Supporting Information

Rhodium-Catalyzed Asymmetric Arylation/Defluorination of 1-(Trifluoromethyl)alkenes Forming Enantioenriched
1,1-Difluoroalkenes

Yinhua Huang and Tamio Hayashi

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
hayashi@ntu.edu.sg
Contents of Supporting Information:

1. General information S2
2. Materials S2
3. Preparation of substrates S3
4. A typical procedure for Table 1 S6
5. A general procedure for Table 2 S6
6. Characterization of the products S7
7. A typical procedure for Scheme 3 S15
8. Derivatization of the Arylation/Defluorination Products S17
9. References S21
10. Data for X-ray crystal structure of 3be S22
11. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR spectra and chiral HPLC charts S24

1. General information

All air-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or argon. Solvents were degassed prior to use when necessary. NMR spectra were recorded on Bruker ACF-300 spectrometer (300 MHz for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, and 282 MHz for ${ }^{19} \mathrm{~F}$), ACF-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, and 377 MHz for ${ }^{19} \mathrm{~F}$) and ACF-500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts are reported in $\delta(\mathrm{ppm})$ referenced to an internal SiMe_{4} standard ($\delta=0 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ NMR, chloroform-d $(\delta=77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR. The following abbreviations were used; s: singlet, d: doublet, t : triplet, $\mathrm{q}: ~ q u a r t e t, ~ q u i n t: ~ q u i n t e t, ~ m: ~$ multiplet, br: broad. Optical rotations were measured on an Anton Paar MCP 200 polarimeter. HRMS(ESI) were recorded on a time-of-fligh (TOF) LC/MS instrument. Flash column chromatography was performed with Silica gel 60 (Merck) or $\mathrm{Al}_{2} \mathrm{O}_{3}$ (activated 200) (Merck). The products were further purified by GPC (Gel Permeation Chromatography) if necessary. Enantiomeric excesses (ee) were determined by HPLC analysis on Shimadzu HPLC with Daicel chiral columns.

2. Materials

All chemicals and solvents were purchased from commercial company and used as received. Solvents were degassed before use if necessary.

Rhodium complexes, $\quad[\mathrm{RhCl}(\operatorname{cod})]_{2},{ }^{1} \quad\left[\mathrm{RhCl}(\operatorname{coe})_{2}\right]_{2},{ }^{2} \quad[\mathrm{RhCl}((R, R)-\mathrm{Fc}-\mathrm{tfb} *)]_{2},{ }^{3}$ $[\operatorname{RhCl}((R, R)-\mathrm{Ph}-\mathrm{tfb} *)]_{2},{ }^{3} \quad\left[\operatorname{RhCl}\left((R, R)-\mathrm{Ph}-\operatorname{bod}^{*}\right)\right]_{2},{ }^{4} \quad\left[\operatorname{RhCl}\left((R, R)-\mathrm{Fc}-\text { bod }^{*}\right)\right]_{2},{ }^{5} \quad$ and $[\operatorname{RhCl}(R) \text {-diene* })_{2}$, ${ }^{6}$ were prepared according to the reported procedures. $[\mathrm{RhCl}(R)$-segphos $)]_{2}$ and $[\mathrm{RhCl}(R)$-binap $\left.)\right]_{2}$ were generated in situ from $\left[\mathrm{RhCl}(\mathrm{coe})_{2}\right]_{2}$ with (R)-segphos and (R)-binap, respectively.

Boroxines were prepared according to the following general procedure: ${ }^{7}$ A solution of arylboronic acid (10 mmol) in toluene (30 mL) was refluxed for 2 h with a Dean-Stark trap. The resulting solution was filtered and concentrated under vacuum. The solid thus obtained was washed with pentane and dried under vacuum to give the corresponding arylboroxine as a colorless solid ($90-99 \%$ yield).

3. Preparation of substrates

1a $[610272-47-4],{ }^{8}$ 1c $[1683527-00-5],{ }^{9}$ 1d $[1821070-58-9],{ }^{9}$ 1i [78622-55-6], ${ }^{10}$ and $\mathbf{1 j}$ [1373497-86-9] ${ }^{10}$ were prepared according to reported procedures. $\mathbf{1 h}$ was purchased from TCI (Tokyo Chemical Industry Co., Ltd.) and used as received.
(1) $\mathbf{1 b}$ [1596343-10-0 $]^{11}$ was prepared by the following procedure:

To a solution of (E)-4,4,4-trifluorobut-2-en-1-yl 4-methylbenzenesulfonate ${ }^{9}$ (2.00 g , 7.14 mmol , 1.0 equiv) and phthalimide ($1.26 \mathrm{~g}, 8.57 \mathrm{mmol}, 1.2$ equiv) in THF (20 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}\left(1.18 \mathrm{~g}, 8.57 \mathrm{mmol}, 1.2\right.$ equiv). After stirring at $60^{\circ} \mathrm{C}$ for 24 h , water $(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} x \mathrm{3})$. The organic layers were combined, washed with brine and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/hexane $=1 / 7$) to give $\mathbf{1 b}(1.60 \mathrm{~g}, 88 \%$ yield) as a white solid.

