Supporting Information:

Time Course Analysis of Enzyme-Catalyzed DNA Polymerization

Julius Rentergent, Max D. Driscoll, and Sam Hay *
Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
E-mail: sam.hay@manchester.ac.uk

Assay and initial conditions

For all assays, varying concentrations of DNA template-primer and dNTPs were prepared in 10 mm Tris $/ \mathrm{HCl}, 50 \mathrm{~mm} \mathrm{NaCl}, 10 \mathrm{~mm} \mathrm{MgCl}_{2}, 1 \mathrm{~mm}$ dithiothreitol, pH 8.0 or pH^{*} 8.0. The reaction was started by adding KF and the total reaction volume was 1 ml . At several time points, starting after 10 seconds, $100 \mu \mathrm{l}$ aliquots were removed and quenched by adding to $1.5 \mu \mathrm{l} \mathrm{PG}(3 \mu \mathrm{M}$ final concentration). Fluorescence measurements were made within 10 min of stopping the reaction.

The following list contains all concentrations of reactants for all experiments. KF dependence using T7pR80 template at $25^{\circ} \mathrm{C}$: KF 0 to $200 \mathrm{~nm}, 50 \mathrm{~nm}, 500 \mu \mathrm{M}$ dNTP $(125 \mu \mathrm{~m}$ of each type). DNA dependence using T7pR80 template at $25^{\circ} \mathrm{C}$: $5 \mathrm{~nm} \mathrm{KF}, 0$ to 25 nm DNA, $500 \mu \mathrm{M}$ dNTP. dNTP dependence using T7pR80 template at $25^{\circ} \mathrm{C}$, $\mathrm{pH} 8: 50 \mathrm{~nm} \mathrm{KF}, 100 \mathrm{~nm}$ DNA, 0 to $100 \mu \mathrm{M}$ dNTP. This experiment was repeated in $\mathrm{D}_{2} \mathrm{O}$, and with T 7 pR 30 template in $\mathrm{H}_{2} \mathrm{O}$ and in $\mathrm{D}_{2} \mathrm{O}$. DNA template length dependency was carried out using all four oligos at $25^{\circ} \mathrm{C}$: 50 nm KF, 100 nm DNA, $500 \mu \mathrm{~m}$ dNTP. KF dependence using T7pR100 template was carried out at $5,10,15,20$ and $25^{\circ} \mathrm{C}$: KF 0 to 1000 nM at 5,10 and $15^{\circ} \mathrm{C} ; 0$ to 500 nm KF at $20^{\circ} \mathrm{C} ; 0$ to 200 nm KF at $25^{\circ} \mathrm{C}, 50 \mathrm{~nm}$ DNA, $500 \mu \mathrm{M}$. Buffer was adjusted to produce pH 8 at all temperatures.

Full results tables

Table S1. Full results of global nonlinear regression of Scheme 1 to the three data sets shown in Figure 2.3. k_{1}, k_{-1} and K_{d} refer to the enzyme-template binding parameters, while $k_{\text {cat }}$ and K_{m} refer to the steady-state parameters of dNTP substrate.

Parameter	Value \pm Standard Error
Sum of Squares	7.64×10^{11}
$\Delta f /\left(\mathrm{cps} \mu \mathrm{M}{ }^{-1}\right)$	$3.18 \times 10^{5} \pm 0.07 \times 10^{5}$
$f_{0} /\left(\operatorname{cps~}_{\text {um }}{ }^{-1}\right)$	$7.60 \times 10^{6} \pm 0.204 \times 10^{6}$
$\mathrm{DNA}_{\text {mod, }}$ KF	0.77 ± 0.02
DNA ${ }_{\text {mod, DNA }}$	0.86 ± 0.03
DNA ${ }_{\text {mod,dNTP }}$	0.72 ± 0.02
$k_{1} /\left(\mu^{-1} \mathrm{~s}^{-1}\right)$	7.43 ± 0.97
k_{-1} / s^{-1}	0.074 ± 0.013
$K_{\text {d }} / \mathrm{nM}$	9.96 ± 1.79
$k_{\text {cat }} / \mathrm{s}^{-1}$	3.34 ± 0.14
$K_{\mathrm{m}} / \mathrm{\mu M}$	0.51 ± 0.04
$k_{\text {cat }} / K_{\mathrm{m}} /\left(\mu^{-1} \mathrm{~s}^{-1}\right)$	6.52 ± 0.55

Table S2. Full results for global fit to DNA length dependence data. The parameter $k_{- \text {end }}$ refers to the k_{-1} value at the final $\mathrm{DNA}_{\mathrm{n}}$ position. The variation in Δf for different templates is produced by different template properties, and by correlation with the initial template concentration, which is affected by both annealing efficiency and experimental error.

