Experimental and Theoretical Thermodynamic Study of Distillable Ionic Liquid 1,5-Diazabicyclo[4.3.0]non-5-enium Acetate: Supporting Information

Alexandr Ostonen,^{1,*} Justine Bervas,¹ Petri Uusi-Kyyny,¹ Ville Alopaeus,¹ Dzmitry H. Zaitsau,² Vladimir N. Emel'yanenko,² Christoph Schick,³ Alistair W. T. King,⁴ Jussi Helminen,⁴ Ilkka Kilpeläinen,⁴ Artashes A. Khachatrian,⁵ Mikhail A. Varfolomeev,⁵ Sergey P. Verevkin^{2,**}

² Institut für Chemie, Physikalische Chemie, Universität Rostock, Dr-Lorenz-Weg 1, 18059 Rostock, Germany.

³ Institut für Physik, Polymerphysik, Universität Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany.

⁴ Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1,FI-00014,P.O. Box 55, Helsinki, Finland.

⁵ Department of Physical Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russia

* To whom correspondence concerning the reaction and solution calorimetry measurements and data evaluation should be addressed, E-mail: alexandr.ostonen@aalto.fi (A. Ostonen)

**To whom correspondence concerning the thermodynamic measurements and data evaluation should be addressed, E-mail: sergey.verevkin@uni-rostock.de (S.P. Verevkin)

Keywords: ionic liquids; reaction calorimetry, solution calorimetry, combustion calorimetry; enthalpy of formation; quantum-chemical calculations

¹ Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, FI-00076, P.O. Box 16100, Espoo, Finland.

Chemical name	Source	Initial mass fraction purity	Final mass fraction purity	Mass fraction water content	Mole fraction of APP/APPH ⁺	Analysis method	Purification method
Acetic acid	Sigma-Aldrich	-	≥ 0.998	-	-	-	-
DBN	Fluorochem	≥ 0.990	≥ 0.997	≤ 0.0028	≤ 0.0001	¹ H NMR, K-F	Distillation
[DBNH][OAc]	-	-	≥ 0.989	≤ 0.0003	≤ 0.0095	¹ H NMR, K-F	-
Chemical name	Source	Initial mass fraction purity	Final mass fraction purity	Mass fraction water content	Mole fraction of APP/APPH ⁺	Analysis method ^{a,b}	Purification method
Acetic acid	Sigma-Aldrich	-	≥ 0.998	-	-	-	-
DBN	Fluorochem	≥ 0.990	≥ 0.997	≤ 0.0028	≤ 0.0001	¹ H NMR, K-F	Distillation
[DBNH][OAc]	-	-	≥ 0.989	≤ 0.0003	≤ 0.0095	¹ H NMR, K-F	-
n-Octane	Sigma-Aldrich	≥ 0.980	≥ 0.980	≤ 0.0002	-	GC, K-F	-
n-Nonane	Sigma-Aldrich	≥ 0.980	≥ 0.980	≤ 0.0002	-	GC, K-F	-
n-Decane	Sigma-Aldrich	≥ 0.980	≥ 0.980	≤ 0.0002	-	GC, K-F	-
n-Undecane	Sigma-Aldrich	≥ 0.980	≥ 0.980	≤ 0.0002	-	GC, K-F	-
n-Dodecane	Sigma-Aldrich	≥ 0.980	≥ 0.980	≤ 0.0002	-	GC, K-F	-
Benzene	Sigma-Aldrich	≥ 0.990	≥ 0.996	≤ 0.0003	-	GC, K-F	Distillation
Toluene	Sigma-Aldrich	≥ 0.980	≥ 0.985	≤ 0.0003	-	GC, K-F	Distillation
Butylbenzene	Sigma-Aldrich	≥ 0.980	≥ 0.988	≤ 0.0002	-	GC, K-F	Distillation
Pentylbenzene	Sigma-Aldrich	≥ 0.980	≥ 0.989	≤ 0.0002	-	GC, K-F	Distillation
Methanol	Sigma-Aldrich	≥ 0.980	≥ 0.984	≤ 0.0003	-	GC, K-F	Distillation
Ethanol	Sigma-Aldrich	≥ 0.980	≥ 0.986	≤ 0.0004	-	GC, K-F	Distillation
1-Propanol	Sigma-Aldrich	≥ 0.980	≥ 0.985	≤ 0.0004	-	GC, K-F	Distillation
1-Butanol	Sigma-Aldrich	≥ 0.980	≥ 0.989	≤ 0.0004	-	GC, K-F	Distillation
1-Pentanol	Sigma-Aldrich	≥ 0.980	≥ 0.985	≤ 0.0004	-	GC, K-F	Distillation
Acetone	Sigma-Aldrich	≥ 0.990	≥ 0.994	≤ 0.0002	-	GC, K-F	Distillation
Acetonitrile	Sigma-Aldrich	≥ 0.990	≥ 0.997	≤ 0.0002	-	GC, K-F	Distillation
Tetrahydrofuran	Sigma-Aldrich	≥ 0.980	≥ 0.987	≤ 0.0002	-	GC, K-F	Distillation
Dichloromethane	Sigma-Aldrich	≥ 0.980	≥ 0.988	≤ 0.0002	-	GC, K-F	Distillation
Trichloromethane	Sigma-Aldrich	≥ 0.980	≥ 0.989	≤ 0.0002	-	GC, K-F	Distillation
2,6-	~			≤ 0.0002	-	GC, K-F	
Dimethoxyphenol	Sigma-Aldrich	≥ 0.980	≥ 0.989				Recrystallization
1,2-				≤ 0.0002	-	GC, K-F	
Dihydroxybenzene	Sigma-Aldrich	≥ 0.980	≥ 0.987				Recrystallization
3-Methoxyphenol	Sigma-Aldrich	\geq 0.980	≥ 0.988	≤ 0.0003	-	GC, K-F	Distillation
4-Ethylphenol	Sigma-Aldrich	≥ 0.980	≥ 0.989	≤ 0.0003	-	GC, K-F	Recrystallization

Table S1. Provenance and Purity of Samples Used

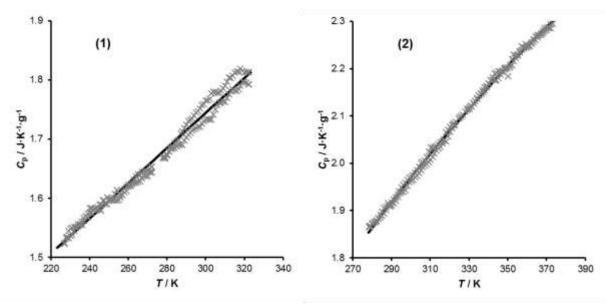
^a GC-Gas chromatography analysis of compounds purity.

