dunderrow, Kinsale, Co. Cork, Ireland
*E-mail: a.maguire@ucc.ie

Table of Contents

General Information S2
Preparation of β-Keto- γ-lactams S3
Racemic Synthesis of β-Hydroxy- γ-lactams S10
General Procedures for Asymmetric Synthesis of β-Hydroxy- γ-lactams S22
References S26
Chiral HPLC Chromatograms S27
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S63
X-Ray Crystallographic Structures S91

General Information

Solvents were distilled prior to use as follows: dichloromethane was distilled from phosphorus pentoxide; ethyl acetate was distilled from potassium carbonate; tetrahydrofuran was distilled from sodium-benzophenone ketyl; ethanol and methanol were distilled from the corresponding magnesium alkoxide. Isopropanol was dried before use with activated $4 \AA$ molecular sieves. Anhydrous 2-methyltetrahydrofuran was purchased from Sigma-Aldrich and was not subjected to additional drying protocols prior to use. Butyl lithium was also purchased from Sigma-Aldrich, as a 2.5 M solution in hexanes, and its concentration was determined by the Gilman double titration method ${ }^{1}$ not more than 4 days prior to use. Organic phases were dried using anhydrous magnesium sulfate. All commercial reagents were used without further purification.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 MHz and 75.5 MHz respectively on a Bruker Avance 300 spectrometer, while ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 MHz and 100.6 MHz respectively on a Bruker Avance 400 spectrometer. All NMR spectra were recorded at 300 K . Chemical shifts are given in ppm relative to tetramethylsilane (TMS) as an internal standard. Coupling constants (J) are given in hertz $(\mathrm{Hz}$). Infrared spectra were measured using a Perkin-Elmer FTIR UATR2 Spectrometer. Melting points were measured using a Uni-Melt Thomas Hoover capillary melting point apparatus and are not corrected. Optical rotations were measured using Perkin-Elmer 141 polarimeter at $20^{\circ} \mathrm{C}$ at 589 nm in a 10 cm cell; concentrations (c) are expressed in $\mathrm{g} / 100 \mathrm{~mL}$, and $[\alpha]$ is expressed in units of 10^{-1} $\mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. High resolution mass spectra (HRMS) were recorded on a Waters LCT Premier Time of Flight (ToF) spectrometer in electrospray ionization (ESI) mode. Samples were prepared for HRMS using acetonitrile as solvent. Single crystal X-ray data was collected at University College Cork on a Bruker APEX II DUO diffractometer using $\mathrm{Cu} \mathrm{K} \alpha$ radiation (Incoatec Montel Multilayer Mirror monochromator, $\lambda=1.54178 \AA$). All calculations were performed using the APEX2 software suite and the diagrams prepared with Mercury 3.8. The $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ hydrogen atoms were found and refined were possible and the positions of the other hydrogen atoms were calculated and allowed to ride on the parent atom.

Wet flash chromatography was performed using silica gel 60 . Thin-layer chromatography (TLC) was carried out on precoated silica gel plates (60 PF254). Visualization was achieved by UV (254 nm) detection and/or staining with phosphomolybdic acid. 1-Benzyl-3-(3-methylbutanoyl)pyrrolidin-2-one 3a, ${ }^{2}$ 1-benzyl-3-(1-hydroxy-3-methyl-butyl)pyrrolidin-2one (\pm)-4/9a, ${ }^{2}$ methyl cyclopropylacetate, ${ }^{3}$ and methyl cyclohexylcarboxylate ${ }^{4}$ were prepared
as described in the literature-the isolated products product demonstrating identical physical and spectroscopic properties to those previously described. All reactions were conducted under a nitrogen atmosphere, unless otherwise stated.

Preparation of $\boldsymbol{\beta}$-Keto- $\boldsymbol{\gamma}$-lactams

Method A

Diisopropylamine (2.2 equiv) was combined with 2-MeTHF, cooled to $-7^{\circ} \mathrm{C}$, and $n-\mathrm{BuLi}$ in hexanes (2.2 equiv) was added over 30 min . 1-Benzylpyrrolidin-2-one (1) (1 equiv), ester (1.17 equiv), and $2-\mathrm{MeTHF}$ were combined and added to the LDA/2-MeTHF mixture over 30 min , while maintaining the reaction temperature between -10 to $5^{\circ} \mathrm{C}$, to afford a slurry. After 45 min , heptane was added to the mixture over 30 min at -5 to $5{ }^{\circ} \mathrm{C}$. The slurry was filtered and the off-white solids were rinsed with $1: 1$ heptane/2-Me-THF. The solids were then suspended in MTBE, 10% aqueous citric acid was added, and the mixture stirred for 30 min to give two homogeneous phases (aq. phase $\mathrm{pH} 4-5$). A further portion of MTBE was added and the organic phase was separated, washed with water, dried and concentrated to afford the crude β-keto- γ-lactam product. In agreement with an earlier report, ${ }^{2}$ the NMR spectra of the purified products $\mathbf{3 e}$ and $\mathbf{7 c}$ showed evidence for the presence of a minor enol tautomer ($<10 \%$ in both cases): some characteristic signals were seen for the enol form and are listed in both cases, in addition the integration of the C - 3 H signal of the β-keto- γ-lactams were decreased relative to those of their other ${ }^{1} \mathrm{H}$ signals.

Method B

Diisopropylamine (1.05 equiv) was combined with THF, cooled to $-20^{\circ} \mathrm{C}$, and $n-\mathrm{BuLi}$ in hexanes (1 equiv) was added over approximately 15 min , while maintaining the temperature below $0{ }^{\circ} \mathrm{C}$. The LDA/THF mixture was then cooled to $-75^{\circ} \mathrm{C}$, before a solution of 1 -benzylpyrrolidin-2-one (1) (1 equiv) in THF was added over 30 min . During this addition the reaction temperature was maintained below $-60^{\circ} \mathrm{C}$. The resulting mixture was stirred for 40 min at $-75^{\circ} \mathrm{C}$, after which a solution the ester (1.17 equiv) in THF was added over approximately 20 min , again while maintaining the reaction temperature between below -60 ${ }^{\circ} \mathrm{C}$. After the addition was complete, the mixture was stirred for 1 h at $-75^{\circ} \mathrm{C}$, affording a homogenous mixture. The reaction was then allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$, over approximately 1.5 h , whereupon 10% aqueous citric acid was added to the resulting slurry. This mixture was stirred vigorously for 1 h to give two homogenous phases, to which MTBE was added. The organic phase was separated, washed with water and brine, dried, and
concentrated to afford the crude β-keto- γ-lactam product. In agreement with an earlier report, ${ }^{2}$ the NMR spectra of the purified products $\mathbf{3 b - d}$ and $\mathbf{7 a}, \mathbf{7 b}$ and $\mathbf{7 d}$ showed evidence for the presence of a minor enol tautomer ($<10 \%$ in all cases): some characteristic signals were seen for the enol form, and are listed in all cases, in addition the integration of the $\mathrm{C}-3 \mathrm{H}$ signal of the β-keto- γ-lactams were decreased relative to those of their other ${ }^{1} \mathrm{H}$ signals.

1-Benzyl-3-(2-cyclopropylacetyl)pyrrolidin-2-one (3b)

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine ($6.16 \mathrm{~mL}, 46.0 \mathrm{mmol}$) with THF (44 mL), and adding $2.51 \mathrm{M} n-\mathrm{BuLi}$ in hexanes ($17.5 \mathrm{~mL}, 43.9 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($7.68 \mathrm{~mL}, 43.8 \mathrm{mmol}$) in (10 ml) THF and methyl 2-cyclopropylacetate ($5.0 \mathrm{~g}, 43.8 \mathrm{mmol}$) in THF (9 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (40 mL) was added to the resulting slurry at $0{ }^{\circ} \mathrm{C}$. MTBE (60 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 25 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried, and concentrated to afford the crude product ($5.71 \mathrm{~g}, 93 \%$) as a viscous yellow oil. Purification by wet flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) afforded 3b ($2.50 \mathrm{~g}, 41 \%$) as a yellow oil: $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3008,2889,1674,1429,1384,1261,700 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.10-0.25 (2 H , sym m, one of each cyclopropyl CH_{2}), 0.48-0.64 (2 H , sym m, one of each cyclopropyl CH_{2}), $0.97-1.13\left(1 \mathrm{H}\right.$, sym m, C-3'H), $1.94-2.09\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right)$, 2.47-2.60 $\left(1 \mathrm{H}\right.$, sym m, one of C-4H2), $2.64\left(1 \mathrm{H}, \mathrm{dd}, ~ J=17.5,6.8\right.$, one of C-2 $\left.{ }^{\prime} \mathrm{H}_{2}\right), 2.83(1 \mathrm{H}$, dd, $\left.J=15.7,7.0, \mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 3.15-3.25\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.28-3.38(1 \mathrm{H}, \mathrm{td}, J=9.2$, 5.6, one of C-5H2), $3.70(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.8, \mathrm{C}-3 \mathrm{H}), 4.34-4.51\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.38\right.$ and δ_{Hb} $\left.=4.47, J=14.7, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.16-7.23(2 \mathrm{H}, \mathrm{m}, 2 \times$ ortho -ArH$), 7.23-7.39(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.2\left(\mathrm{CH}_{2}\right.$ of cyclopropyl), $4.5\left(\mathrm{CH}_{2}\right.$ of cyclopropyl), 5.8 (C$\left.3^{\prime} \mathrm{H}\right), 19.6\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.7\left(\mathrm{C}-\mathbf{2}^{\prime} \mathrm{H}_{2}\right), 54.5(\mathrm{C}-3 \mathrm{H}), 127.6$ (aromatic CH), 128.0 (aromatic CH), 128.7 (aromatic CH), 135.9 (aromatic C), 169.9 (C-2), 205.8 (C-1'). HRMS (ESI +): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$258.1494. Found: 258.1498. A small amount of the enol tautomer is indicated in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b}$ by the reduced integration of the $\mathrm{C}-3 \mathrm{H}$ signal relative to those of the other β-keto- γ-lactam signals, although no characteristic signals were identified for the enol form.

1-Benzyl-3-(2-cyclohexylacetyl)pyrrolidin-2-one (3c)

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine ($3.94 \mathrm{~mL}, 28.1$ mmol) with THF (15 mL), and adding 2.10M n-BuLi in hexanes (12.2 $\mathrm{mL}, 25.6 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) (3.74 mL , 25.6 mmol) in THF (32 ml) and ethyl cyclohexylacetate ($5.38 \mathrm{~mL}, 30.0$ mmol) in THF (4 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0^{\circ} \mathrm{C}$. MTBE (30 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water ($2 \times 15 \mathrm{~mL}$) and brine $(20 \mathrm{~mL})$, dried, and concentrated to afford the crude product $(7.51 \mathrm{~g}, 98 \%)$ as a viscous orange oil. Purification by wet flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes} \mathrm{)} \mathrm{afforded}$ $3 \mathrm{c}(4.83 \mathrm{~g}, 63 \%)$ as an orange oil: $v_{\max }$ (UATR) $/ \mathrm{cm}^{-1} 2921,2851,1714,1678,1448,1428$, $1260,729,700 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86-1.06(2 \mathrm{H}, \mathrm{m}$, cyclohexyl), 1.06-1.38 (3H, m, cyclohexyl), 1.56-1.81 (5H, m, cyclohexyl), 1.81-2.08 ($2 \mathrm{H}, \mathrm{m}$, one of cyclohexyl and one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.42-2.53\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.56(1 \mathrm{H}, \mathrm{dd}, J=17.0,6.2$, one of C$\left.2^{\prime} \mathrm{H}_{2}\right), 2.83\left(1 \mathrm{H}, \mathrm{dd}, J=17.0,7.3\right.$, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 3.19\left(1 \mathrm{H}, \mathrm{td}, J=9.1,5.5\right.$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right)$, $3.32(1 \mathrm{H}, \mathrm{td}, J=9.1,5.5$, one of C-5H2), $3.60(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.7, \mathrm{C}-3 \mathrm{H}), 4.36-4.49(2 \mathrm{H}$, $\mathrm{ABq}, \delta_{\mathrm{Ha}}=4.39$ and $\left.\delta_{\mathrm{Hb}}=4.46, \quad J=14.7, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.16-7.23(2 \mathrm{H}, \mathrm{m}, 2 \times$ ortho-ArH) , 7.23-7.37 (3H, m, $3 \times \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.8\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 26.0$ (cyclohexyl CH_{2}), 26.1 (cyclohexyl CH_{2}), 26.2 (cyclohexyl CH_{2}), 32.9 (cyclohexyl CH_{2}), 33.2 (cyclohexyl CH_{2}), $33.4\left(\mathrm{C}-3^{\prime} \mathrm{H}\right), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 50.2\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 55.3(\mathrm{C}-3 \mathrm{H})$ 127.7 (aromatic CH), 128.0 (aromatic CH), 128.7 (aromatic CH), 136.0 (aromatic C), 170.0 (C-2), 205.6 (C-1'). HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} \quad$ 300.1964. Found: 300.1952. A small amount of the enol tautomer appears in the NMR spectra of 7c and the following characteristic signals were identified: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.78(1 \mathrm{H}$, br s, OH).

