Supporting information for: Impact of Li₂O₂ Particle Size on Li-O₂ Battery Charge Process: Insights from a Multi-Scale Modeling Perspective

by

Yinghui Yin^{a,b}, Caroline Gaya^{a,c}, Amangeldi Torayev^{a,d}, Vigneshwaran Thangavel^{a,b} and Alejandro A. Franco^{a,b,d,*}

^a Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne

and CNRS, UMR 7314 – 33 rue St. Leu, 80039 Amiens, France

^b Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 33 rue St. Leu, 80039 Amiens Cedex, France

^c IRT Saint-Exupery, 118 route de Narbonne, 31432 Toulouse, France

^d ALISTORE European Research Institute, Fédération de Recherche CNRS 3104, 33 rue Saint Leu, 80039 Amiens Cedex, France

*E-mail: alejandro.franco@u-picardie.fr

Table S1: Parameters value	es implemented in the model
----------------------------	-----------------------------

Parameters	Values	Units	Sources
	Physical cons	tants	
Gas constant	8.31	J.K ⁻¹ .mol ⁻¹	universal value
Faraday constant	96485	C.mol ⁻¹	universal value
Boltzmann constant	1.38×10^{-23}	m ² .kg.s ⁻² .K ⁻¹	universal value
Planck constant	6.62×10^{-34}	m².kg.s ⁻¹	universal value
Bruggeman coefficient	1.5	/	universal value
Cell parameters			
Cathode thickness	4.86×10^{-5}	m	Ref 1
Electrode (carbon) specific surface area	7.68×10^{9}	m ² .m ⁻³	adapted from Ref 1
Carbon volume fraction in the cathode	1.65×10^{-1}	/	adapted from Ref 1
Pristine cathode porosity	0.791	/	adapted from Ref 1
Separator porosity	0.5	/	Assumed
Li ⁺ initial concentration	1×10^{3}	mol.m ⁻³	Ref 1
O ₂ initial concentration	4.43	mol.m ⁻³	Ref 2
LiO _{2(ip)} initial concentration	1	mol.m ⁻³	Assumed
LiO _{2(s)} , Li ₂ O ₂ molar volume	1.98×10^{-5}	m ³ .mol ⁻¹	Ref 3
Initial volume fraction of $Li_2O_{2(f)}$	0.122	/	Assumed
Initial thin-film $Li_2O_{2(f)}$ particles radius (r_f)	7×10^{-9}	m	Ref 4
Initial large $Li_2O_{2(p)}$ particles radius (r_p)	75×10^{-9}	m	adapted from Ref 5
LiO _{2(s)} monolayer thickness	3×10^{-10}	m	Assumed
Li ⁺ diffusion coefficient	1×10^{-9}	m ² .s ⁻¹	Ref 1
O ₂ diffusion coefficient	1.67×10^{-9}	m ² .s ⁻¹	Ref 2
LiO _{2(ip)} diffusion coefficient	1.3×10^{-9}	m ² .s ⁻¹	Assumed
Absolute temperature	298	K	Defined
Electrochemical parameters			
Charging rate	1	A.m ⁻² geometric	Ref 1
Equilibrium potential reaction 1	3.4	V	Ref 3
Equilibrium potential reaction 2	2.96	V	Ref 6
Equilibrium potential reaction 3	3.1	V	Ref 2
Equilibrium potential reaction 5	0	V	Assumed
Charge transfer coefficients (α) in reaction 1	0.4		fitted