^b K-F – Karl-Fisher titration technic for determination of water content.

Table S2. Measured Heat Capacities of DBN^a

C _p (DBN, liq)			C _p (DBN, liq)		
T/K	J·K ⁻¹ ·g ⁻¹	J·K ⁻¹ ·mol ⁻¹	T/K	J·K ⁻¹ ·g ⁻¹	J·K ⁻¹ ·mol ⁻¹
227.0	1.524	189.3	272.2	1.653	205.2
227.0	1.523	189.2	278.0	1.668	207.1
228.0	1.532	190.2	278.0	1.670	207.4
228.1	1.535	190.6	279.0	1.667	207.0
229.0	1.533	190.3	279.0	1.670	207.4
229.0	1.545	191.9	280.0	1.672	207.6
230.0	1.548	192.2	280.0	1.674	207.8
230.0	1.536	190.7	281.0	1.679	208.5
231.0	1.550	192.4	281.0	1.679	208.5
231.0	1.539	191.1	282.0	1.685	209.2
232.0	1.552	192.8	282.0	1.683	209.0
232.0	1.545	191.8	283.0	1.684	209.1
233.0	1.550	192.5	283.0	1.688	209.6
233.0	1.552	192.8	284.0	1.694	210.4
234.0	1.553	192.8	284.0	1.685	209.3
234.0	1.556	193.2	285.0	1.688	209.6
235.0	1.554	193.0	285.0	1.697	210.7
235.0	1.557	193.3	286.0	1.690	209.8
236.0	1.560	193.8	286.0	1.699	210.9
236.1	1.555	193.1	287.0	1.691	210.0
237.0	1.567	194.5	287.1	1.710	212.4
237.0	1.562	194.0	288.0	1.713	212.8
238.0	1.570	195.0	288.0	1.690	209.9
238.0	1.570	195.0	289.0	1.718	213.4
239.0	1.574	195.5	289.0	1.698	210.9
239.0	1.568	194.7	290.0	1.724	214.1
240.0	1.576	195.7	290.0	1.703	211.5
240.0	1.583	196.6	291.0	1.730	214.9
241.0	1.583	196.6	291.0	1.707	212.0
241.0	1.576	195.7	292.0	1.732	215.1
242.0	1.581	196.3	292.0	1.711	212.5
242.0	1.581	196.3	293.0	1.735	215.5
243.0	1.582	196.5	293.0	1.715	213.0
243.0	1.583	196.6	294.0	1.740	216.1
244.0	1.581	196.3	294.0	1.717	213.2
244.0	1.585	196.8	295.0	1.745	216.7
245.0	1.581	196.4	295.0	1.718	213.3
245.0	1.589	197.3	296.0	1.747	217.0
246.0	1.579	196.1	296.0	1.721	213.7
246.0	1.589	197.3	297.0	1.752	217.6
247.0	1.596	198.2	297.0	1.721	213.7
247.1	1.597	198.3	298.0	1.758	218.3
248.0	1.590	197.5	298.1	1.726	214.3
248.0	1.590	197.4	299.0	1.730	214.8
249.0	1.590	197.4	299.0	1.759	218.4
249.0	1.601	198.8	300.0	1.733	215.2
250.0	1.595	198.1	300.0	1.765	219.2

250.0	1.599	198.6	301.0	1.734	215.3
251.0	1.600	198.7	301.0	1.765	219.2
251.0	1.598	198.4	302.0	1.733	215.2
252.0	1.601	198.9	302.0	1.768	219.6
252.0	1.596	198.2	303.0	1.734	215.4
253.0	1.607	199.6	303.0	1.777	220.7
253.0	1.597	198.3	304.0	1.741	216.1
254.0	1.614	200.5	304.0	1.780	221.1
254.0	1.596	198.2	305.0	1.780	221.1
255.0	1.608	199.7	305.0	1.750	217.3
255.1	1.597	198.3	306.0	1.778	220.8
256.0	1.606	199.4	306.0	1.758	218.3
256.0	1.601	198.8	307.0	1.778	220.8
257.0	1.613	200.2	307.0	1.761	218.7
257.0	1.606	199.4	308.0	1.782	221.3
258.0	1.616	200.7	308.0	1.762	218.8
258.0	1.610	199.9	309.0	1.786	221.8
259.0	1.619	201.1	309.0	1.764	219.0
259.0	1.612	200.2	310.0	1.790	222.3
260.0	1.623	201.5	310.0	1.763	219.0
260.0	1.620	201.1	311.0	1.797	223.1
261.0	1.623	201.5	311.1	1.770	219.8
261.0	1.621	201.3	312.0	1.804	224.0
262.0	1.625	201.8	312.1	1.776	220.5
262.0	1.624	201.7	313.0	1.804	224.0
263.0	1.631	202.6	313.1	1.781	221.2
263.0	1.626	201.9	314.0	1.784	221.5
264.0	1.637	203.3	314.0	1.807	224.4
264.0	1.626	201.9	315.0	1.812	225.0
265.0	1.641	203.8	315.0	1.782	221.3
265.0	1.628	202.1	316.0	1.814	225.3
266.0	1.640	203.6	316.0	1.782	221.2
266.0	1.629	202.3	317.0	1.814	225.3
267.0	1.634	203.0	317.0	1.784	221.5
267.0	1.644	204.1	318.0	1.819	225.8
268.0	1.646	204.4	318.0	1.790	222.3
268.0	1.639	203.5	319.0	1.816	225.6
269.0	1.637	203.3	319.1	1.797	223.1
269.0	1.646	204.4	320.0	1.796	223.0
270.0	1.637	203.3	320.0	1.812	225.1
270.0	1.646	204.4	321.0	1.813	225.1
271.0	1.644	204.2	321.0	1.795	222.9
271.0	1.650	204.9	322.0	1.813	225.1
272.0	1.644	204.2	322.0	1.793	222.7
272.0	1.653	205.2	322.4	1.813	225.2
272.1	1.643	204.0	322.4	1.793	222.6
<i>a</i>	(


^a *T* is the temperature, $C_p(DBN, liq)$ is the measured heat capacity of liquid DBN.