1-Benzyl-3-(2-phenylacetyl)pyrrolidin-2-one (3d)

3d

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine ($3.36 \mathrm{~mL}, 24.0$ mmol) with THF (15 mL), and adding $2.51 \mathrm{M} n-\mathrm{BuLi}$ in hexanes $(9.1 \mathrm{~mL}$, 22.8 mmol). Solutions of 1-benzylpyrrolidin-2-one (1) ($3.65 \mathrm{~mL}, 22.83$ mmol) in THF (32 mL) and methyl phenylacetate ($4.0 \mathrm{~g}, 26.7 \mathrm{mmol}$) in THF (4 mL) were added sequentially to the LDA/THF mixture. 10%

Aqueous citric acid (25 mL) was added to the resulting slurry at $0^{\circ} \mathrm{C}$. MTBE $(25 \mathrm{~mL})$ was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 15 \mathrm{~mL})$ and brine (30 mL), dried, and concentrated to afford the crude product $(5.56 \mathrm{~g}, 83 \%)$ as a viscous orange oil. Purification by wet flash chromatography (20% EtOAc/hexanes), afforded $\mathbf{3 d}(4.62 \mathrm{~g}, 69 \%)$ as an orange oil: $v_{\max }$ (UATR) $/ \mathrm{cm}^{-1} 3030,2892$, 2887, 1717, 1675, 1495, 1453, 1429, 1384, 1260, 697; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.85-$ $2.01\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.42-2.56\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 3.11-3.22(1 \mathrm{H}$, sym m , one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.29\left(1 \mathrm{H}, \mathrm{td}, J=9.2,5.3\right.$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.75(1 \mathrm{H}, \mathrm{dd}, J=9.3,6.1, \mathrm{C}-3 \mathrm{H})$, 4.07-4.23 $\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.11 \mathrm{and}, \delta_{\mathrm{Hb}}=4.19, J=15.7, \mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 4.34-4.52\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}\right.$ $=4.39$ and $\left.\delta_{\mathrm{Hb}}=4.48, \quad J=14.7, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.14-7.39(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.6\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 44.9\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 47.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 49.4\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 53.8(\mathrm{C}-3 \mathrm{H})$, 127.0 (aromatic CH), 127.7 (aromatic CH), 128.0 (aromatic CH), 128.6 (aromatic CH), 128.7 (aromatic CH), 129.8 (aromatic CH), 133.8 (aromatic C), 135.8 (aromatic C), 169.7 (C-2), 203.3 ($\mathrm{C}-1^{\prime}$). HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$294.1494. Found: 294.1497. A small amount of the enol tautomer appears in the NMR spectra of 7c and the following characteristic signals were identified: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.58-2.65$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.4, \mathrm{C}-4 \mathrm{H}_{2}\right), 11.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$.

1-Benzyl-3-(3,3-dimethylbutanoyl)pyrrolidin-2-one (3e)

This compound was prepared following the general procedure ($\operatorname{Method} A$), starting by combining diisopropylamine ($7.04 \mathrm{~mL}, 50.2 \mathrm{mmol}$) with 2MeTHF (22 mL), and adding $2.02 \mathrm{M} n-\mathrm{BuLi}$ in hexanes ($24.5 \mathrm{~mL}, 49.5$ mmol). 1-Benzylpyrrolidin-2-one (1) ($3.65 \mathrm{~mL}, 22.83 \mathrm{mmol}$, ethyl 3,3dimethylbutyrate ($3.83 \mathrm{~mL}, 22.83 \mathrm{mmol}$), and 2-MeTHF (18 mL) were combined and added to the LDA/2-MeTHF mixture. Heptane (40 mL) was used to precipitate the enolate and $1: 1$ heptane $/ 2-\mathrm{Me}-\mathrm{THF}(8 \mathrm{~mL})$ was used to rinse the resulting filtered offwhite solids. The solids were suspended in MTBE (40 mL) and 10% aqueous citric acid (40 mL) was added. MTBE (16 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 15 \mathrm{~mL})$, dried, and concentrated to afford the crude product ($4.82 \mathrm{~g}, 77 \%$) as a viscous purple oil. Purification by wet flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) afforded $3 \mathrm{e}\left(4.13 \mathrm{~g}, 66 \%\right.$) as a purple oil: $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 2953$, $1716,1679,1428,1362,1259,699 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right)$, 1.90-2.05 $\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.41-2.54\left(1 \mathrm{H}\right.$, sym m, one of C-4 $\left.\mathrm{H}_{2}\right), 2.64(1 \mathrm{H}, \mathrm{d}, J=$ 16.4, one of C-2' H_{2}), $2.86\left(1 \mathrm{H}, \mathrm{d}, J=16.4\right.$, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 3.18(1 \mathrm{H}, \mathrm{td}, J=9.2,5.5$, one of
$\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.31\left(1 \mathrm{H}, \mathrm{td}, J=9.1,5.5\right.$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.6, \mathrm{C}-3 \mathrm{H}), 4.35-4.49$ $\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.39\right.$ and $\left.\delta_{\mathrm{Hb}}=4.46, J=14.7, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.15-7.22(2 \mathrm{H}, \mathrm{m}, 2 \times$ ortho-ArH $)$, 7.22-7.40 (3H, m, $3 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.5\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 29.4\left(\mathrm{CH}_{3}\right), 30.7$ (C-3'), 44.9 (C-5), $46.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 54.6\left(\mathrm{C}-2^{\prime}\right), 56.1(\mathrm{C}-3 \mathrm{H}), 127.5$ (aromatic CH$), 127.9$ (aromatic CH), 128.6 (aromatic CH), 135.9 (aromatic C), 169.9 (C-2), 205.2 (C-1'); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$274.1807. Found: 274.1802. A small amount of the enol tautomer appears in the NMR spectra of $\mathbf{3 e}$ and the following characteristic signals were identified: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$.

1-Benzyl-3-isobutyrylpyrrolidin-2-one (7a)

7a

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine ($3.36 \mathrm{~mL}, 24.0 \mathrm{mmol}$) with THF (15 mL), and adding 2.10M n-BuLi in hexanes ($10.9 \mathrm{~mL}, 22.89 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($3.65 \mathrm{~mL}, 22.83 \mathrm{mmol}$) in THF (32 mL) and methyl ethyl isobutyrate ($3.58 \mathrm{~mL}, 26.7 \mathrm{mmol}$) in THF (4 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0{ }^{\circ} \mathrm{C}$. MTBE (25 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 15 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried and concentrated to afford the crude product ($4.42 \mathrm{~g}, 79 \%$) as a viscous orange oil. Purification by wet flash chromatography (20% EtOAc/hexanes) afforded $7 \mathrm{7a}$ ($3.52 \mathrm{~g}, 63 \%$) as an orange oil: $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 2970,1714,1678,1428,1260,700 ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ $1.02\left(3 \mathrm{H}, \mathrm{d}, J=6.8, \mathrm{CH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, J=7.1, \mathrm{CH}_{3}\right), 1.97-2.13\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right)$, 2.14-2.29 ($1 \mathrm{H}, \mathrm{m}$, one of $\mathrm{C}-4 \mathrm{H}_{2}$), $3.06\left(1 \mathrm{H}\right.$, sept, $\left.J=6.9, \mathrm{C}-2^{\prime} \mathrm{H}\right), 3.15-3.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right)$, $4.00(1 \mathrm{H}, \mathrm{dd}, J=9.2,6.7, \mathrm{C}-3 \mathrm{H}), 4.31-4.45\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.35\right.$ and $\delta_{\mathrm{Hb}}=4.42, J=15.0$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 7.17-7.24\left(2 \mathrm{H}, \mathrm{m}, 2 \times\right.$ ortho-ArH), 7.24-7.40(3H, m, $3 \times \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- $\left.d_{6}\right) \delta 17.1\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 39.8\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 44.6\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 45.7$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 52.1(\mathrm{C}-3 \mathrm{H}), 127.2$ (aromatic CH), 127.5 (aromatic CH), 128.5 (aromatic CH), 136.5 (aromatic C), 170.1 (C-2), 210.5 (C-1'); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$246.1494. Found: 246.1490. A small amount of the enol tautomer appears in the NMR spectra of $\mathbf{7 c}$ and the following characteristic signals were identified: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 2.56-2.63\left(2 \mathrm{H}, \mathrm{t}, J=7.4, \mathrm{C}-4 \mathrm{H}_{2}\right), 11.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$.

1-Benzyl-3-(cyclopropanecarbonyl)pyrrolidin-2-one (7b)

7b

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine ($3.36 \mathrm{~mL}, 24.0 \mathrm{mmol}$) with THF (15 mL), and adding 1.77M n-BuLi in hexanes ($12.9 \mathrm{~mL}, 22.8 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($3.65 \mathrm{~mL}, 22.83 \mathrm{mmol}$) in THF (32 mL) and methyl cyclopropylcarboxylate ($2.67 \mathrm{~g}, 26.7 \mathrm{mmol}$) in THF (4 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0{ }^{\circ} \mathrm{C}$. MTBE (25 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 15 \mathrm{~mL})$ and brine (30 mL), dried and concentrated to afford the crude product ($4.33 \mathrm{~g}, 78 \%$) as a viscous yellow oil. Purification by wet flash chromatography (20% EtOAc/hexanes), afforded 7 bb ($3.66 \mathrm{~g}, 66 \%$) as an orange oil: $v_{\max }$ (UATR)/cm ${ }^{-1} 3007,2921,1674,1429,1384,1261,700 ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95-1.22\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right.$ of cyclopropyl), $1.97-2.11(1 \mathrm{H}$, sym m, C-2'H), $2.45-2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 \mathrm{H}_{2}\right), 3.15-3.25\left(1 \mathrm{H}\right.$, sym m, one of C-5 H_{2}), 3.25-3.36 (1 H , sym m, one of C-5H2), $3.80(1 \mathrm{H}, \mathrm{dd}, J=9.3,5.5, \mathrm{C}-3 \mathrm{H}), 4.36-4.54\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.41\right.$ and $\delta_{\mathrm{Hb}}=4.50$, $\left.J=14.7, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.18-7.37(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.7\left(\mathrm{CH}_{2}\right.$ of cyclopropyl), $12.2\left(\mathrm{CH}_{2}\right.$ of cyclopropyl), $19.8\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 20.4\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 45.0\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.9$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 55.6(\mathrm{C}-3 \mathrm{H}), 127.6$ (aromatic CH), 128.0 (aromatic CH), 128.7 (aromatic CH), 136.0 (aromatic C), 170.2 (C-2), 205.9 (C-1'). HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$244.1338. Found: 244.1331. A small amount of the enol tautomer appears in the NMR spectra of $\mathbf{7 c}$ and the following characteristic signals were identified: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.19-0.29\left(2 \mathrm{H}, \mathrm{m}\right.$, one of CH_{2} of cyclopropyl), $0.58-0.66(2 \mathrm{H}, \mathrm{m}$, one of CH_{2} of cyclopropyl), 2.81-2.90 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0, \mathrm{C}-4 \mathrm{H}_{2}$).

1-Benzyl-3-(cyclohexanecarbonyl)pyrrolidin-2-one (7c)

This compound was prepared following the general procedure (Method A), starting by combining diisopropylamine ($17.25 \mathrm{~mL}, 123 \mathrm{mmol}$) with 2-MeTHF (55 mL), and adding $2.51 \mathrm{M} n-\mathrm{BuLi}$ in hexanes ($49 \mathrm{~mL}, 123$ mmol). 1-Benzylpyrrolidin-2-one (1) ($9.13 \mathrm{~mL}, 57.1 \mathrm{mmol}$), methyl cyclohexylcarboxylate ($9.74 \mathrm{~g}, 68.5 \mathrm{mmol}$), and 2-MeTHF (45 mL) were combined and added to the LDA/2-MeTHF mixture. Heptane (60 mL) was used to precipitate
the enolate and $1: 1$ heptane $/ 2-\mathrm{Me}-\mathrm{THF}(30 \mathrm{~mL})$ was used to rinse the resulting filtered offwhite solids. The solids were suspended in MTBE (100 mL) and 10% aqueous citric acid $(100 \mathrm{~mL})$ was added. MTBE (40 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 50 \mathrm{~mL})$, dried, and concentrated to afford the crude product ($6.50 \mathrm{~g}, 40 \%$) as a viscous purple oil. Purification by wet flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) afforded $7 \mathrm{c}\left(5.50 \mathrm{~g}, 34 \%\right.$) as a purple oil: $v_{\max }$ (UATR)/ $\mathrm{cm}^{-1} 2921,2850,1714,1679,1447,1428,1260,696 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.11-1.53 (5H, m, cyclohexyl), 1.63-1.92 (4H, m, cyclohexyl), 1.93-2.08 ($2 \mathrm{H}, \mathrm{m}$, one of cyclohexyl and one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.37-2.51\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.98(1 \mathrm{H}, \mathrm{tt}, J=11.2$, $\left.3.3, \mathrm{C}-2^{\prime} \mathrm{H}\right), 3.19\left(1 \mathrm{H}, \mathrm{ddd}, J=9.6,8.8,5.4\right.$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.34(1 \mathrm{H}, \mathrm{td}, J=9.1,5.4$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.81(1 \mathrm{H}, \mathrm{dd}, J=9.2,5.6, \mathrm{C}-3 \mathrm{H}), 4.34-4.51\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.38\right.$ and $\delta_{\mathrm{Hb}}=4.47, J$ $\left.=14.8, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.16-7.23(2 \mathrm{H}, \mathrm{m}, 2 \times$ ortho-ArH), 7.24-7.37(3H, m, $3 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.3\left(\mathrm{C}-4 \mathrm{H}_{2}\right.$), 25.1 (cyclohexyl CH_{2}), 25.9 (cyclohexyl CH_{2}), 26.0 (cyclohexyl CH_{2}), 27.3 (cyclohexyl CH_{2}), 29.1 (cyclohexyl CH_{2}), $45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.9$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 50.0\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 52.8(\mathrm{C}-3 \mathrm{H}) 127.6$ (aromatic CH$), 128.0$ (aromatic CH$), 128.7$ (aromatic CH), 136.0 (aromatic C), 170.2 (C-2), 209.4 (C-1'); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$286.1807. Found: 286.1801. A small amount of the enol tautomer appears in the NMR spectra of $7 \mathbf{c}$ and the following characteristic signals were identified: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.58-2.65\left(2 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{C}-4 \mathrm{H}_{2}\right), 11.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH).