Parameter	Value \pm Standard Error
Sum of Squares	1.61×10^{11}
$\Delta f_{30} /\left(\operatorname{cps} \mu \mathrm{m}^{-1}\right)$	$3.96 \times 10^{5} \pm 0.16 \times 10^{5}$
$\Delta f_{50} /\left(\operatorname{cps~}_{\mu \mathrm{M}}{ }^{-1}\right)$	$3.36 \times 10^{5} \pm 0.10 \times 10^{5}$
$\Delta f_{80} /\left(\operatorname{cps~} \mathrm{mm}^{-1}\right)$	$2.63 \times 10^{5} \pm 0.065 \times 10^{5}$
$\Delta f_{100} /\left(\mathrm{cps}_{\mu \mathrm{M}}{ }^{-1}\right)$	$3.01 \times 10^{5} \pm 0.060 \times 10^{5}$
$f_{0} /\left(\operatorname{cps} \mu \mathrm{M}^{-1}\right)$	$7.01 \times 10^{6} \pm 0.347 \times 10^{6}$
$k_{- \text {end }} / \mathrm{s}^{-1}$	1.7 ± 2.3
$k_{\text {cat }} / \mathrm{s}^{-1}$	2.5 ± 0.1

Table S3. Full results of temperature dependence regression. KF_{0} refers to the expected KF concentration, while $\mathrm{KF}_{\text {active }}$ labels the estimated active amount. Δf was fixed at $3.2 \times 10^{5} \mathrm{cps}^{\mu \mathrm{M}}{ }^{-1}$ from calibration.

	Temperature $/{ }^{\circ} \mathrm{C}$				
Parameter	25	20	15	10	5
SoS	4.2×10^{10}	8.55×10^{10}	1.19×10^{11}	6.9×10^{11}	3.5×10^{10}
$\mathrm{DNA}_{\text {mod }}$	0.82 ± 0.01	0.85 ± 0.01	0.85 ± 0.01	0.75 ± 0.01	0.82^{b}
$k_{1} /\left(\mu \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	5.5 ± 2.6	44.5 ± 24.9	16.7 ± 7.4	1.53 ± 0.29	3.54 ± 0.98
$K_{\mathrm{d}} / \mathrm{nM}$	20 ± 7.9	5.6 ± 1.8	$-a$	$-a$	$-a$
$k_{\text {cat }} / \mathrm{s}^{-1}$	5.6 ± 0.36	3.3 ± 0.1	1.40 ± 0.02	1.00 ± 0.02	0.43 ± 0.01
$\mathrm{KF}_{\text {active }} / \mathrm{KF}_{0}$	0.95 ± 0.17	0.53 ± 0.04	0.41 ± 0.02	0.36 ± 0.03	0.27 ± 0.01

${ }^{a}$ not existent in irreversible model. ${ }^{b}$ fixed to average of previous four values.

Table S4. Full results of dNTP dependence data regression including solvent KIE $_{\text {obs }}$ values. $\mathrm{k}_{- \text {end }}$ refers to the k_{-1} value at the final $\mathrm{DNA}_{\mathrm{n}}$ position.