	C _p (IL, liq)			С _р (IL, liq)		
T/K	J·K ⁻¹ ·g ⁻¹	J·K ⁻¹ ·mol ⁻¹	T/K	J·K ⁻¹ ·g ⁻¹	J·K ⁻¹ ·mol ⁻¹	
278.5	1.865	343.6	325.3	2.097	386.4	
278.5	1.867	344.0	326.0	2.100	386.9	
279.2	1.867	344.0	326.7	2.103	387.5	
279.2	1.868	344.1	328.2	2.109	388.6	
280.2	1.873	345.1	329.2	2.113	389.2	
280.2	1.871	344.7	329.2	2.116	389.8	
281.2	1.877	345.8	330.2	2.115	389.7	
281.2	1.874	345.3	330.2	2.119	390.4	
282.2	1.880	346.3	331.1	2.122	390.9	
282.2	1.877	345.9	331.2	2.120	390.5	
283.2	1.883	346.9	332.2	2.127	391.8	
283.2	1.884	347.0	332.2	2.126	391.7	
284.2	1.886	347.5	333.2	2.132	392.7	
284.2	1.891	348.4	333.2	2.132	392.7	
285.2	1.889	348.0	334.2	2.138	393.9	
285.2	1.898	349.7	334.2	2.136	393.5	
286.2	1.894	349.0	335.2	2.143	394.8	
286.2	1.905	350.9	335.2	2.142	394.6	
287.2	1.901	350.2	336.2	2.147	395.6	
287.2	1.907	351.4	336.2	2.148	395.8	
288.2	1.911	352.0	337.1	2.154	396.8	
288.2	1.916	352.9	337.2	2.150	396.1	
289.2	1.908	351.4	338.1	2.154	396.7	
289.2	1.912	352.3	338.1	2.160	397.9	
290.2	1.912	352.2	339.1	2.160	398.0	
290.2	1.917	353.1	339.1	2.164	398.6	
291.2	1.916	353.0	340.2	2.168	399.4	
291.2	1.923	354.2	340.2	2.169	399.6	
292.2	1.921	354.0	341.2	2.175	400.7	
292.2	1.928	355.3	341.2	2.175	400.7	
293.2	1.929	355.3	342.2	2.177	401.1	
293.2	1.934	356.4	342.2	2.182	402.0	
294.1	1.941	357.6	343.2	2.176	401.0	
294.2	1.936	356.7	343.2	2.189	403.3	
295.1	1.949	359.1	344.2	2.176	400.8	
295.2	1.940	357.4	344.2	2.191	403.6	
296.1	1.954	359.9	345.1	2.195	404.3	
296.2	1.939	357.3	345.2	2.180	401.7	
297.2	1.959	360.9	346.1	2.187	403.0	
297.2	1.943	357.9	346.1	2.194	404.2	
298.2	1.965	362.1	347.2	2.194	404.2	
298.2	1.952	359.6	347.2	2.196	404.5	
299.2	1.960	361.0	348.2	2.198	405.0	
299.2	1.969	362.7	348.2	2.201	405.5	
300.2	1.963	361.7	349.2	2.202	405.7	

Table S3. Measured Heat Capacities of [DBNH][OAc]^a

301.2	1.965	362.1	350.2	2.202	405.7
301.2	1.975	363.9	350.2	2.184	402.4
302.2	1.970	362.8	351.2	2.203	405.9
302.2	1.980	364.7	351.2	2.207	406.6
303.2	1.974	363.7	352.1	2.220	409.0
303.2	1.985	365.7	352.2	2.208	406.8
304.2	1.979	364.6	353.1	2.216	408.3
304.2	1.993	367.1	353.1	2.230	410.8
305.2	1.985	365.7	354.1	2.222	409.4
305.2	2.000	368.5	354.1	2.228	410.4
306.2	1.992	366.9	355.2	2.230	410.8
306.2	2.003	369.0	355.2	2.228	410.4
307.2	1.995	367.6	356.2	2.237	412.1
307.2	2.006	369.6	356.2	2.234	411.6
308.1	1.998	368.0	357.2	2.247	414.0
308.2	2.013	370.8	357.2	2.240	412.6
309.1	2.003	368.9	358.2	2.245	413.7
309.1	2.025	373.1	358.2	2.243	413.2
310.1	2.008	369.9	359.2	2.245	413.5
310.2	2.033	374.6	359.2	2.252	414.8
311.2	2.013	370.8	360.2	2.246	413.7
311.2	2.032	374.4	360.2	2.249	414.3
312.2	2.021	372.3	361.1	2.247	414.0
312.2	2.034	374.8	361.1	2.249	414.3
313.2	2.027	373.4	362.1	2.256	415.6
313.2	2.037	375.2	362.2	2.252	414.9
314.2	2.031	374.1	363.2	2.262	416.8
314.2	2.040	375.9	363.2	2.257	415.7
315.2	2.034	374.7	364.2	2.268	417.8
315.2	2.044	376.6	364.2	2.261	416.6
316.2	2.042	376.3	365.2	2.270	418.1
316.2	2.046	376.9	365.2	2.266	417.4
317.1	2.048	377.4	366.2	2.270	418.1
317.2	2.051	377.9	366.2	2.271	418.4
318.1	2.046	376.9	367.2	2.275	419.1
318.2	2.065	380.5	367.2	2.272	418.7
319.2	2.057	379.0	368.2	2.279	419.9
319.2	2.071	381.6	368.2	2.275	419.1
320.2	2.067	380.8	369.1	2.285	420.9
320.2 321.2	2.077	382.7	369.1	2.280	420.1
	2.074	382.0	370.1	2.286	421.2
321.2	2.082	383.6	370.1	2.281	420.3
322.2 322.2	2.080 2.085	383.1 384.2	371.2 371.2	2.288	421.6 421.0
322.2			1	2.285	421.0 421.0
322.5	2.081	383.3 384.8	372.2	2.285	
323.2 324.6	2.088 2.094	385.8	372.2 373.1	2.293 2.295	422.4 422.8
324.0	2.094	303.0	373.1	2.290	422.0