Charge transfer coefficients (α) in reaction 2	0.3	/	fitted
Charge transfer coefficients (α) in reaction 3	0.5	/	fitted
Charge transfer coefficients (α) in reaction 5	0.5	/	assumed
Surface tension ($\sigma_{LiO_{2(s)}}$)	10	J.m ⁻²	assumed
Kinetic parameters			
O ₂ mass transfer coefficient	1×10^{-4}	/	Fitted
Forward kinetic rate constant reaction 1	1×10^{-11}	mol.s ⁻¹ .m ⁻²	Fitted
Forward kinetic rate constant reaction 2	1×10^{-10}	mol.s ⁻¹ .m ⁻²	Fitted
Forward kinetic rate constant reaction 3	1×10^{-8}	mol.s ⁻¹ .m ⁻²	Fitted
Backward kinetic rate constant reaction 1	1×10^{-3}	mol.s ⁻¹ .m ⁻²	Calculated
Backward kinetic rate constant reaction 2	1×10^{-3}	mol.s ⁻¹ .m ⁻²	Calculated
Backward kinetic rate constant reaction 3	2.26×10^{-6}	mol.s ⁻¹ .m ⁻²	Calculated
Numerical parameters			
Cathode number of bins	10	/	Defined
Separator number of bins	5	/	Defined

Reference

- (1) Zhai, D.; Wang, H.-H.; Yang, J.; Lau, K. C.; Li, K.; Amine, K.; Curtiss, L. A. Disproportionation in Li–O₂ Batteries Based on a Large Surface Area Carbon Cathode. J. Am. Chem. Soc. 2013, 135, 15364–15372.
- (2) Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium–Air Battery. *J. Phys. Chem. C.* **2010**, *114*, 9178–9186.
- (3) Kang, S.; Mo, Y.; Ong, S. P.; Ceder, G. A Facile Mechanism for Recharging Li₂O₂ in Li– O₂ Batteries. *Chem. Mater.* **2013**, *25*, 3328–3336.
- (4) Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.; Nørskov, J. K.; Girishkumar, G.; McCloskey, B. D.; Luntz, A. C. Electrical Conductivity in Li₂O₂ and Its Role in Determining Capacity Limitations in Non-Aqueous Li-O₂ Batteries. *J. Chem. Phys.* 2011, 135, 214704.
- (5) Lau, S.; Archer, L. A. Nucleation and Growth of Lithium Peroxide in the Li–O₂ Battery. *Nano Letters*, **2015**, *15*, 5995–6002.
- (6) Lu, J.; Amine, K. Recent Research Progress on Non-Aqueous Lithium-Air Batteries from Argonne National Laboratory. *Energies* **2013**, *6*, 6016–6044.

Numerical method description

a) Numerical description of the system

To solve numerically the governing equations, spatial and temporal discretizations are needed. The separator and the cathode are represented in one-dimension, and they are divided into several equal sized control volumes or bins. P and Q are the number of bins in the separator and cathode respectively. In the meantime, a sufficiently small time step for discretization leading to a reasonable computational time is required.

b) Mass transport

Transport across the positive electrode of electroactive species solubilized in the electrolyte (Li^+ , O_2 and $\text{LiO}_{2(ip)}$) is solved using Fick law

$$J_i = -D_{eff} \frac{\partial c_i}{\partial x}$$

[S1]

where D_{eff} is the effective diffusion coefficient and c_i is the concentration of a specie *i* in the electrolyte. In the porous media, D_{eff} is correlated with the porosity by

$$\boldsymbol{D}_{eff} = \boldsymbol{D}_0 \boldsymbol{\varepsilon}^{\boldsymbol{\beta}}$$
 [S2]

where ε is the porosity of positive electrode or separator, β is the Bruggeman coefficient and D_0 is the bulk diffusion coefficient. Thus the following equation is derived from the mass balance equation for species i

$$\frac{\partial n_i}{\partial t} = -V \,\nabla J_i + \gamma_i V \tag{S3}$$

where V is the electrode volume, n_i is the quantity of the species in moles, γ_i is the source term, standing for the rate of consumption or generation rate of species from chemical or/and electrochemical reaction j,

$$\boldsymbol{\gamma}_i = \sum_j \boldsymbol{s}_{ij} \, \boldsymbol{\nu}_j \tag{S4}$$

where s_{ij} is the stoichiometric coefficient of the concerned species in reaction j; v_j is the reaction rate for reaction j. For the electrochemical reactions, v_i is obtained with

$$v_j = \frac{A_j \, i_j^{far}}{V n_e F}$$

[S5]

 n_i in equation [S3] is related to the concentration c through

$$n_i = cV_{electrolyte} = c\varepsilon V$$

[S6]

[S7]

Combining Eq. S1 and S3, the mass balance equation of specie *i*, can be rewritten as

$$\frac{\partial z_i}{\partial t} = \frac{\partial}{\partial x} \left(\varepsilon^\beta D_0 \frac{\partial c_i}{\partial x} \right) + \gamma_i$$

$$z = \varepsilon c \qquad [S8]$$

where a new variable z is introduced as apparent concentration. The above partial differential equation is solved by using the finite volume method.