T7pR80 DNA template	Value in $\mathrm{H}_{2} \mathrm{O}^{a}$	Value in $\mathrm{D}_{2} \mathrm{O}$	KIE
$k_{\text {obs }}$			
$K_{\mathrm{m}} / \mathrm{s}^{-1}$	$\mathrm{\mu M}$	3.34 ± 0.14	1.131 ± 0.056
$k_{\text {cat }} / K_{\mathrm{m}} /\left(\mathrm{\mu M}^{-1} \mathrm{~s}^{-1}\right)$	0.51 ± 0.04	0.224 ± 0.027	2.28 ± 0.19
Sum of Squares	6.52 ± 0.55	5.06 ± 0.73	1.29 ± 0.22
$\Delta f /\left(\operatorname{cps} \mu \mathrm{M}^{-1}\right)$	$(3.18 \pm 0.07) \times 10^{5}$	$\left(3.23 \times 10^{11}\right.$	
$f_{0} /\left(\operatorname{cps} \mu \mathrm{M}^{-1}\right)$	$(7.60 \pm 0.20) \times 10^{6}$	$(8.25 \pm 0.14) \times 10^{5}$	

${ }^{a}$ from Table S1

T7pR30 DNA template	Value in $\mathrm{H}_{2} \mathrm{O}$	Value in $\mathrm{D}_{2} \mathrm{O}$	KIE $_{\text {obs }}$
$k_{\text {cat }} / \mathrm{s}^{-1}$	2.63 ± 0.12	0.834 ± 0.019	3.15 ± 0.16
$K_{\mathrm{m}} / \mu \mathrm{M}$	0.858 ± 0.067	0.398 ± 0.034	2.16 ± 0.25
$k_{\text {cat }} / K_{\mathrm{m}} /\left(\mathrm{\mu M}^{-1} \mathrm{~s}^{-1}\right)$	3.06 ± 0.16	2.10 ± 0.16	1.46 ± 0.13
Sum of Squares	8.43×10^{11}	shared	
$\Delta f /\left(\operatorname{cps~}_{\mathrm{cpm}}{ }^{-1}\right)$	$(6.17 \pm 0.06) \times 10^{5}$	shared	
$f_{0} /\left(\mathrm{cps}_{\mathrm{cm}} \mathrm{M}^{-1}\right)$	$(7.03 \pm 0.13) \times 10^{6}$	shared	
$k_{- \text {end }} / \mathrm{s}^{-1}$	0.43 ± 0.34	shared	

Sample time courses from reduced model

Figure S1. Reduced model approximation of a $100-\mathrm{mer}$. Simulated sample time course with different model lengths at 200 nm DNA polymerase, 100 nm DNA template and $500 \mu \mathrm{~m}$ dNTP.

Analysis of pulse-chase/pulse-quench data

Figure S2. Time course analysis of pulse-chase/pulse-quench yield gap for KF. The data and model used were published previously in: Dahlberg, M. E., and Benkovic, S. J. (1991) Kinetic mechanism of DNA polymerase I(Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant. Biochemistry 30, 4835-4843. The data points from Figure 2 in the publication were extracted with: Rohatgi, A. WebPlotDigitizer at http://arohatgi.info/WebPlotDigitizer/.
The model shown in Scheme V in their publication (similar to the first two rows of Scheme 1 including the bracketed part) was implemented in Copasi together with the published parameter values and conditions for the experiment. The dependent variable of the pulse-quench time course (blue) is modelled as the sum of all DNA_{n+1} concentrations, while the dependent variable of the pulse-chase (red) time course is modelled as the sum of all DNA_{n+1} concentrations plus the concentration of KF^{*} $\mathrm{DNA}_{\mathrm{n}}$-dNTP. The model does not fit the data when the published parameters are used. The fit above was obtained with $k_{3}=182 \mathrm{~s}^{-1}\left(\right.$ up from $\left.50 \mathrm{~s}^{-1}\right)$ and $k_{5}=0.29 \mathrm{~s}^{-1}$ (down from $15 \mathrm{~s}^{-1}$). While these numbers are unlikely to reflect true rate constants in fact, a number of alternative parameters can be changed to give the same result it does suggest that one of the pre-chemistry step could be occuring at a similar rate as phosphoryl transfer $\left(150 \mathrm{~s}^{-1}\right)$. Nevertheless, one of the post-chemistry steps must be slow in order to describe these data.