^a *T* is the temperature, $C_p(\text{IL}, \text{ liq})$ is the measured heat capacity of liquid [DBNH][OAc].

Figure S1. Experimental and smoothed heat capacities of DBN (1) and [DBNH][OAc] (2). Symbols: experimental data points; lines: correlation results.

Table S4. G4 Total Energies at 0 K and Enthalpies at 298.15 K (in Hartree) of the molecules Studied in This Work

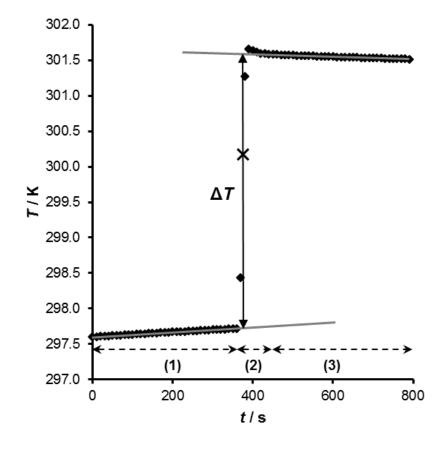
		ì4	
Compounds	E_0	H_{298}	$\Delta_{ m f} {H_{ m m}^{\circ}}^{ m a}$
DBN	-383.208629	-383.199778	66.7±3.5
Acetic acid	-228.982903	-228.977339	-
[DBNH][OAc]	-612.214166	-612.199229	-421.9±3.5

^a Calculated according to the atomization procedure and using the constant bias correction of 12.8 $kJ \cdot mol^{-1}$, derived from the G4 calculations reported by Suntsova and Dorofeeva.¹

Experiment	T _{trns} / K	$\Delta_{ m tms} {H_{ m m}^{\circ}}^{/} m kJ\cdot m mol^{-1}$
1	285.9	4.16
	317.5	11.50
2	285.8	7.59
	317.5	10.4
3-4 ^b	261.4	0.15
	272.9	0.47
	282.6	1.94
	292.4	0.70
	320.9	11.40
5-12	277.0	2.4
	315.1	13.8

Table S5. Measured Enthalpies of Phase Transitions of [DBNH][OAc]^a

^a T_{trns} is the phase transition onset temperature, $\Delta_{\text{trns}}H^{\circ}_{\text{m}}$ is the enthalpy of the phase transition. ^b The reproducibility of the phase transition temperatures and the enthalpies of phase transition of experiments 3-4 were ± 1 K and ± 0.1 kJ·mol⁻¹, respectively.


DETAILS ON CALIBRATION AND MEASUREMENTS WITH THE PARR CALORIMETER

The Parr calorimeter was calibrated by dissolution of tris-(hydroxymethyl)-aminomethane (TRIS) (mass fraction purity \geq 0.998) in 0.1 M HCl solution according to the recommendations provided by the manufacturer.² The energy equivalent of the calorimeter was calculated according to Eqs. S1 and S2.

$$\frac{e'}{\mathbf{J}\cdot\mathbf{K}^{-1}} = \left(\frac{Q_{\mathrm{r}}/\mathbf{J}}{\Delta T/\mathbf{K}} - \frac{m(\mathrm{HCl})}{g} \cdot \frac{C_{p}(\mathrm{HCl})}{\mathbf{J}\cdot(\mathbf{K}\cdot\mathbf{g})^{-1}}\right)$$
(S1)

$$\frac{Q_{\rm r}}{J} = \frac{m({\rm TRIS})}{g} \cdot \left[245.760 \frac{\rm J}{\rm g} + 1.4364 \frac{\rm J}{\rm g \cdot \rm K} \cdot \left(298.15 \rm K - \frac{T(0.63)}{\rm K} \right) \right]$$
(S2)

where e' is the energy equivalent of the calorimeter, Q_r is the energy released from the reaction, ΔT is the net temperature rise due to the dissolution, m(HCl) is the mass of the 0.1 M HCl solution, $C_p(\text{HCl})$ is the heat capacity of the 0.1 M HCl solution at 298.15 K (4.17956J·K⁻¹·g⁻¹), m(TRIS) is the mass of the dissolved TRIS sample, T(0.63) is the interpolated average reaction temperature at which the temperature has reached 63 % of its total rise resulted from the reaction. The calculated energy equivalent at 298.15 K was (112.1 ± 5.1) J·K⁻¹. The calibration was checked with the HCl + NaOH neutralization reaction. The obtained value was adjusted to the infinite dilution and 298.15 K temperature using values from refs 3 and 4, respectively. The adjusted value -(55.75 ± 0.54 kJ·mol⁻¹) agreed within determination uncertainty with the value recommended by the National Bureau of Standards (-55.836 kJ·mol⁻¹).⁵ The results of the calibration experiments as well as the description of the adjustments are available in Table S6. A temperature profile of a typical calorimetric experiment is presented in Fig. S2.

Figure S2. Temperature profile in a typical net [DBNH][OAc] synthesis reaction experiment. (1): initial period; (2): main period; (3): final period; (×): interpolated average reaction temperature at which the temperature has reached 63 % of its total rise; (♦): measured data points; Gray lines: extrapolations of the initial and final period points.