3-Benzoyl-1-benzylpyrrolidin-2-one (7d)

7d

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine ($6.72 \mathrm{~mL}, 48.2 \mathrm{mmol}$) with THF (30 mL), and adding $2.51 \mathrm{M} n-\mathrm{BuLi}$ in hexanes ($18.2 \mathrm{~mL}, 45.7 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($7.30 \mathrm{~mL}, 45.7 \mathrm{mmol}$) in THF (40 mL) and methyl benzoate ($6.68 \mathrm{~mL}, 53.4 \mathrm{mmol}$) in THF (8 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid $(40 \mathrm{~mL})$ was added to the resulting slurry at $0^{\circ} \mathrm{C}$. MTBE (40 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water ($2 \times 30 \mathrm{~mL}$) and brine (50 mL), dried, and concentrated to afford the crude product ($10.58 \mathrm{~g}, 83 \%$) as a viscous orange oil. Purification by wet flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) afforded $7 \mathbf{d}(6.12 \mathrm{~g} 48 \%)$ as an orange oil: $v_{\max }$ (UATR)/ cm^{-1} 2921, 2891, 1691, 1668, 1448, 1428, 1261, 1223, 699, 687; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.15-2.31\left(1 \mathrm{H}\right.$, sym m, one of C-4 $\left.\mathrm{H}_{2}\right), 2.52-2.66\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right)$,
$3.29\left(1 \mathrm{H}, \mathrm{td}, J=9.1,4.4\right.$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.43-3.58\left(1 \mathrm{H}, \mathrm{sym} \mathrm{m}\right.$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 4.39-4.54$ $\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.43\right.$ and $\left.\delta_{\mathrm{Hb}}=4.51, J=14.6, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.54(1 \mathrm{H}, \mathrm{dd}, J=9.1,4.8, \mathrm{C}-3 \mathrm{H})$, $7.21-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 7.46-7.54(2 \mathrm{H}, \mathrm{sym} \mathrm{m}, 2 \times \mathrm{ArH}), 7.55-7.63(1 \mathrm{H}, \mathrm{sym} \mathrm{m}, \mathrm{ArH})$, $8.14(2 \mathrm{H}, \mathrm{d}, J=7.0,2 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.9\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 45.4\left(\mathrm{C}-5 \mathrm{H}_{2}\right)$, $47.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 50.6(\mathrm{C}-3 \mathrm{H}), 127.6$ (aromatic CH), 128.0 (aromatic CH), 128.5 (aromatic CH), 128.7 (aromatic CH), 129.5 (aromatic CH), 133.5 (aromatic CH), 136.0 (aromatic C), 136.2 (aromatic C), 170.2 (C-2), 196.3 (C-1'). HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$280.1338. Found: 280.1332. A small amount of the enol tautomer appears in the NMR spectra of $\mathbf{7 c}$ and the following characteristic signals were identified: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.91-2.99\left(2 \mathrm{H}, \mathrm{t}, J=7.0, \mathrm{C}-4 \mathrm{H}_{2}\right), 7.66-7.72(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH})$, $7.84-7.92(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH}), 8.02(2 \mathrm{H}, \mathrm{t}, J=7.5,2 \times \mathrm{ArH}), 12.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$.

1-Benzyl-3-pivaloylpyrrolidin-2-one (7e)

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine (3.36 mL) with THF (15 mL), and adding $2.51 \mathrm{M} n-\mathrm{BuLi}$ in hexanes $(9.1 \mathrm{~mL}, 22.8 \mathrm{mmol})$. Solutions of $1-$ benzylpyrrolidin-2-one (1) ($3.65 \mathrm{~mL}, 22.83 \mathrm{mmol}$) in THF (32 mL) and methyl pivalate ($3.55 \mathrm{~g}, 26.7 \mathrm{mmol}$) in THF (4 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0^{\circ} \mathrm{C}$. MTBE $(25 \mathrm{~mL})$ was added to the two homogeneous phases and the organic phase was separated, washed with water ($2 \times 15 \mathrm{~mL}$) and brine (30 mL), dried, and concentrated to afford the crude product ($4.61 \mathrm{~g}, 78 \%$) as a viscous orange oil. Purification by wet flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) afforded $7 \mathrm{e}\left(3.61 \mathrm{~g}, 61 \%\right.$) as an orange oil: $v_{\max }$ (ATR)/ $/ \mathrm{cm}^{-1} 3400,3005,2877,1657,1432,1280,1258,1028,700 ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.23\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 2.09-2.18(2 \mathrm{H}$, sym m, C-4H2$), 3.22(1 \mathrm{H}, \mathrm{td}, J=9.4,6.9$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.43\left(1 \mathrm{H}, \mathrm{td}, J=9.4,6.9\right.$, one of $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 4.08(1 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{C}-3 \mathrm{H}), 4.39-$ $4.52\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.42\right.$ and $\left.\delta_{\mathrm{Hb}}=4.49, \quad J=14.9, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.21-7.37(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.8(\mathrm{C}-4 \mathrm{H}), 25.7\left(\mathrm{CH}_{3}\right), 44.9\left(\mathrm{C}-2^{\prime}\right), 45.5(\mathrm{C}-5 \mathrm{H}), 46.7$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 48.8(\mathrm{C}-3 \mathrm{H}), 127.5$ (aromatic CH$), 127.9$ (aromatic CH), 128.6 (aromatic CH), 136.1 (aromatic C), 171.4 (C-2), 213.3 (C-1'). HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$260.1651. Found: 260.1651 .

Racemic Synthesis of $\boldsymbol{\beta}$-Hydroxy- $\boldsymbol{\gamma}$-lactams

Method A

To a stirred suspension of NaBH_{4} (1 equiv.) in EtOH , cooled to approximately $0^{\circ} \mathrm{C}$ on an ice bath, was added a solution of β-keto- γ-lactam in EtOH over approximately 15 min . The reaction mixture was stirred for 2 h , before the ice bath (not replenished in the intervening period) was removed and the reaction was stirred for a further 2 hours at room temperature. The reaction mixture was re-cooled on an ice bath, prior to its quenching by the dropwise addition 5 M aqueous HCl (accompanied by brisk effervescence) until the mixture reached pH 2. The solvent was then evaporated under reduced pressure, to leave a residue which was taken up into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, washed with brine, dried, and concentrated to afford the crude β-hydroxy- γ-lactam product.

Method B

Diisopropylamine (1.05 equiv) was combined with THF, cooled to $-20^{\circ} \mathrm{C}$, and $n-\mathrm{BuLi}$ in hexanes (1 equiv) was added over approximately 15 min , while maintaining the temperature below $0{ }^{\circ} \mathrm{C}$. The LDA/THF mixture was then cooled to $-75^{\circ} \mathrm{C}$, before a solution of 1 -benzylpyrrolidin-2-one (1) (1 equiv) in THF was added over 30 min . During this addition the reaction temperature was maintained below $-60^{\circ} \mathrm{C}$. The resulting mixture was stirred for 40 min at $-75{ }^{\circ} \mathrm{C}$, after which a solution the aldehyde (1.2 equiv) in THF was added over approximately 20 min , again while maintaining the reaction temperature between below -60 ${ }^{\circ} \mathrm{C}$. After the addition was complete, the mixture was stirred for 1 h at $-75^{\circ} \mathrm{C}$, affording a homogenous mixture. The reaction was then allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$, over approximately 1.5 h , whereupon 10% aqueous citric acid was added to the resulting slurry. This mixture was stirred for 30 min to give two homogenous phases, to which MTBE was added. The organic phase was separated, washed with water and brine, dried and concentrated under reduced pressure to afford the crude β-hydroxy- γ-lactam product.

1-Benzyl-3-(2-cyclopropyl-1-hydroxyethyl)pyrrolidin-2-one ((土)-4/9b)

(\pm)-4b

(\pm)-9b

This compound was prepared following the general procedure (Method A), starting by combining NaBH_{4} (74 mg) with $\mathrm{EtOH}(30 \mathrm{~mL}$) and adding a solution of 3b (500 $\mathrm{mg}, 1.94 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$. After evaporation of the solvent, the resulting residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) and water (10 mL). The organic phase was separated and the aqueous phase was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with brine (10 mL), dried and concentrated to afford the crude product ($327 \mathrm{mg}, 65 \%$) as an orange oil ($55: 45$ d.r.). A portion of the crude material (211 mg) was purified by wet flash chromatography (20-50\% EtOAc/hexanes), affording an isolated sample of each diastereomer.

The faster eluting, major diastereomer ($\mathbf{\pm}$) $\mathbf{- 9 b}(81 \mathrm{mg}$) was recovered as a pale yellow oil: $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3411,2907,1658,1427,700 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*} \delta-0.04$ to 0.14 ($2 \mathrm{H}, \mathrm{m}$, cyclopropyl), 0.40-0.58 ($2 \mathrm{H}, \mathrm{m}$, cyclopropyl), $0.86-1.07(1 \mathrm{H}$, sym m, C-3'H), 1.18$1.32\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.44-1.70\left(2 \mathrm{H}, \mathrm{m}\right.$, one of $\mathrm{C}-2^{\prime} \mathrm{H}_{2}$ and one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 1.99-2.12$ $\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.49-2.62[1 \mathrm{H}$, sym m (apparent q), C-3H], 3.14-3.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}-$ $\left.5 \mathrm{H}_{2}\right), 3.84\left(1 \mathrm{H}, \mathrm{ddd}, J=9.2,7.8,3.2, \mathrm{C}-1^{\prime} \mathrm{H}\right), 4.39-4.51\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.41\right.$ and $\delta_{\mathrm{Hb}}=4.47$, $\left.J=14.8, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.16-7.37(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.9$ (cyclopropyl CH_{2}), 4.9 (cyclopropyl CH_{2}), $6.8\left(\mathrm{C}-3^{\prime} \mathrm{H}\right), 22.0\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 39.8(\mathrm{C}-$ $\left.2^{\prime} \mathrm{H}_{2}\right), 44.8\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 45.6(\mathrm{C}-3 \mathrm{H}), 46.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 73.7\left(\mathrm{C}-1 \mathrm{l}^{\prime} \mathrm{H}\right), 127.7$ (aromatic CH$), 128.0$ (aromatic CH), 128.7 (aromatic CH), 135.9 (aromatic C), 176.8 (C-2). HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$260.1651. Found: 260.1640.

The slower eluting, minor diastereomer $(\pm)-\mathbf{4 b}(78 \mathrm{mg})$ was recovered as a white solid (m.p. $71-74{ }^{\circ} \mathrm{C}$): $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3372,2925,2904,1663,1454,1438,735,699 ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*} \delta-0.04$ to 0.18 ($2 \mathrm{H}, \mathrm{m}$, cyclopropyl), $0.38-0.55$ (2 H , sym m, cyclopropyl), $0.68-0.85\left(1 \mathrm{H}\right.$, sym m, C-3'H), 1.18-1.30 $\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.49-1.62(1 \mathrm{H}, \mathrm{m}$, one of C-2'H2 $), 1.86-2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 \mathrm{H}_{2}\right), 2.56-2.80\left[2 \mathrm{H}\right.$, overlapping signals, $\delta_{\mathrm{Ha}}=2.56-$ $2.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $\left.\delta_{\mathrm{Hb}}=2.70(1 \mathrm{H}, \mathrm{td}, J=9.2,2.9, \mathrm{C}-3 \mathrm{H})\right], 3.12-3.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right)$, 4.26-4.37 (1H, m, C-1'H), 4.47 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}$), 7.17-7.37 (5H, m, $5 \times \mathrm{ArH}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.1$ (cyclopropyl CH_{2}), 4.4 (cyclopropyl CH_{2}), $7.6\left(\mathrm{C}-3^{\prime} \mathrm{H}\right), 18.1$ (C$\left.4 \mathrm{H}_{2}\right), 39.2\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.2(\mathrm{C}-3 \mathrm{H}), 70.3\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.4$ (aromatic CH), 127.9 (aromatic CH), 128.6 (aromatic CH), 136.3 (aromatic C), 175.4 (C-2). HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$260.1651. Found: 260.1647.

[^0]
1-Benzyl-3-(2-cyclohexyl-1-hydroxyethyl)pyrrolidin-2-one ((\pm)-4/9c)

This compound was prepared following the general procedure (Method A), starting by combining NaBH_{4} ($63 \mathrm{mg}, 1.67 \mathrm{mmol}$) with $\mathrm{EtOH}(30 \mathrm{~mL})$ and adding a solution of $\mathbf{3 c}(500 \mathrm{mg}, 1.67 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$. After evaporation of the solvent, the resulting residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water (10 mL). The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with brine (10 mL), dried and concentrated to afford the crude product ($352 \mathrm{mg}, 70 \%$) as a white solid ($53: 47$ d.r.). A portion of the crude material (262 mg) was purified by wet flash chromatography ($1-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), affording an isolated sample of each diastereomer.

The faster eluting, major diastereomer $(\pm)-9 \mathbf{c}(44 \mathrm{mg})$ was recovered as a pale yellow solid (m.p. $54-56{ }^{\circ} \mathrm{C}$): $v_{\max }$ (UATR)/ $\mathrm{cm}^{-1} 3385,2921,2848,1653,1435,719,699 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.74-0.87(1 \mathrm{H}, \mathrm{m}$, cyclohexyl), $0.87-1.03$ ($1 \mathrm{H}, \mathrm{m}$, cyclohexyl), $1.07-1.35$ $\left(4 \mathrm{H}, \mathrm{m}, 3 \times\right.$ cyclohexyl and one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.35-1.46\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.51-1.75$ $\left(6 \mathrm{H}, \mathrm{m}, 5 \times\right.$ cyclohexyl and one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 1.89(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.6$, cyclohexyl), 2.01-2.15 $\left(1 \mathrm{H}\right.$, sym m, one of C-4 H_{2}), 2.36-2.47 [1H, sym m (apparent q), C-3H], 3.11-3.28 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}-5 \mathrm{H}_{2}\right), 3.57\left(1 \mathrm{H}, \mathrm{br} \mathrm{td}, J=9.6,1.7, \mathrm{C}-1^{\prime} \mathrm{H}\right), 4.40-4.50\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.43\right.$ and $\delta_{\mathrm{Hb}}=4.47$, $\left.J=14.7, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.14(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.19-7.39(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 22.0\left(\mathrm{C}_{-} 4 \mathrm{H}_{2}\right), 26.0$ (cyclohexyl CH_{2}), 26.3 (cyclohexyl CH_{2}), 26.6 (cyclohexyl CH_{2}), 31.3 (cyclohexyl CH_{2}), $33.1\left(\mathrm{C}-3^{\prime} \mathrm{H}\right), 34.7\left(\right.$ cyclohexyl $\left.\mathrm{CH}_{2}\right), 42.9\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 44.8(\mathrm{C}-$ $\left.5 \mathrm{H}_{2}\right), 46.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 46.6(\mathrm{C}-3 \mathrm{H}), 70.8\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.7$ (aromatic CH$), 128.1$ (aromatic CH$)$, 128.7 (aromatic CH), 136.0 (aromatic C), 176.9 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$302.2120. Found: 302.2110.