Mathematica code

This code can be used to produce the Scheme 1 model for a DNA template of arbitrary length.
$\mathrm{tf}=120 ;$
species $=P P ;$
reallength $=$.;
modellength $=$.
(* model with length adjustments in this cell ${ }^{*}$)
poly[length_]:=\{
$E n z '[t]==$
Total[
Table $\left[k_{-1} * \mathrm{ET}_{i}[t]\right.$
$-k_{1} * T_{i}[t] * \operatorname{Enz}[t],\{i, 0$, length -1$\left.\}\right]$
]
$+k_{- \text {end }} * \mathrm{ET}_{\text {length }}[t]$
$-k_{\text {end }} * T_{\text {length }}[t] * \operatorname{Enz}[t]$,

Table $\left[T_{i}^{\prime}[t]==\right.$
$k_{-1} * \mathrm{ET}_{i}[t]$
$-k_{1} * T_{i}[t] * \operatorname{Enz}[t],\{i, 0$, length -1$\left.\}\right]$,

$$
\begin{aligned}
& T_{\text {length }}^{\prime}[t]== \\
& k_{- \text {end }} * \mathrm{ET}_{\text {length }}[t] \\
& -k_{\text {end }} * T_{\text {length }}[t] * \operatorname{Enz}[t]
\end{aligned}
$$

(* ET start ${ }^{*}$)
$\mathrm{ET}_{0}^{\prime}[t]==$
$k_{1} * T_{0}[t] * \mathrm{Enz}[t]$
$-k_{-1} * \mathrm{ET}_{0}[t]$
$-\mathrm{kcat} * \mathrm{ET}_{0}[t] * 1 / 4 S[t] /(\mathrm{Km}+1 / 4 S[t]) *$ length $/$ reallength,
(*repeat*)
Table $\left[\mathrm{ET}_{i}^{\prime}[t]==\right.$
$k_{1} * T_{i}[t] * \operatorname{Enz}[t]$
$-k_{-1} * \mathrm{ET}_{i}[t]$
-kcat $* \mathrm{ET}_{i}[t] * 1 / 4 S[t] /(\mathrm{Km}+1 / 4 S[t]) *$ length/reallength
$+\mathrm{kcat} * \mathrm{ET}_{i-1}[t] * 1 / 4 S[t] /(\mathrm{Km}+1 / 4 S[t]) *$ length $/$ reallength,
$\{i, 1$, length -1$\}]$,
(*finish*)

$$
\begin{aligned}
& \mathrm{ET}_{\text {length }}^{\prime}[t]== \\
& k_{\text {end }} * T_{\text {length }}[t] * \mathrm{Enz}[t] \\
& -k_{- \text {end }} * \mathrm{ET}_{\text {length }}[t] \\
& + \text { kcat } * \mathrm{ET}_{\text {length }-1}[t] * 1 / 4 S[t] /(\mathrm{Km}+1 / 4 S[t]) * \text { length/reallength }
\end{aligned}
$$

$$
S^{\prime}[t]==
$$

$$
\operatorname{Sum}\left[-\mathrm{kcat} * \mathrm{ET}_{i}[t] * 1 / 4 S[t] /(\mathrm{Km}+1 / 4 S[t]),\{i, 0, \text { length }-1\}\right]
$$

$$
\operatorname{PP}^{\prime}[t]==
$$

$$
\operatorname{Sum}\left[\operatorname{kcat} * \mathrm{ET}_{i}[t] * 1 / 4 S[t] /(\mathrm{Km}+1 / 4 S[t]),\{i, 0, \text { length }-1\}\right],
$$

$\operatorname{Enz}[0]==\mathrm{enz} *$ Eerror,
$T_{0}[0]==$ dna $*$ Terror,
$S[0]==\mathrm{sub}$,
$\operatorname{PP}[0]==0$,
Table $\left[T_{i}[0]==0,\{i\right.$, length $\left.\}\right]$,
Table $\left[\mathrm{ET}_{i}[0]==0,\{i, 0\right.$, length $\left.\}\right]$
\}//Flatten;
solaccurate $=$ Table[
ParametricNDSolve[
poly[lengths],
species,
$\{t, 0 ., \mathrm{tf}\}$,
$\left\{k_{1}, k_{-1}, \mathrm{kcat}, \mathrm{Km}, k_{\text {end }}, k_{-\mathrm{end}}, \mathrm{enz}, \mathrm{dna}, \mathrm{sub}\right.$, Eerror, Terror $\}$,
MaxSteps $\rightarrow \infty$,
PrecisionGoal $\rightarrow 9$,
AccuracyGoal $\rightarrow 9$,
Method \rightarrow "LSODA"],
\{lengths, $\{30,50,80,100\}\}$];