Experiment	1	2	3	4	5
<i>m</i> (TRIS) / g	0.5009	0.5002	0.5010	0.5003	1.0002
<i>m</i> (0.1 M HCl)/g	100.0026	100.0010	100.0009	100.0026	100.0011
$\Delta T / \mathrm{K}$	0.2354	0.2340	0.2378	0.2340	0.4657
<i>T</i> (0.63) / K	295.1695	294.9418	297.2860	296.3459	296.8235
$Q_{ m r}$ /J	125.25	125.23	123.75	124.25	247.71
$e' / J \cdot K^{-1}$	114.09	117.23	102.42	113.02	113.96

Table S6. Calibration Results of Parr 6755 Solution Calorimeter^a

Experiment	1	2	3	4
m(1 M NaOH) / g	0.9998	1.0010	2.0000	2.0001
n(NaOH) / mmol	0.9595	0.9607	1.9194	1.9195
m(0.1 M HCl) / g	100.0005	100.0022	100.0007	100.0015
n(HCl) / mmol	10.0201	10.0203	10.0201	10.0202
$\Delta T / \mathrm{K}$	0.1030	0.1017	0.2082	0.2081
<i>T</i> (0.63) / K	295.5122	295.8784	296.1694	295.5217
$\Delta_{\text{neut}}H_{\text{m}}(x, \text{T}(0.63)) / \text{kJ·mol}^{-1 \text{ b}}$	-56.90	-56.12	-57.50	-57.47
$\Delta_{\text{neut}}H_{\text{m}}$ (inf, T(0.63) / kJ·mol ^{-1 c}	-56.21	-55.42	-56.74	-56.71
$\Delta_{\text{neut}} H_{\text{m}}^{\circ}(\text{inf}) / \text{kJ} \cdot \text{mol}^{-1 \text{ d}}$	-55.63	-54.92	-56.31	-56.13

^a $\overline{m(i)}$ and n(i) are the mass and molar amounts of component *i*, ΔT is the temperature change resulted from the dissolution, T(0.63) is the interpolated temperature value at which the temperature has reached 63 % of its total rise resulted from the reaction, Q_r is the energy released from the reaction, e' is the energy equivalent of the calorimeter, $\Delta_{neut}H_m$ is the enthalpy of neutralization reaction, inf is the infinite dilution.

^b
$$x(i) = n(H_2O)/n(i)$$

^c $\Delta_{neut}H_m(inf, T(0.63)) = \Delta_{neut}H_m(x, T(0.63)) - \Delta_{dil}H_m(HCl) - \Delta_{dil}H_m(NaOH) + \Delta_{dil}H_m(NaCl);$
 $\Delta_{dil}H_m(i) = \Delta_f H_m^{\circ}(i,inf) - \Delta_f H_m^{\circ}(i,x(i))$
^d $\Delta_{neut}H_m^{\circ}(inf) = \Delta_{neut}H_m(inf, T(0.63)) + \Delta_r C_p \cdot (298.15 - T(0.63))$

^e sample information: tris(hydroxymethyl)aminomethane (TRIS, mass fraction purity ≥0.998),
0.1 M HCl and 1 M NaOH were purchased from Sigma-Aldrich.

The total duration of an experiment was approximately 30 minutes. Stable baselines before and after the sample mixing are required during the experiment to achieve reliable and repeatable results. Therefore, the calorimeter was placed in a constant temperature room in order to maintain stable conditions during the experiments despite the lack of a thermostat in the calorimeter. The room temperature was 294.5-299.5K over 60 days with \pm 0.5 K deviation over 24 hours while the relative humidity was 44.5 \pm 0.1 %. The stable room temperature was beneficial for keeping the baseline of the calorimeter stable during the experiments. In addition, the stirring was started 90 minutes prior to the beginning of each experiment to stabilize the baselines. The enthalpy of reaction 1 (Eq. 1) at temperature *T* was calculated according to Eq. S3:

$$\Delta_{\rm r} H_{\rm m}((1), \operatorname{liq}, T) = \frac{\left(C_{\rm p}^{\rm o}(\mathrm{DBN}) \cdot n(\mathrm{DBN}) + e'\right) \cdot \Delta T}{n(\mathrm{HAc})}$$
(S3)

and adjusted to 298.15 K according to Eq S4:

 $\Delta_{\rm r} H_{\rm m}^{\circ}(1) = \Delta_{\rm r} H_{\rm m}((1), {\rm liq}, T) + \Delta_{\rm r} C_{\rm p,m}^{\circ} \cdot (298.15 {\rm K} - T)$ (S4)

The value $\Delta_r C_{p,m}^{\circ}$ (298.15 K) = 22 J·mol⁻¹·K⁻¹ was used in Eq S4. It was calculated from heat capacities of the reaction participants DBN (216 J·mol⁻¹·K⁻¹), acetic acid (123.1 J·mol⁻¹·K⁻¹)⁶ and [DBNH][OAc] (361 J·mol⁻¹·K⁻¹) at 298.15 K. The resulting enthalpy of reaction was $\Delta_r H_m^{\circ}(1) = -(44.6\pm0.7) \text{ kJ·mol}^{-1}$.

Table S7. Measured Enthalpies of the liquid phase [DBNH][OAc] Synthesis Reaction^a

Experiment	1	2	3	4
<i>m</i> (DBN) / g	100.0061	100.0038	100.1612	100.0055
<i>m</i> (HOAc) / g	1.0026	1.5002	1.5009	1.5001
$\Delta T / \mathrm{K}$	2.6469	3.9231	3.782	3.8922
<i>T</i> (0.63) / K	301.0246	300.6459	302.3831	300.1791
$\Delta_{\rm r} H_{\rm m} ((1), {\rm liq}, T(0.63)) / {\rm kJ \cdot mol^{-1}}$	-45.34	-44.91	-43.32	-44.56
$\Delta_{\rm r} H_{\rm m}^{\circ}((1), {\rm liq}) / {\rm kJ} \cdot {\rm mol}^{-1}$	-45.41	-44.97	-43.41	-44.61
$\Delta_{\rm r} H_{\rm m}^{\circ}((1), {\rm liq}) / {\rm kJ} \cdot {\rm mol}^{-1}$ (average)		-44.60	± 0.74	

^am (*i*) is the mass of compound *i*, ΔT is the temperature rise resulted from the reaction, T(0.63) is the interpolated average reaction temperature at which the temperature has reached 63 % of its total rise resulted from the reaction, $\Delta_r H_m$ (1) is the enthalpy of the net [DBNH][OAc] synthesis reaction.