At the gas/electrolyte interphase, we adopt as boundary condition the flux of the releasing O₂ in a similar way as in our previously reported models on water electrolyzers [L. F. L. Oliveira *et al.*, Phys. Chem. Chem. Phys., **14** (2012), 10215; L. F. L Oliveira *et al.*, Electrochim. Acta, **110** (2003), 363]

$$\vartheta_{o_2} = K(c_{o_2} - H_p P_{o_2})$$
 at $x = P + Q$ [S9]

where *K* is the interface mass transfer coefficient, H_p is the Henry constant and P_{O_2} is the partial pressure of O₂ in gas phase. The fluxes of the other species are zero at this interface. The boundary condition at the separator/cathode interface ($x = L_{sep}$) assumes continuity of the fluxes of all the species, i.e. we have

$$\boldsymbol{\vartheta}_{i,sep} = \boldsymbol{\vartheta}_{i,cat}$$
 at $\boldsymbol{x} = \boldsymbol{P}$ [S10]

As for the anode/separator interface (x = 0), only the flux of $Li^+_{(l)}$ is considered to be nonzero, given by

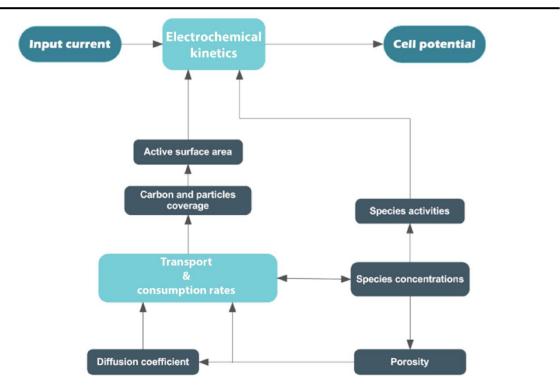
$$\boldsymbol{\vartheta}_{Li^+} = -\frac{i_5^{Far}}{F}$$
 at $\boldsymbol{x} = \boldsymbol{0}$ [S11]

where i_5^{Far} is the current density of the $Li_{(l)}^+$ reduction reaction at the anode (Eq. S5). According to the adopted convention, the sign of the current flux in Eq. S11 is negative, since the flux of electron enters the anode during reduction.

c) Porosity and particle size evolution

During the recharge process, the continuous oxidation of Li_2O_2 leads to the evolution of their particle sizes as well as the electrode porosity. Together with the molar volume ($\boldsymbol{\omega}$) of Li_2O_2 and LiO_2 , the volume change of particles in the ith bin can be obtained from

$$\frac{\partial V_{p,i}}{\partial t} = \frac{\omega_{Li_2O_2}}{N_{p,i}V_i} \frac{\partial n_{Li_2O_2(p),i}}{\partial t} + \frac{\omega_{LiO_2(s)}}{N_{p,i}V_i} \frac{\partial n_{LiO_2(s),i}}{\partial t}$$
[S12]


$$\frac{\partial V_{f,i}}{\partial t} = \frac{\omega_{Li_2 O_2}}{N_{f,i} V_i} \frac{\partial n_{Li_2 O_2(f),i}}{\partial t}$$
[S13]

where the consumption rate $(\frac{\partial n}{\partial t})$ is calculated from Eq. S3 by neglecting the diffusive term since the solid species are immobile and V_i is the volume of the ith bin. Therefore, the porosity change in the ith bin can be calculated from

$$\frac{\partial \varepsilon_i}{\partial t} = -(N_{p,i}\frac{\partial V_{p,i}}{\partial t} + N_{f,i}\frac{\partial V_{f,i}}{\partial t})$$

[S14]