The slower eluting, minor diastereomer (\pm)-4c (19 mg) was recovered as a white solid (m.p. $114-116{ }^{\circ} \mathrm{C}$): Found: C, $75.62 ; \mathrm{H}, 8.98 ; \mathrm{N}, 4.57 ; \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $\mathrm{C}, 75.71 ; \mathrm{H}, 9.03 ; \mathrm{N}$, $4.65 \% ; v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}$ 3377, 2914, 1659, 1437, 1089, 745, 703; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.78-1.05(2 \mathrm{H}$, sym m, cyclohexyl), 1.06-1.34 (4H, m, $3 \times$ cyclohexyl and one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.35-1.56\left(2 \mathrm{H}, \mathrm{m}, 1 \times\right.$ cyclohexyl and one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.59-1.77(4 \mathrm{H}, \mathrm{m}$, cyclohexyl), 1.77-1.88 (1H, m, cyclohexyl), 1.88-2.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 \mathrm{H}_{2}$), $2.44(1 \mathrm{H}, \mathrm{d}, J=5.5$, OH), $2.62(1 \mathrm{H}, \mathrm{td}, J=9.3,2.9, \mathrm{C}-3 \mathrm{H}), 3.12-3.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right), 4.26-4.36(1 \mathrm{H}, \mathrm{sym} \mathrm{m}, \mathrm{C}-$ $\left.1^{\prime} \mathrm{H}\right), 4.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.17-7.37(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$18.1\left(\mathrm{C}^{2} 4 \mathrm{H}_{2}\right), 26.1\left(\right.$ cyclohexyl $\left.\mathrm{CH}_{2}\right), 26.2\left(\right.$ cyclohexyl $\left.\mathrm{CH}_{2}\right), 26.5$ (cyclohexyl $\left.\mathrm{CH}_{2}\right), 32.7$ (cyclohexyl CH_{2}), $34.0\left(\mathrm{C}-3^{\prime} \mathrm{H}\right), 34.1$ (cyclohexyl $\left.\mathrm{CH}_{2}\right), 41.6\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.5$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.8(\mathrm{C}-3 \mathrm{H}), 67.0\left(\mathrm{C}-1{ }^{\prime} \mathrm{H}\right), 127.4$ (aromatic CH$), 127.9$ (aromatic CH$), 128.5$ (aromatic CH), 136.2 (aromatic C), 175.4 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$302.2120. Found: 302.2115.

1-Benzyl-3-(1-hydroxy-2-phenylethyl)pyrrolidin-2-one ((\pm)-4/9d)

(\pm)-4d $\quad(\pm)$-9d

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine ($2.62 \mathrm{~mL}, 18.7 \mathrm{mmol}$) with THF (15 mL) and adding $2.51 \mathrm{M} n-\mathrm{BuLi}$ in hexanes ($7.1 \mathrm{~mL}, 17.8 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($2.85 \mathrm{~mL}, 17.8$ mmol) in THF (32 mL) and phenylacetaldehyde (2.48 mL , 21.4 mmol) in THF (10 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0{ }^{\circ} \mathrm{C}$. MTBE (25 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water ($2 \times 15 \mathrm{~mL}$) and brine (30 mL), dried and concentrated to afford the crude product ($4.05 \mathrm{~g}, 77 \%$) as a viscous orange oil (57:43 d.r.). A portion of the crude material (254 mg) was purified by wet flash chromatography ($10-40 \% \mathrm{EtOAc} / \mathrm{hexanes}$), affording an isolated sample of each diastereomer.

The faster eluting, minor diastereomer (\pm)-9d (44 mg) was isolated as an off-white solid (m.p. $71-75{ }^{\circ} \mathrm{C}$): $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3376,2914,2890,1648,1425,1261,713,697 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60-1.77\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.03-2.15(1 \mathrm{H}, \mathrm{sym} \mathrm{m}$, one of $\mathrm{C}-$ $4 \mathrm{H}_{2}$), 2.42-2.54 [1H, sym m (apparent q), C-3H], $2.75(1 \mathrm{H}, \mathrm{dd}, J=14.0,7.3$, one of C-2'H), $2.93\left(1 \mathrm{H}, \mathrm{dd}, J=14.0,3.8\right.$, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 3.13-3.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right), 3.96-4.03(1 \mathrm{H}$, sym $\left.\mathrm{m}, \mathrm{C}-1^{\prime} \mathrm{H}\right), 4.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.09(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.16-7.36(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.1\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 41.1\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 44.9\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 45.4(\mathrm{C}-3 \mathrm{H}), 46.6$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 74.2\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 126.4$ (aromatic CH$), 127.7$ (aromatic CH$), 128.1$ (aromatic CH$)$, 128.2 (aromatic CH), 128.8 (aromatic CH), 129.7 (aromatic CH), 135.9 (aromatic C), 137.9
(aromatic C), 176.6 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 296.1651. Found: 296.1638.

The slower eluting, major diastereomer (\pm)-4d $(25 \mathrm{mg})$ was isolated as a white solid (m.p. $75-77{ }^{\circ} \mathrm{C}$): Found: C, $77.29 ; \mathrm{H}, 7.15 ; \mathrm{N}, 4.70 ; \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{C}, 77.26 ; \mathrm{H}, 7.17 ; \mathrm{N}$, $4.74 \% ; v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3401,3335,2942,2929,1663,1454,1441,697 ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.94-2.08\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.12-2.27\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.49$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.5, \mathrm{OH}), 2.59(1 \mathrm{H}, \mathrm{td}, J=9.2,2.9, \mathrm{C}-3 \mathrm{H}), 2.71-2.91\left(2 \mathrm{H}, \mathrm{sym} \mathrm{m}, \mathrm{C}-2^{\prime} \mathrm{H}_{2}\right)$, 3.12-3.29 $(2 \mathrm{H}$, sym m, C-5H2$), 4.42-4.53\left[2 \mathrm{H}\right.$, overlapping signals, $\delta_{\mathrm{Ha}}=4.42-4.53(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}-1{ }^{\prime} \mathrm{H}\right)$ and $\left.\delta_{\mathrm{Hb}}=4.45\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right)\right], 7.16-7.36(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.0\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 41.0\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 46.9(\mathrm{C}-3 \mathrm{H})$, $70.9\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 126.5$ (aromatic CH), 127.4 (aromatic CH), 127.9 (aromatic CH), 128.5 (aromatic CH), 128.6 (aromatic CH), 129.2 (aromatic CH), 136.3 (aromatic C), 138.1 (aromatic C), 175.1 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 296.1651. Found: 296.1646.

1-Benzyl-3-(1-hydroxy-3,3-dimethylbutyl)pyrrolidin-2-one ((\pm)-4/9e)

$(\pm)-4 e$

$(\pm)-9 e$ This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine ($2.62 \mathrm{~mL}, 18.7 \mathrm{mmol}$) with THF (15 mL) and adding $2.02 \mathrm{M} n-\mathrm{BuLi}$ in hexanes ($8.8 \mathrm{~mL}, 17.8 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($2.85 \mathrm{~mL}, 17.8$ mmol) in THF (32 mL) and 3,3-dimethylbutanal ($2.68 \mathrm{~mL}, 21.4 \mathrm{mmol}$) in THF (4 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0^{\circ} \mathrm{C}$. MTBE (25 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 15 \mathrm{~mL})$ and brine (30 mL), dried and concentrated to afford the crude product ($4.17 \mathrm{~g}, 85 \%$) as a white solid (51:49 d.r.). A portion of the crude material (252 mg) was purified by wet flash chromatography (20% $\mathrm{EtOAc} / \mathrm{hexanes}$), affording an isolated sample of each diastereomer.

The faster eluting, minor diastereomer $(\pm)-9 \mathbf{e}(78 \mathrm{mg})$ was recovered as a clear oil: $v_{\max }$ (UATR)/ $\mathrm{cm}^{-1} 3408,2949,1660,1429,699 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.99(9 \mathrm{H}, \mathrm{s}, 3 \times$ $\left.\mathrm{CH}_{3}\right), 1.24\left(1 \mathrm{H}, \mathrm{d}, J=14.3\right.$, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.45\left(1 \mathrm{H}, \mathrm{dd}, J=14.3,9.3\right.$, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.50-$ $1.67\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.00-2.14\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.37-2.50[1 \mathrm{H}$, sym m (apparent q), C-3H], 3.13-3.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}$), $3.84\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=9.3, \mathrm{C}-1^{\prime} \mathrm{H}\right), 4.38-4.53$
$\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.42\right.$ and $\left.\delta_{\mathrm{Hb}}=4.48, J=15.5, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.09(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.17-7.39(5 \mathrm{H}$, $\mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.3\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 30.1\left(\mathrm{CH}_{3}\right), 30.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 44.6$ $\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 46.7(\mathrm{C}-3 \mathrm{H}), 48.6\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 71.3\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.7$ (aromatic CH$)$, 128.1 (aromatic CH), 128.7 (aromatic CH), 135.9 (aromatic C), 176.8 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$276.1964. Found: 276.1959.

The slower eluting, major diastereomer (\pm)- $\mathbf{4 e}(60 \mathrm{mg})$ was recovered as a white solid, m.p. $154-156{ }^{\circ} \mathrm{C}$): $v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}$ 3375, 2953, 1664, 1451, 727, 696; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.99\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.24\left(1 \mathrm{H}, \mathrm{dd}, J=14.4,1.8\right.$, one of $\left.\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 1.45(1 \mathrm{H}, \mathrm{dd}, J=$ 14.4, 9.1, one of C-2 ${ }^{\prime} \mathrm{H}_{2}$), 1.90-2.13 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 \mathrm{H}_{2}$), $2.46(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.2, \mathrm{OH}), 2.60(1 \mathrm{H}$, td, $J=9.3,2.9, \mathrm{C}-3 \mathrm{H}), 3.14-3.27[2 \mathrm{H}$, sym m (apparent t), C-5H2$], 4.28-4.38(1 \mathrm{H}$, sym m, $\left.\mathrm{C}-1^{\prime} \mathrm{H}\right), 4.37-4.57\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.41\right.$ and $\left.\delta_{\mathrm{Hb}}=4.52, J=14.8, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.17-7.36(5 \mathrm{H}$, $\mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.5\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 30.1\left(\mathrm{CH}_{3}\right), 30.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 45.1$ $\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.3\left(\mathrm{C}-2^{\prime} \mathrm{H}_{2}\right), 49.3(\mathrm{C}-3 \mathrm{H}), 67.6\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.5$ (aromatic CH$)$, 127.9 (aromatic CH), 128.6 (aromatic CH), 136.3 (aromatic C), 175.2 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$276.1964. Found: 276.1964.

1-Benzyl-3-(1-hydroxy-2-methylpropyl)pyrrolidin-2-one ((\pm)-8/10a)

(\pm)-8a

(\pm)-10a

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine (2.62 mL , 18.7 mmol) with THF (15 mL) and adding $2.50 \mathrm{M} n-\mathrm{BuLi}$ in hexanes ($7.12 \mathrm{~mL}, 17.8 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($2.85 \mathrm{~mL}, 17.8 \mathrm{mmol}$) in THF (32 mL) and isobutanal ($1.95 \mathrm{~mL}, 21.4 \mathrm{mmol}$) in THF (4 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0^{\circ} \mathrm{C}$. MTBE $(25 \mathrm{~mL})$ was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 15 \mathrm{~mL})$ and brine (30 mL), dried and concentrated to afford the crude product ($3.65 \mathrm{~g}, 83 \%$) as a viscous orange oil ($73: 27$ d.r.). The crude material was purified by wet flash chromatography ($20-50 \%$ EtOAc/hexanes), affording an isolated sample of each diastereomer.

The faster eluting, major diastereomer $(\pm) \mathbf{- 1 0 a}(1.93 \mathrm{~g})$ was isolated as a pale yellow oil: $v_{\max }$ (UATR)/ $\mathrm{cm}^{-1} 3422,2960,1658,1423,1270,1001,700 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.9, \mathrm{CH}_{3}\right), 1.06\left(3 \mathrm{H}, \mathrm{d}, J=6.9, \mathrm{CH}_{3}\right), 1.54-1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-2^{\prime} \mathrm{H}\right.$ and one of C$\left.4 \mathrm{H}_{2}\right), 1.95-2.13\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.48-2.61[1 \mathrm{H}$, sym m (apparent q), C-3H], 3.17-
$3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right), 3.60\left(1 \mathrm{H}, \mathrm{dd}, J=9.7,2.3, \mathrm{C}-1^{\prime} \mathrm{H}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.14(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 7.18-7.38(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right)$, $21.5\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 30.1\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 43.7(\mathrm{C}-3 \mathrm{H}), 44.7\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.3\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 76.9\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.5$ (aromatic CH), 127.8 (aromatic CH), 128.5 (aromatic CH), 135.8 (aromatic C), 177.3 (C-2). HRMS (ESI+): Exact mass calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1651. Found: 248.1640.

The slower eluting, minor diastereomer (\pm)-8a (0.62 g) was recovered as a white solid (m.p. $104-106{ }^{\circ} \mathrm{C}$): Found: C, 72.80 ; H, 8.46; N, 5.64; $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires C, $72.84 ; \mathrm{H}, 8.56$; N, 5.66%; $v_{\max }$ (ATR) $/ \mathrm{cm}^{-1}$ 3346, 2958, 2944, 2864, 1668, 1454, 1441, 697; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89\left(3 \mathrm{H}, \mathrm{d}, J=6.7, \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=6.7, \mathrm{CH}_{3}\right), 1.68(1 \mathrm{H}$, dsept, $J=$ 9.0, 6.7, C-2'H), 1.86-2.00 $\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.06-2.23\left(1 \mathrm{H}\right.$, sym m, one of C-4 H_{2}), $2.65(1 \mathrm{H}, \mathrm{brd}, J=4.1, \mathrm{OH}), 2.74(1 \mathrm{H}, \mathrm{td}, J=9.4,2.6, \mathrm{C}-3 \mathrm{H}), 3.13-3.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right)$, $3.87\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.9, \mathrm{C}-1{ }^{\prime} \mathrm{H}\right), 4.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.18-7.36(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 19.0\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 45.7$ $(\mathrm{C}-3 \mathrm{H}), 46.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 74.9\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.4$ (aromatic CH$), 127.9$ (aromatic CH), 128.6 (aromatic CH), 136.3 (aromatic C), 175.8 (C-2). HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$248.1651. Found: 248.1641.