ENTHALPIES OF SOLUTION OF DBN AND [DBNH][OAc] IN WATER

The results of the solution enthalpy measurements of [DBNH][OAc] DBN and in water or water + HOAc solutions are presented in Tables S8 and S9, respectively. Some details on solution calorimetry experiments are worth mentioning. By the dissolving of DBN in pure water, the measured value $\Delta_{sol}H_{m}^{\circ}(IV) = -39.5\pm0.3 \text{ kJ}\cdot\text{mol}^{-1}$ was significantly less negative than $\Delta_{sol}H_{m}^{\circ}(V) = -53.4\pm0.7 \text{ kJ}\cdot\text{mol}^{-1}$ which was measured in the water+acetic acid solutions. This difference is due to the additional chemical reaction. For comparison, an enthalpy of neutralization reaction between a strong base and acetic acid, of -54.3 kJ·mol⁻¹ for the system NaOH + acetic acid at 293.15 K⁷ is in a good agreement with $\Delta_{sol}H_{m}^{\circ}(V)$ determined in this work. As seen from Figure S3, the enthalpy of solution of DBN in water + HOAc solutions remains constant ($\Delta_{sol}H_{m}^{\circ}(III)$) = -92.9 ± 0.7 kJ·mol⁻¹) when the HOAc:DBN mole ratio is 1:1 or higher. Therefore, the complexes of [DBNH][OAc] observed in the liquid phase experiments are not formed in the aqueous solution. Moreover, this observation suggests that the complexes are formed due to dimerization of acetic acid, not by the second protonation of DBN.

Table S8. Measured Enthalpies of Solution of Crystalline [DBNH][OAc] in Water^a

Solid [DBNH][(OAc] dissolutio	on in water		
experiment #	<i>m</i> (IL) / mg	n(IL) / mmol	<i>m</i> (H ₂ O) / g	$\Delta_{\rm sol} H_{\rm m}^{\circ}(I) / {\rm kJ} \cdot {\rm mol}^{-1}$
1	39.80	0.2160	25.5492	-41.25
2	29.83	0.1619	25.2320	-41.62
3	88.09	0.4782	25.2868	-41.45
4	38.53	0.2091	25.1852	-40.90
5	57.48	0.3120	25.1546	-40.13
			Average	-41.07 ± 0.53

^am(IL) is the mass of the [DBNH][OAc]sample, n(IL) is the molar amount of the [DBNH][OAc] sample, $m(H_2O)$ is the mass of water in the cell, $\Delta_{sol}H_m^{\circ}(I)$ is the enthalpy of solution of crystalline [DBNH][OAc] in water.

experiment #	<i>m</i> (DBN) / mg	n(DBN) / mmol	<i>m</i> (HOAc) / mg	n(HOAc) / mmol	<i>m</i> (H ₂ O) / g	n(HOAc)/n(DBN)	$\Delta_{ m sol} H_{ m m}^{\circ}$ (III) / kJ·mol ⁻¹
1	32.67	0.2631	5.27	0.0877	24.7836	0.33	-58.24
2	33.81	0.2723	8.18	0.1362	24.8544	0.50	-67.53
3	57.91	0.4663	25.46	0.4239	25.2339	0.91	-89.39
4	62.50	0.5033	29.75	0.4954	24.9206	0.98	-93.04
5	60.59	0.4879	30.08	0.5010	25.1986	1.03	-92.72
6	62.53	0.5035	30.27	0.5041	25.3576	1.00	-92.20
7	63.50	0.5114	30.26	0.5038	25.3425	0.99	-94.22
8	48.61	0.3914	25.86	0.4306	24.9031	1.10	-93.87
9	30.84	0.2483	29.82	0.4966	24.9785	2.00	-92.23
10	31.88	0.2567	30.84	0.5135	25.8311	2.00	-92.29
11	19.45	0.1566	28.21	0.4698	24.9879	3.00	-92.83
						Average	-92.92 ± 0.71

Table S9. Measured Enthalpies of Solution of DBN in Water and Water + Acetic Acid Solutions^a

experiment #	<i>m</i> (DBN) / mg	n(DBN) / mmol	<i>m</i> (H ₂ O) / g	$\Delta_{ m sol} H_{ m m}^{\circ} (IV)$
1	148.50	1.1958	25.7292	-39.07
2	76.75	0.6181	25.0536	-39.65
3	69.75	0.5617	25.2523	-39.35
4	34.77	0.2800	24.9978	-39.89
			Avera	age -39.49 ± 0.31

^a m(i) is the mass of component *i*, n(i) is the molar amount of component *i*, n(HOAc)/n(DBN) is the mole ratio of acetic acid and DBN, $\Delta_{\text{sol}}H^{\circ}_{\text{m}}(III)$ is the enthalpy of solution of liquid DBN in water + acetic acid solution, $\Delta_{\text{sol}}H^{\circ}_{\text{m}}(IV)$ is the enthalpy of solution of liquid DBN in water.

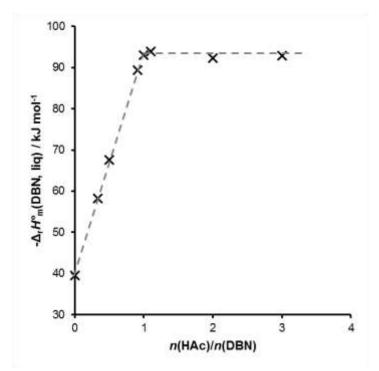


Figure S3. Enthalpy of solution of DBN in water and water + acetic acid solutions.

