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Coupled-dipole model for chains of silicon nanoparticles

In the linear case electromagnetic reponse of the dielectric nanoparticle chain can be de-

scribed by coupled electric dipole (ED) and magnetic dipole (MD) model1–4, which formu-

lates in the frequency domain as follows:


pn = α̂e(ω)(E

(loc)
n + E

(ext)
n ),

mn = α̂m(ω)(H
(loc)
n + H

(ext)
n ),

(1)

where mn and pn are magnetic and electric moments induced in the nth particle (∝ −iωt),

α̂m and α̂e are magnetic and electric polarizability tensors, electric E
(ext)
n and magnetic H

(ext)
n

fields at the position of the nth dipole are produced by external source; local electric E
(loc)
n
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and magnetic H
(loc)
n fields are produced by all other dipoles in the chain:

E(loc)
n =

∑
j 6=n

(
Ĉnjpj − Ĝnjmj

)
,

H(loc)
n =

∑
j 6=n

(
Ĉnjmj + Ĝnjpj

)
,

(2)

where Ĉnj = Anj Î +Bnj(r̂nj ⊗ r̂nj), Ĝnj = −Dnj r̂nj × Î, ⊗ is a dyadic product, Î is the unit

3× 3 tensor, r̂nj is the unit vector in the direction from nth to jth dipole, and

Anj = eikhRnj

(
k2h
Rnj

− 1

R3
nj

+
ikh
R2

nj

)
,

Bnj = eikhRnj

(
− k2h
Rnj

+
3

R3
nj

− 3ikh
R2

nj

)
,

Dnj = eikhRnj

(
k2h
Rnj

+
ikh
R2

nj

)
,

(3)

where Rnj = a|n− j| is the distance between the nth and jth dipoles, a is the period of the

chain, εh is the permittivity of the host medium (in our calculations we take εh = 1), and

kh =
√
εhω/c is the host wavenumber. Analytical closed-form dispersion equations for the

infinite chains can be obtained by replacing infinite sums in (2) with analytical functions3,4.

To describe the response of nonspherical nanoparticles analytically (for a certain polar-

ization) we employ approximate expressions for the magnetic and electric polarizabilities of

the particles:
1

αm

=
(ωm − ω)

Γm

− i2
3

(nhω

c

)3
,

1

αe

=
(ωe − ω)

Γe

− i2
3
nh

(ω
c

)3
,

(4)

where ωm,e are MD and ED resonance frequencies, respectively, ω is the external radia-

tion frequency, nh is the refractive index of the host medium, c is the speed of light, Γm,e

and the MD and ED resonance strengths. Exact dependencies α(ω) can be derived for

arbitrary-shaped particles through the multipole decomposition of the field scattered by a

single particle5. However this approach substantially complicates the derivation of evolution
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equations (see next section). While fitting α(ω) with formulae (4) (assuming constant imag-

inary part at the center frequency of the pulse) provides us with quite simple and accurate

approximation.

Evolutions equations

In order to describe the evolution of the induced magnetic and electric moments in time and

take into account the resonance frequencies shifts due to the nonlinear response we transform

equations (1) into the time domain. After the appropriate normalization we write down the

equations for the evolution of the slowly varying transverse components of magnetic m̃ and

electric p̃ dipole moments of N dielectric nanoparticles (subsript n = 1..N indicates the

number of the particle), driven by monochromatic external field in the following form6:


−idm̃n

dτ
+ (Ωm − M̃n − iγm)m̃n − βm

∑
j 6=n(Anjm̃j + sgn(j − n)Dnj p̃j)− H̃(ext)

n = 0,

−idp̃n
dτ

+ (Ωe − P̃n − iγe)p̃n − βe
∑

j 6=n(Anj p̃j + sgn(j − n)Dnjm̃j)− Ẽ(ext)
n = 0,

(5)

where τ = ωpt is the dimensionless time, ωp is the center frequency of the propagating pulse,

m̃n =
√
χmmn, p̃n =

√
χepn, M̃n =

χm

ω
|mn|2, P̃n =

χe

ω
|pn|2, χm,e is the nonlinear coefficient

that takes into account the enhancement of electric field intensity inside the particle at

MD and ED resonances, Ωm,e =
ωm,e − ωp

ωp

=
km,e − kp

kp
is the relative frequency shift,

kp = ωp/c, c is the speed of light, βm,e =
Γm,e

ωp

, γm,e = βm,e
2

3
k3p, H̃

(ext)
n =

√
χβmH

(ext)
n and

Ẽ
(ext)
n =

√
χβeE

(ext)
n are normalized electric and magnetic field amplitudes of the external

radiation, respectively, at the position of the nth dipole; dipole-dipole interaction constants

Anj and Dnj are given by formulae (3).
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Resonance frequency tuning with nonlinearity

The value of refractive index inside nanoparticle is given by n = nL + 2n̄2|Ein|2, where nL is

linear refractive index, n̄2 (m2/V 2) is the second order nonlinear refractive index and |Ein|2

is electric field intensity inside the particles averaged over the nanoparticle volume. At both

MD and ED resonances |Ein|2 ≈ 10|Eext|2, where |Eext|2 is the electric field intensity of the

incident pulse. Peak intensity of the incident pulse is Iext = 2ε0c|Eext|2. Commonly used

nonlinear refractive index n2 (m2/W ) is related to n̄2 through expression n2 = n̄2/(ε0nLc)
7.

From these relations we obtain n = nL + 10n2nLI
ext.

Resonace frequency of the nanoparticle is approximately proportional to the value of

refractive index, therefore relative shift of the resonance frequency ωr as a function of the

incident pulse intensity is expressed as following: δ =
∆ωr

ωr

=
∆n

nL

= 10n2I
ext. In the main

text we chose fixed value of nonlinear refractive index n2 = 8 · 10−18 m2/W , therefore e.g.

for I = 5 GW/cm2, we obtain δ = 0.4% shift.

From equations (5) in linear regime we can obtain the absolute square of magnetic mo-

ment M̃ =
|H̃(ext)|2

γ2m
when a single particle is irradiated by a plane wave with normalized

magnetic field H̃(ext) at the MD resonance frequency. This is exactly the value of the relative

resonance frequency shift δ which allow us to make correspondence between the |H̃(ext)|2 in

dimensionless units, used in calculations, and intensity of the incident pulse in W/m2.
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