1-Benzyl-3-(cyclopropyl(hydroxy)methyl)pyrrolidin-2-one ((\pm)-8/10b)

$(\pm)-8 \mathrm{~b} \quad(\pm)-10 \mathrm{~b}$

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine (2.62 mL , 18.7 mmol) with THF (15 mL) and adding $2.51 \mathrm{M} n-\mathrm{BuLi}$ in hexanes ($7.12 \mathrm{~mL}, 17.8 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($2.85 \mathrm{~mL}, 17.8 \mathrm{mmol}$) in THF (32 mL) and cyclopropylcarboxaldehyde ($1.60 \mathrm{~mL}, 21.4 \mathrm{mmol}$) in THF (10 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0{ }^{\circ} \mathrm{C}$. MTBE (25 mL) was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 15 \mathrm{~mL})$ and brine (30 mL), dried and concentrated to afford the crude product ($4.72 \mathrm{~g}, 98 \%$) as a white solid ($57: 43$ d.r.). A portion of the crude material (320 mg) was purified by wet flash chromatography ($10-30 \%$ EtOAc/hexanes), affording an isolated sample of each diastereomer.
The faster eluting, major diastereomer $(\pm) \mathbf{- 1 0 b}(85 \mathrm{mg})$ was recovered as a pale yellow oil: $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3008,2921,2890,1674,1384,1261,700 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.28-0.58\left(4 \mathrm{H}, \mathrm{m}, 2 \times\right.$ cyclopropyl $\left.\mathrm{CH}_{2}\right), 0.87-1.01(1 \mathrm{H}$, sym m, C-2'H), 1.72-1.89 $(1 \mathrm{H}$, sym m , one of $\mathrm{C}-4 \mathrm{H}_{2}$), $2.14-2.28\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.59-2.71[1 \mathrm{H}$, sym m (apparent q),
$\mathrm{C}-3 \mathrm{H}], 3.11\left(1 \mathrm{H}, \mathrm{t}, J=8.4, \mathrm{C}-1^{\prime} \mathrm{H}\right), 3.16-3.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right), 4.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.95$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), $7.19-7.38(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.1$ (cyclopropyl $\left.\mathrm{CH}_{2}\right)$, 2.1 (cyclopropyl CH_{2}), $15.3\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 21.8\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 45.0\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.4\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.2$ $(\mathrm{C}-3 \mathrm{H}), 76.8\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.5$ (aromatic CH), 127.9 (aromatic CH), 128.6 (aromatic CH), 135.9 (aromatic C), 176.4 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 246.1494. Found: 246.1487.

The slower eluting, minor diastereomer (\pm) - $\mathbf{8 b}(38 \mathrm{mg})$ was recovered as a white solid (m.p. $131-134{ }^{\circ} \mathrm{C}$): $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3331,2957,2912,1659,1454,1442,738,700 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.23-0.33(1 \mathrm{H}, \mathrm{m}$, one of cyclopropyl), $0.37-0.62$ ($3 \mathrm{H}, \mathrm{m}$, cyclopropyl), $0.86-0.99\left(1 \mathrm{H}\right.$, sym m, C-2'H), $2.02-2.15\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.15-2.30(1 \mathrm{H}$, one of $\mathrm{C}-$ $\left.4 \mathrm{H}_{2}\right), 2.53(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.0, \mathrm{OH}), 2.81(1 \mathrm{H}, \mathrm{td}, J=9.2,2.9, \mathrm{C}-3 \mathrm{H}), 3.17-3.31(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-$ $5 \mathrm{H}_{2}$), 3.40-3.48 (1H, sym m, C-1'H), $4.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.20-7.36(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.5$ (cyclopropyl CH_{2}), 3.1 (cyclopropyl CH_{2}), $14.8\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 18.7$ $\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 45.3\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.6(\mathrm{C}-3 \mathrm{H}), 74.8\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.5$ (aromatic CH$)$, 128.0 (aromatic CH), 128.7 (aromatic CH), 136.3 (aromatic C), 175.3 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$246.1494. Found: 246.1491.

1-Benzyl-3-(cyclohexyl(hydroxy)methyl)pyrrolidin-2-one ((\pm)-8/10c)

(\pm)-8c

(\pm - 10 c

This compound was prepared following the general procedure (Method A), starting by combining NaBH_{4} ($132 \mathrm{mg}, 3.5 \mathrm{mmol}$) with $\mathrm{EtOH}(30 \mathrm{~mL})$ and adding a solution of $7 \mathrm{c}(1.0 \mathrm{~g}, 3.5 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{~mL})$. After evaporation of the solvent, the resulting residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with brine (10 mL), dried and concentrated to afford the crude product (825 mg , 82%) as an orange oil ($58: 42$ d.r.). A portion of the crude material (498 mg) was purified by wet flash chromatography ($10-20 \% \mathrm{EtOAc} / \mathrm{hexanes}$), affording an isolated sample of each diastereomer.

The faster eluting, major diastereomer ($\mathbf{\pm}$)-10c (37 mg) was recovered as a white solid (m.p. $99-101{ }^{\circ} \mathrm{C}$): $v_{\max }$ (UATR)/ $\mathrm{cm}^{-1} 3354,2918,2846,1663,1449,730,696 ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.01-1.40(5 \mathrm{H}, \mathrm{m}$, cyclohexyl), $1.41-1.88(7 \mathrm{H}, \mathrm{m}, 6 \times$ cyclohexyl and one of C$\left.4 \mathrm{H}_{2}\right), 1.99-2.12\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.54-2.67[1 \mathrm{H}$, sym m (apparent q), C-3H], 3.15-3.27 (2H, m, C-5H2), $3.57\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.7, \mathrm{C}-1{ }^{\prime} \mathrm{H}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.07(1 \mathrm{H}$,
$\mathrm{s}, \mathrm{OH}), 7.18-7.38(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.9\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 25.0$ (cyclohexyl CH_{2}), $26.4\left(2 \times\right.$ cyclohexyl CH_{2}), 26.7 (cyclohexyl CH_{2}), 30.1 (cyclohexyl CH_{2}), $40.6\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 43.3(\mathrm{C}-3 \mathrm{H}), 44.9\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 77.1\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.7$ (aromatic CH$)$, 128.1 (aromatic CH), 128.7 (aromatic CH), 136.0 (aromatic C), 177.7 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$288.1964. Found: 288.1960.

The slower eluting, minor diastereomer (\pm)-8c (30 mg) was recovered as a white solid (m.p. ${ }^{145-148}{ }^{\circ} \mathrm{C}$): Found: C, 75.23 ; H, 8.62; N, 4.84; $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires C, $75.22 ; \mathrm{H}, 8.77$; N, 4.87%; $v_{\max }$ (UATR) $/ \mathrm{cm}^{-1}$ 3331, 2924, 2846, 1673, 1450, 1437, 732, 696; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86-1.45$ ($6 \mathrm{H}, \mathrm{m}$, cyclohexyl), 1.52-1.83 (4H, m, cyclohexyl), 1.85-2.00 $\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.00-2.21\left(2 \mathrm{H}, \mathrm{m}\right.$, one of C-4 H_{2} and one of cyclohexyl), $2.54(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{OH}), 2.73(1 \mathrm{H}, \mathrm{td}, J=7.3,2.5, \mathrm{C}-3 \mathrm{H}), 3.12-3.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right), 3.93(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.9$, $\left.\mathrm{C}-1^{\prime} \mathrm{H}\right), 4.41-4.54\left(2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}}=4.45\right.$ and $\left.\delta_{\mathrm{Hb}}=4.50, J=15.3, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.17-7.36(5 \mathrm{H}$, m, $5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.7\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 25.8\left(\right.$ cyclohexyl $\left.\mathrm{CH}_{2}\right), 26.1$ (cyclohexyl CH_{2}), 26.3 (cyclohexyl CH_{2}), 29.1 (cyclohexyl CH_{2}), 29.6 (cyclohexyl CH_{2}), $40.9\left(\mathrm{C}-2^{\prime} \mathrm{H}\right), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 45.4(\mathrm{C}-3 \mathrm{H}), 46.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 73.8\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.4$ (aromatic CH$)$, 127.9 (aromatic CH), 128.6 (aromatic CH), 136.4 (aromatic C), 175.9 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$288.1964. Found: 288.1956.

1-Benzyl-3-(hydroxy(phenyl)methyl)pyrrolidin-2-one ((\pm)-8/10d)

(\pm)-8d

(\pm)-10d This compound was prepared following the general procedure (Method A), starting by combining NaBH_{4} (135 $\mathrm{mg}, 3.58 \mathrm{mmol})$ with $\mathrm{EtOH}(30 \mathrm{~mL})$ and adding a solution of 7d ($1.0 \mathrm{~g}, 3.58 \mathrm{mmol}$) in EtOH (10 mL). After evaporation of the solvent, the resulting residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with brine (10 mL), dried and concentrated to afford the crude product ($910 \mathrm{mg}, 91 \%$) as an orange oil ($51: 49$ d.r.). A portion of the crude material (280 mg) was purified by wet flash chromatography (5-20\% EtOAc/hexanes), affording an isolated sample of each diastereomer. The faster eluting, minor diastereomer (\pm) $\mathbf{- 1 0 d}(52 \mathrm{mg})$ was recovered as a viscous clear oil: $v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3322,3029,2923,1658,1495,1442,1264,698 ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.54-1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 \mathrm{H}_{2}\right), 2.72-2.85[1 \mathrm{H}$, sym m (apparent q), C-3H], 3.09-3.20 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right), 4.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J=9.7, \mathrm{C}-1^{\prime} \mathrm{H}\right), 5.60(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.21-$ $7.42(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.9\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 44.8\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.7$
$\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.8(\mathrm{C}-3 \mathrm{H}), 76.4\left(\mathrm{C}-1{ }^{\prime} \mathrm{H}\right), 126.8(\operatorname{aromatic} \mathrm{CH}), 127.8$ (aromatic CH$), 128.0$ (aromatic CH), 128.1 (aromatic CH), 128.4 (aromatic CH), 128.8 (aromatic CH), 135.9 (aromatic C), 141.2 (aromatic C), 176.4 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$282.1494. Found: 282.1482 .

The slower eluting, major diastereomer (\pm)-8d (24 mg) was recovered as a white solid (m.p. $117-119{ }^{\circ} \mathrm{C}$): Found: C, $76.46 ; \mathrm{H}, 6.71 ; \mathrm{N}, 4.85 ; \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 76.84 ; \mathrm{H}, 6.81 ; \mathrm{N}$, 4.98%; $v_{\max }$ (UATR) $/ \mathrm{cm}^{-1} 3333,2857,1658,1495,1437,1264,700 ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.64-1.80\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 1.96-2.12\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.93(1 \mathrm{H}$, $\mathrm{td}, J=9.1,3.1, \mathrm{C}-3 \mathrm{H}), 3.02-3.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right), 3.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.43(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 5.36\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}-1{ }^{\prime} \mathrm{H}\right), 7.14-7.40(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 18.0\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 49.3(\mathrm{C}-3 \mathrm{H}), 71.5\left(\mathrm{C}-1 \mathrm{I}^{\prime} \mathrm{H}\right), 125.7$ (aromatic CH), 127.1 (aromatic CH), 127.4 (aromatic CH), 127.9 (aromatic CH), 128.2 (aromatic CH), 128.6 (aromatic CH), 136.1 (aromatic C), 142.3 (aromatic C), 174.9 (C-2); HRMS (ESI+): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$282.1494. Found: 282.1480.

1-Benzyl-3-(1-hydroxy-2,2-dimethylpropyl)pyrrolidin-2-one ((\pm)-8/10e)

(\pm)-8e

(\pm)-10e

This compound was prepared following the general procedure (Method B), starting by combining diisopropylamine (2.62 mL , $18.7 \mathrm{mmol})$ with THF (15 mL) and adding $2.10 \mathrm{M} n$-BuLi in hexanes ($8.50 \mathrm{~mL}, 17.9 \mathrm{mmol}$). Solutions of 1-benzylpyrrolidin-2-one (1) ($2.85 \mathrm{~mL}, 17.8 \mathrm{mmol}$) in THF (32 mL) and pivaldehyde ($2.32 \mathrm{~mL}, 21.4 \mathrm{mmol}$) in THF (4 mL) were added sequentially to the LDA/THF mixture. 10% Aqueous citric acid (25 mL) was added to the resulting slurry at $0^{\circ} \mathrm{C}$. MTBE $(25 \mathrm{~mL})$ was added to the two homogeneous phases and the organic phase was separated, washed with water $(2 \times 15 \mathrm{~mL})$ and brine (30 mL), dried and concentrated to afford the crude product ($4.55 \mathrm{~g}, 98 \%$) as a white solid ($88: 12$ d.r.). A portion of the crude material (300 mg) was purified by wet flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$), affording an isolated sample of each diastereomer.