Solute <i>i</i>	Temperature interval (K)	а	b (K)	γ_i^{∞}	$\Delta_{\rm sol} H_{\rm m}^{\rm A/IL} / \rm kJ \cdot mol^{-1}$
alkanes					
decane	303-323	3.1751	890.8	474.85	7.40
undecane	303-323	3.4312	1084.6	1174.93	9.02
dodecane	303-323	3.4211	1239.2	1953.54	10.30
alkenes					
1-decene	303-323	3.6065	740.73	441.83	6.16
1-dodecene	303-323	3.9653	919.77	1153.12	7.65
alkylbenzene					
butylbenzene	303-323	2.3952	194.87	21.09	1.62
pentylbenzene	303-323	3.5131	227.88	72.05	1.89
alcohols					
methanol	303-323	-0.8708	156.3	0.71	1.30
ethanol	303-323	-1.0409	356.65	1.17	2.97
1-propanol	303-323	-0.5926	409.89	2.19	3.41
1-butanol	303-323	-0.7076	596.65	3.63	4.96
1-pentanol	303-323	-0.4374	760.75	8.28	6.32
polar solvents					
Acetone	303-323	-0.3357	108.62	1.03	0.90
Acetonitrile	303-323	-0.073	-272.08	0.43	-2.26
Tetrahydrofuran	303-323	0.296	-617.07	0.17	-5.13
Dichloromethane	303-323	6.0302	-1848	0.85	-15.36
Trichloromethane	303-323	8.607	-2313.4	0.84	-19.23

Table S10. GC Results for Infinite Dilution Activity Coefficients (298.15 K), SolutionEnthalpies (298.15 K) and Regressed Parameters of Organic Solvents in [DBNH][OAc]^a

^a *a-b* are the regressed parameters for Eq. 17, γ_i^{∞} is the infinite dilution activity coefficient of compound *i*, $\Delta_{sol} H_m^{A/IL}$ is the enthalpy of partial molar excess enthalpy at infinite dilution of compound *i*.

DETAILS ON GC MEASUREMENTS OF ACTIVITY COEFFICIENTS

Chromosorb W/AW-DMCS 100/120 mesh was used as solid support for the ionic liquid in the GC column. The chromosorb has been subjected to vacuum treatment with heating in order to remove traces of adsorbed moisture.

Coating the solid support material with the ionic liquid was performed by dispersing a certain portion of chromosorb in a solution of the ionic liquid in dichloromethane followed by evaporation of the solvent using a rotating evaporator. The chromosorb was weighed before and after the coating process. The experiments were performed with a Hewlett Packard gas-chromatograph equipped with a flame ionization detector. Nitrogen was used as carrier gas. GC column (stainless steel) with length 45 cm with an inside diameter of 0.40 cm was used. The amount of stationary phase (ionic liquid) was around 5.4 mmol. The mass of the stationary phase was determined with a precision of ± 0.0003 g. In order to avoid possible residual adsorption effects of the solutes on chromosorb, the amount of ionic liquid was about 35 mass per cent of the support material.

According to Cruickshank et al.⁸ the following equation for the data treatment was used:

$$\ln \gamma_{i,3}^{\infty} = \ln \left(\frac{n_3 \cdot R \cdot T}{V_N \cdot p_1^0} \right) - \frac{B_{11} - V_1^0}{RT} \cdot p_1^0 + \frac{2 \cdot B_{12} - V_1^\infty}{RT} \cdot J \cdot p_0$$
(S5)

where $\gamma_{i,3}^{\infty}$ is the activity coefficient of component *i* at infinite dilution in the stationary phase (index 3), p_1^0 is the vapor pressure of the pure liquid solute, n_3 is the number of moles of the stationary phase component (ionic liquid) on the column and V_N is the standardized retention volume obtained by:

$$V_N = J \cdot U_0 \cdot (t_r - t_G) \cdot \frac{T_{col}}{T_f} \cdot \left[1 - \frac{p_{0w}}{p_o}\right]$$
(S6)

where t_r is the retention time, t_G is the dead time, and U_0 is the flow rate, measured by a soap bubble flowmeter, T_{col} is the column temperature, T_f is flowmeter temperature, p_{ow} is saturation pressure of water at T_f , p_o is the pressure at the column outlet.

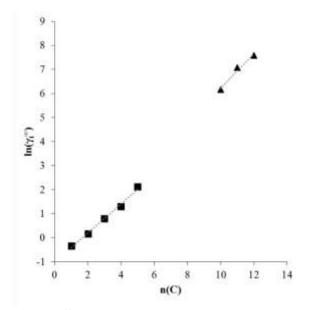
The second and third term in Eq. S5 are correction terms which arise from the nonideality of mobile gaseous phase. B_{11} is the second virial coefficient of the solute, B_{12} the mixed virial coefficient of the solute (1) with the carrier gas nitrogen (2). V_1^0 is the liquid molar volume of pure solute and V_1^∞ is the partial molar volume of solute in the ionic liquid at infinite dilution.

The factor J appearing in Eqs. S5 and S6 corrects for the influence of the pressure drop along the column given by⁹:

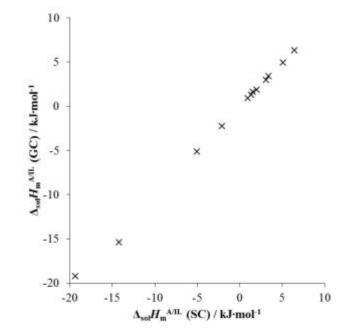
$$J = \frac{3}{2} \cdot \frac{(p_i / p_0)^2 - 1}{(p_i / p_0)^3 - 1}$$
(S7)

where p_i and p_o are the inlet and the outlet pressure of the GC column respectively.

The outlet pressure p_0 was kept equal to the atmospheric pressure. The pressure drop ($p_i - p_0$) was varied between (20.3 and 101.3 kPa), providing suitable retention times with sharp peaks. The pressure drop and the outlet pressure were measured using a membrane manometer with an uncertainty of ± 0.2 kPa.