The faster eluting, major diastereomer (\pm)-10e (124 mg) was recovered as a white solid (m.p. $75-77{ }^{\circ} \mathrm{C}$): Found: C, 73.67; H, 8.79; N, 4.91; $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires C, 73.53; H, 8.87; N, $5.36 \% ; v_{\max }(\mathrm{UATR}) / \mathrm{cm}^{-1} 3329,2956,1645,1430,703 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ $\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.73-1.90\left(1 \mathrm{H}\right.$, sym m, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.09-2.25(1 \mathrm{H}$, sym m, one of C $4 \mathrm{H}_{2}$), $2.54(1 \mathrm{H}, \mathrm{dt}, J=11.2,8.7, \mathrm{C}-3 \mathrm{H}), 3.11-3.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right), 3.43(1 \mathrm{H}, \mathrm{dd}, J=8.9,1.7$,
$\left.\mathrm{C}-1 \mathrm{l}^{\prime} \mathrm{H}\right), 4.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.06(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{OH}), 7.19-7.38(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.2\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 26.2\left(\mathrm{CH}_{3}\right), 35.6\left(\mathrm{C}-2^{\prime}\right), 42.9(\mathrm{C}-3 \mathrm{H}), 45.0(\mathrm{C}-$ $\left.5 \mathrm{H}_{2}\right), 46.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 80.7\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.7$ (aromatic CH$)$, 128.1 (aromatic CH), 128.8 (aromatic CH), 135.9 (aromatic C), 177.7 (C-2); HRMS (ESI+): Exact mass calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$262.1807. Found: 262.1798 .

The slower eluting, minor diastereomer $(\pm)-\mathbf{8 e}(30 \mathrm{mg})$ was recovered as an off-white solid (m.p. $125-127{ }^{\circ} \mathrm{C}$): $v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1} 3368,2958,1670,1452,1438,736,696 ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.90-2.12\left(2 \mathrm{H}\right.$, overlapping m and br s , one of $\mathrm{C}-4 \mathrm{H}_{2}$ and OH), 2.20-2.37 $\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}-4 \mathrm{H}_{2}\right), 2.72(1 \mathrm{H}, \mathrm{t}, J=9.6, \mathrm{C}-3 \mathrm{H}), 3.11-3.25(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-$ $\left.5 \mathrm{H}_{2}\right), 4.05\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}-1{ }^{\prime} \mathrm{H}\right), 4.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.18-7.36(5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.0\left(\mathrm{C}-4 \mathrm{H}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right), 35.1\left(\mathrm{C}-2^{\prime}\right), 44.5(\mathrm{C}-3 \mathrm{H}), 45.1\left(\mathrm{C}-5 \mathrm{H}_{2}\right), 46.8$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 76.4\left(\mathrm{C}-1^{\prime} \mathrm{H}\right), 127.4$ (aromatic CH$), 127.9$ (aromatic CH), 128.6 (aromatic CH), 136.4 (aromatic C), 176.2 (C-2); HRMS (ESI+): Exact mass calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$262.1807. Found: 262.1801.

1-Benzyl-3-[hydroxy(phenyl)methyl-d]pyrrolidin-2-one (11d)

This compound was prepared following the general procedure (Method A), starting by combining $\mathrm{NaBD}_{4}(0.87 \mathrm{~g}, 20.8 \mathrm{mmol})$ with $\mathrm{EtOH}(50 \mathrm{~mL})$ and adding a solution of $7 \mathbf{d}(5.81 \mathrm{~g}, 20.8 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$. After evaporation of the solvent, the resulting residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layers were combined, washed with brine (30 mL), dried and concentrated to afford the crude product as an orange oil (57:43 d.r.). Purification by wet flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) afforded 11d ($5.02 \mathrm{~g}, 93 \%$), a mixture of diastereomers, as a viscous clear oil (60:40 d.r.): $v_{\max }$ (UATR)/ cm^{-1} 3336, 2922, 2859, 1657, 1494, 1445, 1436, 1255, 699; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 1.52-1.78\left[1.4 \mathrm{H}, \mathrm{m}\right.$, one of $\mathrm{C}-4 \mathrm{H}_{2}$ (major diastereomer) and $\mathrm{C}-4 \mathrm{H}_{2}$ (minor diastereomer)], 1.96-2.12 [0.6H, sym m, one of C-4 H_{2} (major diasteomer)], $2.77[0.4 \mathrm{H}, \mathrm{t}, J=$ 9.6, C-3H (minor diastereomer)], $2.90[0.6 \mathrm{H}, \mathrm{t}, J=9.1, \mathrm{C}-3 \mathrm{H}$ (major diastereomer)], 2.99$3.16\left[2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{H}_{2}\right.$ (both diastereomers)], 3.86-4.05 [0.6H, br d, OH (major diastereomer)], $4.35-4.48\left\{2 \mathrm{H}\right.$, overlapping signals, $\delta=4.35-4.48\left[1.2 \mathrm{H}, \mathrm{ABq}, \delta_{\mathrm{Ha}^{\prime}}=4.39\right.$ and $\delta_{\mathrm{Hb}^{\prime}}=4.44, J$ $=15.5, \mathrm{NCH}_{2} \mathrm{Ph}$ (major diastereomer)] and $\delta=4.44\left[0.8 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right.$ (minor diastereomer) $]\}, 5.57[0.4 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ (minor diastereomer)], $6.97-7.52[10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{ArH}$
(both diastereomers)]; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.6\left[\mathrm{C}-4 \mathrm{H}_{2}\right.$ (major diastereomer)], $21.6\left[\mathrm{C}-4 \mathrm{H}_{2}\right.$ (minor diastereomer) $]$, $44.7\left[\mathrm{C}-5 \mathrm{H}_{2}\right.$ (minor diastereomer)], $45.0\left[\mathrm{C}-5 \mathrm{H}_{2}\right.$ (major diastereomer)], $46.5\left[\mathrm{NCH}_{2} \mathrm{Ph}\right.$ (minor diastereomer)], $46.6\left[\mathrm{NCH}_{2} \mathrm{Ph}\right.$ (major diastereomer)], 47.7 [C-3H (minor diastereomer)], 49.2 [C-3H (major diastereomer)], $71.0\left[\mathrm{t}, J=22.2, \mathrm{C}-1^{\prime} \mathrm{H}\right.$ (major diastereomer)], $75.5\left[\mathrm{t}, \mathrm{J}=22.2, \mathrm{C}-1^{\prime} \mathrm{H}\right.$ (minor diastereomer)], 125.7 [aromatic CH (major diastereomer)], 126.6 [aromatic CH (minor diastereomer)], 127.0 [aromatic CH (major diastereomer)], 127.3 [aromatic CH (major diastereomer)], 127.6 [aromatic CH (minor diastereomer)], 127.8 [aromatic CH (major diastereomer)], 127.9 [aromatic CH (minor diastereomer)], 128.0 [aromatic CH (minor diastereomer)], 128.1 [aromatic CH (major diastereomer)], 128.3 [aromatic CH (minor diastereomer)], 128.5 [aromatic CH (major diastereomer)], 128.6 [aromatic CH (minor diastereomer)], 135.7 [aromatic C (minor diastereomer)], 136.0 [aromatic C (major diastereomer)], 141.1 [aromatic C (minor diastereomer)], 142.2 [aromatic C (major diastereomer)] 174.9 [C-2 (major diastereomer)], 176.2 [C-2 (minor diastereomer)]. HRMS (ESI+): Exact mass calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{DNO}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}$283.1551. Found: 283.1559.

General Procedures for Asymmetric Synthesis of $\boldsymbol{\beta}$-Hydroxy- $\boldsymbol{\gamma}$-lactams

Hydrogenations in Methanol or Ethanol

β-Keto- γ-lactam substrate (1.0 g), lithium chloride solution (0 or $1 \mathrm{~mol} \%, 0.1 \mathrm{M}$ solution in IPA) and $\left(\mathrm{Ru}(\mathrm{OAc})_{2}[(S)\right.$-tol-BINAP $\left.\left.)\right]\right)^{5}(0.35 \mathrm{~mol} \%)$ were combined with solvent $(55 \mathrm{~mL})$ in a 100 mL round bottom flask and stirred while a steady stream of nitrogen gas was bubbled through the resultant solution for 2 h to achieve full deoxygenation. The deoxygenated solution was then transferred via syringe (in 2 batches) to a hydrogenation reactor which had also been purged of oxygen by means of a stream of nitrogen, which was flowed through the reactor for 15 min prior to the transfer of reactants and was still flowing during the transfer. After the transfer of reactants was complete, hydrochloric acid [$6 \mathrm{~mol} \%, 1.2 \mathrm{M}$ hydrochloric acid in solvent (35% aqueous hydrochloric acid diluted to 3.5% with solvent)] was added to the hydrogenation reactor, which was then further purged with a steady stream of nitrogen for 30 min . The reactor was then purged with $\mathrm{H}_{2}(3 \times 85 \mathrm{psi})$ and heated to $65^{\circ} \mathrm{C}$ under $85-90$ psi of H_{2} for 16 h . The reaction solution was allowed to cool to room temperature, vented,
purged with nitrogen ${ }^{*}$, and an aliquot was removed for HPLC analysis. The reaction solution was then concentrated under reduced pressure to afford the crude product, which was purified by wet flash chromatography using an EtOAc-hexane mixture as eluent.

Hydrogenations in Isopropanol

β-Keto- γ-lactam substrate (4.4 g), lithium chloride solution (0 or $1 \mathrm{~mol} \%, 0.1 \mathrm{M}$ solution in IPA) and $\left(\operatorname{Ru}(\mathrm{OAc})_{2}[(S)\right.$-tol-BINAP $\left.\left.)\right]\right)^{5}(0.35 \mathrm{~mol} \%)$ were combined with IPA $(55 \mathrm{~mL})$ in a 100 mL round bottom flask and stirred while a steady stream of nitrogen gas was bubbled through the resultant solution for 2 h to achieve full deoxygenation. The deoxygenated solution was then transferred via syringe (in 2 batches) to a hydrogenation reactor, which had also been purged of oxygen by means of a stream of nitrogen which was flowed through the reactor for 15 min prior to the transfer of reactants and was still flowing during the transfer. When the transfer of reactants was complete, hydrochloric acid [6 mol \%, 1.2M hydrochloric acid in IPA (35% aqueous hydrochloric acid diluted to 3.5% with IPA)] was added to the hydrogenation reactor, which was then further purged with a steady stream of nitrogen for 30 min . The reactor was then purged with $\mathrm{H}_{2}(3 \times 85 \mathrm{psi})$, and heated to $65^{\circ} \mathrm{C}$ under $85-90 \mathrm{psi}$ of H_{2} for 16 h (in instances where conversion of starting material was incomplete after this time, the reaction was continued for a further $20-24 \mathrm{~h}$ under identical conditions). The reaction solution was allowed to cool to room temperature, vented, purged with nitrogen ${ }^{*}$, and an aliquot was removed for HPLC analysis. The reaction solution was then concentrated under reduced pressure to afford the crude product, which was purified by wet flash chromatography using an EtOAc-hexane mixture as eluent.

[^1]Table S1(A). DKR-Hydrogenation Substrate Screen

$\text { entry }^{a}$	R	LiCl^{b}	solvent	$\mathrm{n}=1$						$\mathrm{n}=0$					
				substrate (product)	Time (\% ${ }^{\text {c }}$)	$\% \mathrm{ee}^{d}$	$\% \mathrm{de}^{\text {d }}$	Yield ${ }^{e}$ (\%)	$[\alpha]_{\mathrm{D}}{ }^{20 f}$	substrate (product)	Time (\% ${ }^{\text {c }}$)	$\% \mathrm{ee}^{d}$	$\% \mathrm{de}^{d}$	Yield ${ }^{e}$ (\%)	$[\alpha]^{20 f}$
1	i-propyl	0	MeOH	3a (4a)	16 h	93.6	90.2	90		$7 \mathrm{a}(8 \mathrm{a})$	16 h	78.7	>98.0	89	
2	cyclohexyl	0	MeOH	3c (4c)	16 h	94.5	96.5	88		-	-	-	-		
3	t-butyl	0	MeOH	3e (4e)	$16 \mathrm{~h}(<2.0)$	39.0	NA^{g}			-	-	-	-		
4	i-propyl	0	EtOH	3a (4a)	16 h	94.3	94.4	85		7a (8a)	16 h	74.6	88.7	84	
5	cyclopropyl	0	EtOH	3b (4b)	16 h	84.2	97.5	88		7b (8b)	16 h	96.8	95.8	79	
6	cyclohexyl	0	EtOH	3c (4c)	16 h	95.0	94.7	87	-6.95°	7c (8c)	16 h	35.5	>98.0	90	
7	phenyl	0	EtOH	3d (4d)	16 h	84.7	91.6	83		7 d (8d)	16 h	18.2	>98.0	86	
8	t-butyl	0	EtOH	3e (4e)	16 h (<2.0)	63.9	$\mathrm{NA}^{\text {g }}$			7e (8e)	16 h (<2.0)	$\mathrm{NA}^{\text {g }}$	NA^{g}		
9	t-butyl	1	EtOH	3e (4e)	16 h (<2.0)	NA^{g}	NA^{g}			7e (8e)	$16 \mathrm{~h}(<2.0)$	$\mathrm{NA}^{\text {g }}$	$\mathrm{NA}^{\text {g }}$		
10	t-butyl	0	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	3e (4e)	$16 \mathrm{~h}(<2.0)$	42.1	NA^{g}			-	-	-	-		

${ }^{a}$ Screening reactions run with β-keto- γ-lactam 3 or $7(1 \mathrm{~g})$, diacetato[(S)-(-)-2, 2^{\prime}-bis(di- p-tolylphosphino)-1, 1^{\prime}-binaphthyl]ruthenium(II) (Ru(OAc) ${ }_{2}\left[(S)\right.$-tol-BINAP)] ${ }^{5}$ (substrate to catalyst mole ratio (S/C): 280), $\mathrm{HCl}(6 \mathrm{~mol} \%)$, and solvent $(55 \mathrm{~mL})$ at $65{ }^{\circ} \mathrm{C}$ under $85-90 \mathrm{psi}$ of H_{2}. ${ }^{b}$ Mole percent relative to substrate 3 or 7 . ${ }^{c}$ Extent of reaction as determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{d}$ Determined by chiral HPLC (see SI). ${ }^{e}$ Isolated yield after chromatography. ${ }^{f} \mathrm{Optical}$ rotations measured in MeOH at a concentration of $\mathrm{c}=1.0 .{ }^{g}$ Not applicable (too small to accurately measure).

Table S1(B). DKR-Hydrogenation Substrate Screen

$$
\frac{\mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S}) \text {-tol-BINAP }]}{\mathrm{Ar}=p \text {-tolyl (tol) },}
$$

H_{2} (85-90 psi)/additives/solvent,
$65^{\circ} \mathrm{C}$

4a-e $n=1$
$8 \mathrm{a}-\mathrm{e} \mathrm{n}=0$
$+$

N
Bn
4a-e-ent $n=1$
8a-e-ent $\mathrm{n}=0$

Bn

9a-e/9a-e-ent $n=1$ 10a-e/10a-e-ent $n=0$

entry ${ }^{a}$	R	$\mathrm{LiCl}^{\text {b }}$	solvent	$\mathrm{n}=1$						$\mathrm{n}=0$					
				substrate (product)	Time (\% ${ }^{\text {c }}$)	$\% \mathrm{ee}^{\text {d }}$	$\% \mathrm{de}^{\text {d }}$	Yield ${ }^{e}$ (\%)	$[\alpha]_{\mathrm{D}}{ }^{20 f}$	substrate (product)	Time (\% ${ }^{\text {c }}$)	$\% \mathrm{ee}^{\text {d }}$	$\% \mathrm{de}^{\text {d }}$	Yield ${ }^{e}$ (\%)	$[\alpha]_{\mathrm{D}}{ }^{20 f}$
11	i-propyl	0	IPA ${ }^{h}$	-	-	-	-			7 a (8a)	16 h	72.1	>98.0	89	$+6.30^{\circ}$
12	i-propyl	1	IPA ${ }^{h}$	3a (4a)	16 h (63.5)	-	-			7a (8a)	16 h	67.1	93.4	91	-6.50°
					$36 h^{i}$	96.5	95.6	91	$+1.70^{\circ}$						
13	cyclopropyl	1	IPA ${ }^{h}$	3b (4b)	16 h	86.1	>98.0	90	$+4.70^{\circ}$	7b (8b)	16 h	94.9	92.6	87	
14	cyclohexyl	1	IPA ${ }^{h}$	3c (4c)	16 h (95.4)	-	-			7c (8c)	16 h	38.5	>98.0	90	$+5.20^{\circ}$
					$32 \mathrm{~h}^{i}$	97.4	96.2	89							
15	phenyl	1	IPA ${ }^{h}$	3d (4b)	16 h (75.1)	-	-			7d (8d)	16 h	15.3^{j}	>98.0	92	+14.15 ${ }^{\circ}$
					$36 h^{i}$	87.5	97.0	92	$+5.75^{\circ}$						

${ }^{a}$ Screening reactions run with β-keto- γ-lactam 3 or $7(1 \mathrm{~g})$, diacetato $\left[(S)-(-)-2,2^{\prime} \text {-bis(di- } p \text {-tolylphosphino)-1, } 1^{\prime} \text {-binaphthyl]ruthenium(II) (Ru(OAc) }[(S) \text {-tol-BINAP) }]\right)^{5}$ (substrate to catalyst mole ratio (S/C): 280), $\mathrm{HCl}(6 \mathrm{~mol} \%)$, and solvent $(55 \mathrm{~mL})$ at $65^{\circ} \mathrm{C}$ under $85-90 \mathrm{psi}$ of H_{2}. ${ }^{b}$ Mole percent relative to substrate 3 or 7 . ${ }^{c}$ Extent of reaction as determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{d}$ Determined by chiral HPLC (see SI). ${ }^{e}$ Isolated yield after chromatography. ${ }^{f}$ Optical rotations measured in MeOH at a concentration of c=1.0. ${ }^{h}$ Reactions in IPA were run at a concentration of $88 \mathrm{mg} / \mathrm{mL}$ (4.4 g of substrate $\mathbf{3}$ or 7) as a dilution effect caused ineffective hydrogenation at the lower concentration employed when using other solvents. ${ }^{i}$ Second charge of catalyst (S/C: 280) was added after $16 \mathrm{~h} .{ }^{j}$ This reaction was repeated with a value of 8.3% ee recorded

References

1. Whitesides, G. M.; Casey, C. P.; Krieger, J. K. J. Am. Chem. Soc., 1971, 93, 1379.
2. Magnus, N. A.; Astleford, B. A.; Laird, D. L. T.; Maloney, T. D.; McFarland, A. D.; Rizzo, J. R.; J. C. Ruble; Stephenson, G. A.; J. P. Wepseic J. Org. Chem. 2013, 78, 5768.
3. Sheldon, R. A.; Kochi, J. K. J. Am. Chem Soc., 1970, 92, 5175.
4. Davis, C. R.; Swenson, D. C.; Burton, D. J. J. Org. Chem., 1993, 58, 6843.
5. Nara, H.; Sayo, N.; Fujiwara, T. Eur. Pat. Appl., EP 2166014 A220100324; Takasago International Corporation, Japan, 2010.

Chiral HPLC Chromatograms

Asymmetric Reduction of 1-Benzyl-3-(3-methylbutanoyl)pyrrolidin-2-one (3a)

Chiral HPLC method used:
Column: Chiralpak IA-3, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 80/20 Heptane/Ethanol. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 0.5 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $5 \mu \mathrm{~L}$ or $10 \mu \mathrm{~L}$. Column Temperature: $25{ }^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 3a and diastereomeric β-hydroxy- γ-lactams (\pm)-4a and (\pm)-9a:

Table 2, entry 1: 3a(1 g, 3.86 mmol); $\mathrm{MeOH}(55 \mathrm{~mL}) ; 35 \% \mathrm{HCl}$ (requires $19 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$: therefore charged 0.19 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in MeOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})-$ tol-BINAP)] ($12.4 \mathrm{mg}, 0.0138 \mathrm{mmol}$).

$$
\mathbf{4 a}=92.06 \mathrm{~A} \% \quad \mathbf{9 a}=1.72 \mathrm{~A} \% \quad \mathbf{9 a}-\mathbf{e n t}=3.16 \mathrm{~A} \% \quad \mathbf{4 a}-\mathbf{e n t}=3.05 \mathrm{~A} \%
$$

Table 2, entry 4: 3a ($1 \mathrm{~g}, 3.86 \mathrm{mmol}$); EtOH (55 mL); $35 \% \mathrm{HCl}$ (requires $19 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$: therefore charged 0.19 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($12.4 \mathrm{mg}, 0.0138 \mathrm{mmol}$).

$$
\mathbf{4 a}=94.43 \mathrm{~A} \% \quad 9 \mathbf{a}=0.15 \mathrm{~A} \% \quad 9 \mathbf{a}-\mathrm{ent}=2.63 \mathrm{~A} \% \quad 4 \mathbf{a}-\mathrm{ent}=2.80 \mathrm{~A} \%
$$

Table 2, entry 12: 3a ($4.4 \mathrm{~g}, 17.0 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $85 \mu \mathrm{~L}, 1.02$ mmol : therefore charged 0.85 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); LiCl 0.1 M in IPA ($0.17 \mathrm{~mL}=7.2 \mathrm{mg}, 0.17 \mathrm{mmol}) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tol-BINAP)] ($54.5 \mathrm{mg}, 0.0607 \mathrm{mmol})$.

$\mathbf{4 a}=96.12 \mathrm{~A} \% \quad \mathbf{9} \mathbf{a}=\mathrm{ND} \quad \mathbf{9} \mathbf{a}-\mathrm{ent}=2.18 \mathrm{~A} \% \quad \mathbf{4 a}-\mathrm{ent}=1.70 \mathrm{~A} \%$

Asymmetric Reduction of 1-Benzyl-3-isobutyrylpyrrolidin-2-one (7a)

Chiral HPLC method used:
Column: Chiralpak IA-3, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: $85 / 15$ Heptane/Ethanol. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 0.5 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $5 \mu \mathrm{~L}$ or $10 \mu \mathrm{~L}$. Column Temperature: $25{ }^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 4a and diastereomeric β-hydroxy- γ-lactams (\pm)-8a and (\pm)-10a:

Table 2, entry 1: 7a ($1 \mathrm{~g}, 4.08 \mathrm{mmol}$); $\mathrm{MeOH}(55 \mathrm{~mL}) ; 35 \% \mathrm{HCl}$ (requires $20 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$: therefore charged 0.20 ml of a 10% stock solution of $35 \% \mathrm{HCl}$ in MeOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($13.1 \mathrm{mg}, 0.0146 \mathrm{mmol}$).

$$
\mathbf{8 a}=89.35 \mathrm{~A} \% \quad \mathbf{8 a}-\mathbf{e n t}=10.65 \mathrm{~A} \% \quad \mathbf{1 0 a}=\text { ND } \quad \mathbf{1 0 a}-\mathrm{ent}=\mathrm{ND}
$$

Table 2, entry 4: 7a ($1 \mathrm{~g}, 4.08 \mathrm{mmol}$); EtOH (55 mL); $35 \% \mathrm{HCl}$ (requires $20 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$: therefore charged 0.20 ml of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($13.1 \mathrm{mg}, 0.0146 \mathrm{mmol}$).

$\mathbf{8 a}=82.32 \mathrm{~A} \% \quad \mathbf{8 a}-\mathbf{e n t}=11.94 \mathrm{~A} \% \quad \mathbf{1 0 a}=0.36 \mathrm{~A} \% \quad \mathbf{1 0 a}-\mathrm{ent}=5.37 \mathrm{~A} \%$

Table 2, entry 12: 7a ($4.4 \mathrm{~g}, 18.0 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $90 \mu \mathrm{~L}, 1.08$ mmol : therefore charged 0.90 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); LiCl 0.1 M in IPA $(0.18 \mathrm{~mL}=7.6 \mathrm{mg}, 0.18 \mathrm{mmol}) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tol-BINAP$\left.)\right](57.7 \mathrm{mg}, 0.0642 \mathrm{mmol})$.

$\mathbf{8 a}=80.80 \mathrm{~A} \% \mathbf{8 a}-\mathbf{e n t}=15.91 \mathrm{~A} \% \quad \mathbf{1 0 a}=\mathrm{ND} \quad \mathbf{1 0 a}-\mathbf{e n t}=3.29 \mathrm{~A} \%$

Table 2, entry 11 :
Chiral HPLC method used:
Column: Chiralpak IA-3, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 90/10 Heptane/Ethanol. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 0.5 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $2.5 \mu \mathrm{~L}$ or $10 \mu \mathrm{~L}$. Column Temperature: $25{ }^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 4a and diastereomeric β-hydroxy- γ-lactams (\pm)-8a and (\pm)-10a:

Table 2, entry 11: 7a ($4.4 \mathrm{~g}, 18.0 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $90 \mu \mathrm{~L}, 1.08$ mmol: therefore charged 0.90 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); $\mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tol-BINAP$\left.)\right](57.7 \mathrm{mg}, 0.0642 \mathrm{mmol})$.

Asymmetric Reduction of 1-Benzyl-3-(2-cyclopropylacetyl)pyrrolidin-2-one (3b)

Chiral HPLC method used:
Column: Lux-Cellulose-2, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 80/20 Hexane/IPA. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 0.5 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $10 \mu \mathrm{~L}$. Column Temperature: $25^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm.

Mixture of β-keto- γ-lactam 3b and diastereomeric β-hydroxy- γ-lactams (\pm)-4b and (\pm)-9b:

Table 2, entry 5: 3b ($1 \mathrm{~g}, 3.89 \mathrm{mmol}$); $\mathrm{EtOH}(55 \mathrm{~mL}) ; 35 \% \mathrm{HCl}$ (requires $19 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$: therefore charged 0.19 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($12.5 \mathrm{mg}, 0.0139 \mathrm{mmol}$).

$\mathbf{4 b}-\mathbf{e n t}=7.78 \mathrm{~A} \% \quad \mathbf{9 b}=1.27 \mathrm{~A} \% \quad \mathbf{4 b}=90.95 \mathrm{~A} \% \quad \mathbf{9 b}-\mathbf{e n t}=\mathrm{ND}$

Table 2, entry 13: 3b ($4.4 \mathrm{~g}, 17.1 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $86 \mu \mathrm{~L}, 1.03$ mmol : therefore charged 0.86 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); LiCl 0.1 M in $\operatorname{IPA}(0.17 \mathrm{~mL}=7.2 \mathrm{mg}, 0.17 \mathrm{mmol}) ; \operatorname{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tol-BINAP$\left.)\right](54.9 \mathrm{mg}, 0.0611 \mathrm{mmol})$.

$\mathbf{4 b}-\mathbf{e n t}=6.90 \mathrm{~A} \% \quad \mathbf{9 b}=0.96 \mathrm{~A} \% \quad \mathbf{4 b}=92.14 \mathrm{~A} \% \quad \mathbf{9 b}-\mathbf{e n t}=\mathrm{ND}$

Asymmetric Reduction of 1-Benzyl-3-(cyclopropanecarbonyl)pyrrolidin-2-one (7b)

Chiral HPLC method used:
Column: Lux-Cellulose-2, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 80/20 Hexane/IPA. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 0.5 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $10 \mu \mathrm{~L}$. Column Temperature: $25^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm.

Mixture of diastereomeric β-hydroxy- γ-lactams (\pm)-8b and (\pm)-10b:

β-Keto- γ-lactam 7b:

Table 2, entry 5: 7b ($1 \mathrm{~g}, 4.11 \mathrm{mmol}$); EtOH (55 mL); $35 \% \mathrm{HCl}$ (requires $21 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$: therefore charged 0.21 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($13.2 \mathrm{mg}, 0.0147 \mathrm{mmol}$).

$\mathbf{8 b}-\mathbf{e n t}=1.56 \mathrm{~A} \% \mathbf{8 b}=96.34 \mathrm{~A} \% \quad \mathbf{1 0 b}=1.29 \mathrm{~A} \% \quad \mathbf{1 0 b}-\mathrm{ent}=0.81 \mathrm{~A} \%$

Table 2, entry 13: 7b ($4.4 \mathrm{~g}, 18.0 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $90 \mu \mathrm{~L}, 1.08$ mmol: therefore charged 0.90 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); LiCl 0.1 M in IPA $(0.18 \mathrm{~mL}=7.6 \mathrm{mg}, 0.18 \mathrm{mmol}) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tol-BINAP$\left.)\right](57.7 \mathrm{mg}, 0.0642 \mathrm{mmol})$.