Volumes of the samples injected into the GC probes were (0.5 to 2 μ *l*). No differences in retention times *t*_r were found by injecting individual pure components or their mixtures. This fact indicates that different concentrations of the solute in the stationary phase caused by different ratios of the injected amounts of solute and the amount of stationary phase do not affect the results and it can be concluded that in all cases the state of infinite dilution was realised to a high degree of approximation. Experiments were carried out at 4 to 5 temperatures between 303 K and 353 K. The temperature of the GC column was maintained constant to within ±0.01 K. At a given temperature each experiment was repeated at least twice to check the reproducibility. Retention times were generally reproducible within (0.01 to 0.03) min. Absolute values of retention times varied between (3 to 30) min depending on the individual solute. At each temperature values of the dead time *t*_G identical to the retention time of a non-retainable component were measured. While our GC was equipped with a flame-ionization detector, methane⁸ was used as non-retainable component under the assumption that the effect of solubility of methane in ionic liquid is negligible. This assumption has been justified by attestation of our experimental procedure with the reliable data on γ_i^{∞} of hexane, heptane and benzene in hexadecane.¹⁰

In order to check the stability of the experimental conditions, such as the possible elution of the stationary phase by the nitrogen stream, the measurements of retention times were repeated systematically every (2 to 3) hours for tridecane. No changes of the retention times were observed during 2-3 days of continuous operation.


Data needed for calculating the correction terms in Eq. S5 have been obtained in the following way. Molar volumes of solutes V_1^0 were estimated using experimental values of their densities, partial molar volumes of solute at infinite dilution V_1^∞ have been assumed to be equal of V_1^0 . Values of B_{11} have been estimated according to Tsonopolous' method.¹¹ Critical parameters needed for the calculations were available from the literature.¹² If these data were not available, values of the critical pressure P_c , the critical temperature T_c , and the critical volume V_c were estimated using Lydersen's method.¹³ Acentric factors ω_i were calculated by Edmister equation.⁹ Values of B_{12} have also been estimated according to Tsonopolous' method. The mixed critical properties P_{cij} , T_{cij} , V_{cij} , Z_{cij} and mixed acentric factor ω_{ij} were calculated by equations given in the literature.^{11,14}

Values of vapor pressures p_1^0 of pure solutes are of a crucial importance for the reliability of γ_i^{∞} . For alkanes these values were calculated using parameters of the Cox equation recommended by Ruzicka and Majer.¹⁵ For alkenes values of p_1^0 were calculated using parameters of the Cox equation recommended by Steele and Chirico.¹⁶ Vapor pressures of pure alcohols were calculated using coefficients of Wagner's equation recommended by Ambrose and Walton¹⁷. Specification of the sources of vapor pressures of other solutes was given in the previous papers of this series.¹⁸⁻¹⁹

The validity of the experimental procedure has been checked by comparison of our measured values of γ_i^{∞} for hexane in hexadecane with those available in the literature.¹⁰ The procedure of the experimental error estimation was described in our previous work.¹⁰ Values of γ_i^{∞} are estimated to be accurate within to ±3 %.

Figure S4.Values of $\ln \gamma_i^{\infty}$ of alkanes and alcohols in [DBNH][OAc] at 298 K as a function of carbon atoms number (\blacktriangle – alkanes, \blacksquare – alcohols).

Figure S5. Comparison of solution enthalpies at infinite dilution of organic solutes in [DBNH][OAc] determined by solution calorimetry (SC) and by gas-liquid chromatography (GC) methods.

REFERENCES

- [1] Suntsova, M. A. and Dorofeeva, O. V. J. Chem. Eng. Data 2016, 61, 313-329.
- [2] Parr instrument company, Solution calorimeter 6755 operating instruction manual (593M), Online version available at (http://www.parrinst.com/products/oxygenbomb-calorimeters/6755-solution-calorimeter/documents/).
- [3] Wagman, D. D.; Evans, W. H.; Parker, V.B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall R. L. J. Phys. Chem. Ref. Data 1982, 11, Supplement 2.
- [4] Richards, T. W.; Rowe, A. W. J. Am. Chem. Soc.1922, 44, 684–707.
- [5] Ott, J. B. Thermochim. Acta 1997, 300, 255–281.
- [6] Martin, J.F.; Andon, R.J.L. J. Chem. Thermodynam. 1982, 14, 679–688
- [7] Richards, T. W.; Mair, B. J. J. Am. Chem. Soc. 1929, 51, 712–727.
- [8] Cruickshank, A.J.B.; Windsor, M.L.; Young, C.L.; Proc. R. Soc. A 1966, 295, 259-270.
- [9] Grant, D.W.; Gas-Liquid Chromatography, van Nostrand Reinhold Company, London, 1971.
- [10] Heintz, A.; Kulikov, D. V.; Verevkin, S. P. J. Chem. Eng. Data 2001, 46, 1526-1529.
- [11] Heintz, A.; Vasiltsova, T. V.; Safarov, J.; Bich, E.; Verevkin, S.P. J. Chem. Eng. Data 2006, 51, 648-655.
- [12] Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The properties of gases and liquids, 3rd ed., McGraw-Hill Chem. Eng. Series, New York, 1977.
- [13] Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular thermodynamics of fluid-phase equilibria, 2nd ed., Prentice-Hall, New York, 1986.
- [14] Safarov, J.; Verevkin, S.P.; Bich, E.; Heintz, A. J. Chem. Eng. Data 2006, 51, 518-525.
- [15] Ruzicka, K.; Majer, V. J. Phys. Chem. Ref. Data 1994, 23, 1-39.
- [16] Steele, W. V. and Chirico, R. D. J. Phys. Chem. Ref. Data 1993, 22, 377-430.
- [17] Ambrose, D.; Walton, J. Pure and Appl. Chem. 1989, 61, 1395-1403.
- [18] Heintz, A.; Verevkin, S.P. J. Chem. Eng. Data 2005, 50, 1515-1519.
- [19] Vasiltsova, T.V.; Verevkin, S.P.; Bich, E.; Heintz, A.; Bogel-Lukasik, R.; Domanska, U. J. Chem. Eng. Data 2006, 51, 213-218.