$\mathbf{8 b}-$ ent $=2.42 \mathrm{~A} \% \quad \mathbf{8 b}=93.87 \mathrm{~A} \% \quad \mathbf{1 0 b}=2.52 \mathrm{~A} \% \quad \mathbf{1 0 b}-\mathrm{ent}=1.20 \mathrm{~A} \%$

Asymmetric Reduction of 1-Benzyl-3-(2-cyclohexylacetyl)pyrrolidin-2-one (3c)

Chiral HPLC method used:
Column: Lux-Cellulose-2, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 80/20 Hexane/IPA. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 0.5 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $5 \mu \mathrm{~L}$ or $10 \mu \mathrm{~L}$. Column Temperature: $25{ }^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 3c and diastereomeric β-hydroxy- γ-lactams $(\pm)-\mathbf{4 c}$ and $(\pm)-\mathbf{9 c}$:

Table 2, entry 2 : $\mathbf{3 c}$ ($1 \mathrm{~g}, 3.34 \mathrm{mmol}$); $\mathrm{MeOH}(55 \mathrm{~mL}) ; 35 \% \mathrm{HCl}$ (requires $17 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$: therefore charged 0.17 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in MeOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})-$ tol-BINAP)] ($10.7 \mathrm{mg}, 0.0119 \mathrm{mmol}$).

$$
\mathbf{9 c}=1.75 \mathrm{~A} \% \quad \mathbf{4 c} \text {-ent }=2.72 \mathrm{~A} \% \quad \mathbf{9 c} \text {-ent }=\mathrm{ND} \quad \mathbf{4 c}=95.53 \mathrm{~A} \%
$$

Table 2, entry 6: 3c ($1 \mathrm{~g}, 3.34 \mathrm{mmol}$); EtOH (55 mL); $35 \% \mathrm{HCl}$ (requires $17 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$: therefore charged 0.17 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($10.7 \mathrm{mg}, 0.0119 \mathrm{mmol}$).

$$
\mathbf{9 c}=2.64 \mathrm{~A} \% \quad \mathbf{4 c}-\mathrm{ent}=2.41 \mathrm{~A} \% \quad \mathbf{9 c}-\mathrm{ent}=\mathrm{ND} \quad \mathbf{4 c}=94.95 \mathrm{~A} \%
$$

Table 2, entry 14: 3c ($4.4 \mathrm{~g}, 14.7 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $74 \mu \mathrm{~L}, 0.88$ mmol : therefore charged 0.74 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); LiCl 0.1 M in IPA $(0.15 \mathrm{~mL}=6.4 \mathrm{mg}, 0.15 \mathrm{mmol}) ; \operatorname{Ru}(\mathrm{OAc})_{2}[(S)$-tol-BINAP$\left.)\right](47.1 \mathrm{mg}, 0.0524 \mathrm{mmol})$.

$\mathbf{9 c}=1.91 \mathrm{~A} \% \quad \mathbf{4 c}$-ent $=1.29 \mathrm{~A} \% \quad \mathbf{9} \mathbf{c}-\mathrm{ent}=\mathrm{ND} \quad \mathbf{4} \mathbf{c}=96.80 \mathrm{~A} \%$

Asymmetric Reduction of 1-Benzyl-3-(cyclohexanecarbonyl)pyrrolidin-2-one (7c)

Chiral HPLC method used:
Column: Lux-Cellulose-2, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 90/10 Hexane/IPA. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 0.5 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $10 \mu \mathrm{~L}$. Column Temperature: $25^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 7c and diastereomeric β-hydroxy- γ-lactams (\pm)-8c and (\pm)-10c:

Table 2, entry 6: 7c ($1 \mathrm{~g}, 3.51 \mathrm{mmol}$); $\mathrm{EtOH}(55 \mathrm{~mL}) ; 35 \% \mathrm{HCl}$ (requires $18 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$: therefore charged 0.18 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($11.3 \mathrm{mg}, 0.0125 \mathrm{mmol}$).

$\mathbf{8 c}-$ ent $=32.25 \mathrm{~A} \% \quad \mathbf{1 0 c}=\mathrm{ND} \quad \mathbf{1 0 c} \mathbf{c}$ ent $=\mathrm{ND} \quad \mathbf{8 c}=67.75 \mathrm{~A} \%$

Table 2, entry 14: 7c ($4.4 \mathrm{~g}, 15.4 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $77 \mu \mathrm{~L}, 0.92$ mmol: therefore charged 0.77 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); LiCl 0.1 M in IPA ($0.15 \mathrm{~mL}=6.4 \mathrm{mg}, 0.15 \mathrm{mmol}) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(S)$-tol-BINAP) ($49.4 \mathrm{mg}, 0.055 \mathrm{mmol}$).

$\mathbf{8 c}-$ ent $=30.73 \mathrm{~A} \% \quad \mathbf{1 0} \mathbf{c}=\mathrm{ND} \quad \mathbf{1 0} \mathbf{c}-\mathrm{ent}=\mathrm{ND} \quad \mathbf{8 c}=69.27 \mathrm{~A} \%$

Asymmetric reduction of 1-Benzyl-3-(2-phenylacetyl)pyrrolidin-2-one (3d)

Chiral HPLC method used:
Column: OJH, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 80/20 Hexane/IPA. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: $0.5 \mathrm{~mL} / \mathrm{min}$. Injection Volume: $5 \mu \mathrm{~L}$. Column Temperature: $25^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm . β-Keto- γ-lactam 3d:

Chiral HPLC method used:

Column: Lux-Cellulose-2, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 80/20 Hexane/IPA. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 0.5 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $10 \mu \mathrm{~L}$. Column Temperature: $25^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 3d and diastereomeric β-hydroxy- γ-lactams (\pm)-4d and (\pm)-9d:

Table 2, entry 7: 3d ($1 \mathrm{~g}, 3.41 \mathrm{mmol}$); EtOH (55 mL); $35 \% \mathrm{HCl}$ (requires $17 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$: therefore charged 0.17 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($10.9 \mathrm{mg}, 0.0122 \mathrm{mmol}$).

Table 2, entry 15: 3d ($4.4 \mathrm{~g}, 15.0 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $75 \mu \mathrm{~L}, 0.90$ mmol : therefore charged 0.75 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); LiCl 0.1 M in $\operatorname{IPA}(0.15 \mathrm{~mL}=6.4 \mathrm{mg}, 0.15 \mathrm{mmol}) ; \operatorname{Ru}(\mathrm{OAc})_{2}[(S)$-tol-BINAP$\left.)\right](48.1 \mathrm{mg}, 0.0536 \mathrm{mmol})$.

Asymmetric Reduction of 3-Benzoyl-1-benzylpyrrolidin-2-one (7d)

Chiral HPLC method used:
Column: Chiralpak IA-3, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: $95 / 5$ Heptane/Ethanol. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 1 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $5 \mu \mathrm{~L}$ or $10 \mu \mathrm{~L}$. Column Temperature: $25{ }^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 7d and diastereomeric β-hydroxy- γ-lactams (\pm)-8d and (\pm)-10d:

Table 2, entry 5: 7d ($1 \mathrm{~g}, 3.58 \mathrm{mmol}$); EtOH (55 mL); $35 \% \mathrm{HCl}$ (requires $18 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$: therefore charged 0.18 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($11.5 \mathrm{mg}, 0.0128 \mathrm{mmol}$).

$\mathbf{8 d}=59.12 \mathrm{~A} \% \quad \mathbf{8 d}-\mathrm{ent}=40.88 \mathrm{~A} \% \quad \mathbf{1 0 a}=$ ND $\quad 10 a-\mathrm{ent}=\mathrm{ND}$

Table 2, entry 15: 7d ($4.4 \mathrm{~g}, 15.8 \mathrm{mmol}$); IPA (55 mL); $35 \% \mathrm{HCl}$ (requires $79 \mu \mathrm{~L}, 0.95$ mmol: therefore charged 0.79 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in IPA); LiCl 0.1 M in $\operatorname{IPA}(0.16 \mathrm{~mL}=6.8 \mathrm{mg}, 0.16 \mathrm{mmol}) ; \operatorname{Ru}(\mathrm{OAc})_{2}[(S)$-tol-BINAP$\left.)\right](50.5 \mathrm{mg}, 0.0563 \mathrm{mmol})$.

$\mathbf{8 d}=57.64 \mathrm{~A} \% \quad$ 8d-ent $=42.36 \mathrm{~A} \% \quad \mathbf{1 0 d}=\mathrm{ND} \quad$ 10d-ent $=\mathrm{ND}$

Asymmetric Reduction of 1-Benzyl-3-(3,3-dimethylbutanoyl)pyrrolidin-2-one (3e)

Chiral HPLC method used:
Column: Chiralpak IA-3, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: 90/10 Heptane/Ethanol. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 1 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $5 \mu \mathrm{~L}$ or $10 \mu \mathrm{~L}$. Column Temperature: $25{ }^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 3e and diastereomeric β-hydroxy- γ-lactams $(\pm)-\mathbf{4 e}$ and $(\pm)-\mathbf{9 e}$:

Table 2, entry 3: 3e ($1 \mathrm{~g}, 3.66 \mathrm{mmol}$); $\mathrm{MeOH}(55 \mathrm{~mL}) ; 35 \% \mathrm{HCl}$ (requires $18 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$: therefore charged 0.18 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in MeOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})-$ tol-BINAP)] ($11.7 \mathrm{mg}, 0.0131 \mathrm{mmol}$).

$\mathbf{3 e}=50.46 \mathrm{~A} \% \quad \mathbf{9} \mathbf{e}=\mathrm{ND} \quad \mathbf{4} \mathbf{e}=1.71 \mathrm{~A} \% \quad \mathbf{9} \mathbf{e}-\mathrm{ent}=\mathrm{ND} \quad \mathbf{3 e}=47.08 \mathrm{~A} \% \quad \mathbf{4} \mathbf{e}-\mathbf{e n t}=0.75 \mathrm{~A} \%$

Table 2, entry 8: 3e ($1 \mathrm{~g}, 3.66 \mathrm{mmol}$); EtOH (55 mL); $35 \% \mathrm{HCl}$ (requires $18 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$: therefore charged 0.18 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH$) ; \mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tolBINAP)] ($11.7 \mathrm{mg}, 0.0131 \mathrm{mmol}$).

$\mathbf{3 e}=48.17 \mathrm{~A} \% \quad \mathbf{9} \mathbf{e}=\mathrm{ND} \quad \mathbf{4 e}=5.23 \mathrm{~A} \% \quad \mathbf{9 e}-\mathbf{e n t}=\mathrm{ND} \quad \mathbf{3 e}=45.45 \mathrm{~A} \% \quad 4 \mathrm{e}-\mathbf{e n t}=1.15 \mathrm{~A} \%$

Table 2, entry 10: 3e ($1 \mathrm{~g}, 3.66 \mathrm{mmol}$); $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(55 \mathrm{~mL}) ; 35 \% \mathrm{HCl}$ (requires $18 \mu \mathrm{~L}, 0.22$ mmol: therefore charged 0.18 mL of a 10% stock solution of $35 \% \mathrm{HCl}$ in EtOH); $\mathrm{Ru}(\mathrm{OAc})_{2}[(\mathrm{~S})$-tol-BINAP$\left.)\right](11.7 \mathrm{mg}, 0.0131 \mathrm{mmol})$.

$3 \mathbf{e}=52.09 \mathrm{~A} \% \quad \mathbf{9 e}=\mathrm{ND} \quad \mathbf{4 e}=1.27 \mathrm{~A} \% \quad \mathbf{9} \mathrm{e}-\mathrm{ent}=\mathrm{ND} \quad \mathbf{3 e}=43.52 \mathrm{~A} \% \quad 4 \mathrm{e}-\mathrm{ent}=3.12 \mathrm{~A} \%$

Asymmetric Reduction of 1-Benzyl-3-pivaloylpyrrolidin-2-one (7e)

Chiral HPLC method used:
Column: Chiralpak IA-3, $4.6 \times 250 \mathrm{~mm} 3 \mu \mathrm{~m}$ particle. Mobile Phase: $95 / 5$ Heptane/Ethanol. Samples were prepared at a concentration of approximately $1 \mathrm{mg} / \mathrm{mL}$ in IPA. Flow Rate: 1 $\mathrm{mL} / \mathrm{min}$. Injection Volume: $5 \mu \mathrm{~L}$. Column Temperature: $25^{\circ} \mathrm{C}$. Detection Wavelength: 220 nm .

Mixture of β-keto- γ-lactam 7e and diastereomeric β-hydroxy- γ-lactams $(\pm)-\mathbf{8 e}$ and $(\pm)-\mathbf{1 0 e}$:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

[^2]

(\pm)-9b

(\pm)-4c

(\pm)-9d

(\pm)-9d

(\pm-4e

Cosicen
(\pm)-8b

(\pm)-8b

(\pm)-10c

Coces
(\pm)-8e

(\pm)-8e

[^3]

X-Ray Crystallographic Structures

Crystals of $\mathbf{4 c}$ and $\mathbf{4 d}$-suitable for single crystal X-ray diffraction and taken from samples of the chromatographically purified products of Table S1(A), entry 6 and Table S1(B) entry 15 respectively-were grown by solvent evaporation from a toluene solution over 14 d until the solvent had completely evaporated. Full crystallographic details are contained in the CIFs.

While both 4c (CCDC 1505406) and 4d (CCDC 1505405) have identical absolute and relative stereochemistry and both agree with the earlier stereochemical assignment of $\mathbf{4 a},{ }^{2}$ they display optical rotations of opposite sign.

Figure Image 4c, (CCDC 1505406)

Figure Image 4d, (CCDC 1505405)

[^0]: *Due to overlap of the cyclopropyl hydrogen resonances with the TMS signal, the sample was subsequently spiked with CHCl_{3} and the ${ }^{1} \mathrm{H}$ NMR spectrum recorded again to allow the chemical shifts of each resonance to be determined relative to the CHCl_{3} signal at 7.26 ppm .

[^1]: *In instances where precipitation was observed after purging with nitrogen, the mixture was re-heated to dissolve the product.

[^2]:

[^3]:
 (\pm)-10e