$[1596343-10-0]{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-64.45--64.48$ (m, 3F). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.39-4.42(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{dq}, J=11.6 \mathrm{~Hz}, 7.4$ $\mathrm{Hz}, 1 \mathrm{H})$, 6.38-6.47 (m, 1H), 7.43-7.77 (m, 2H), 7.87-7.90 (m, 2H).
(2) $\mathbf{1 f}$ was prepared by the reported procedure with slight modifications: ${ }^{9}$

1f
To a solution of (E)-4,4,4-trifluorobut-2-en-1-yl 4-methylbenzenesulfonate ${ }^{9}$ (2.00 g ,
$7.14 \mathrm{mmol}, 1.0$ equiv) and dimethyl malonate ($9.42 \mathrm{~g}, 71.4 \mathrm{mmol}, 10$ equiv) in acetonitrile (20 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.18 \mathrm{~g}, 8.57 \mathrm{mmol}$, 1.2 equiv). After stirring at $60{ }^{\circ} \mathrm{C}$ for 24 h , water (10 mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (20 mL x 3). The organic layers were combined, washed with brine and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent, the residue was fractionally distilled to give $1 \mathrm{f}(1.53 \mathrm{~g}, 89 \%$ yield) as a colorless liquid. (It was further purified by flash chromatography on silica gel with ethyl acetate/hexane $=1 / 10$ if it contains dimethyl malonate)

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-64.49-64.52(\mathrm{~m}, 3 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.74(\mathrm{brt}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (s, 6H), $5.71(\mathrm{dq}, J=12.5 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 30.5,50.3,52.8,121.4(\mathrm{q}, J=33 \mathrm{~Hz}), 122.5(\mathrm{q}, J=268 \mathrm{~Hz}), 135.8(\mathrm{q}, J=7$ Hz), 168.6. HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$241.0688, found 183.0703.
(3) $\mathbf{1 e}$ was prepared by the following procedure:

To a solution of $\mathrm{KOH}(1.75 \mathrm{~g}, 31.3 \mathrm{mmol}$, 2.5 equiv) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added compound $1 \mathrm{f}(3.00 \mathrm{~g}, 12.5 \mathrm{mmol})$. After the mixture was stirred at room temperature for 10 h , the solvent was removed thoroughly under reduced pressure. An aqueous $\mathrm{HCl}(2 \%)$ was added to acidify the mixture $(\mathrm{pH} 2)$ and it was extracted with $\mathrm{Et}_{2} \mathrm{O}(30$ $\mathrm{mL} x 3$). The organic layers were combined, washed with brine and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and removal of solvent gave a crude malonic acid which was used directly for the next step.

The crude malonic acid obtained above was dissolved in DMSO (10 mL) and the solution was heated at $135{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was poured into water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($30 \mathrm{~mL} \times 3$). The organic layers were combined, washed with
brine and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of solvent, the residue was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and a drop of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added. The mixture was heated to reflux and kept stirring for 2 h . After removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/hexane $=$ $1 / 10)$ to give $\mathbf{1 e}(2.00 \mathrm{~g}, 88 \%$ yield based on $\mathbf{1 f})$ as a colorless oil.
$\mathrm{F}_{3} \mathrm{C} \mathrm{CO}_{2} \mathrm{Me}{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-64.20-64.23(\mathrm{~m}, 3 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.47-2.49(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 5.67(\mathrm{dq}, J=12.6 \mathrm{~Hz}, 6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.36-6.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 26.6,32.2,51.8,119.6(\mathrm{q}$, $J=33 \mathrm{~Hz}), 122.8(\mathrm{q}, J=267 \mathrm{~Hz}), 138.4(\mathrm{q}, J=7 \mathrm{~Hz}), 172.5$. HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$183.0633, found 183.0637.
(4) 1 g was prepared by the following procedure:

To a suspension of $\mathrm{LiAlH}_{4}(0.42 \mathrm{~g}, 11.0 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(0.51 \mathrm{~g}, 3.8 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added a solution of $1 \mathbf{e}(1.00 \mathrm{~g}, 5.49 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for $4 \mathrm{~h}, 10 \%$ aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ was carefully added to decompose excess LiAlH_{4}. It was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/hexane $=$ $1 / 10$) to give $\mathbf{1 g}(0.61 \mathrm{~g}, 72 \%)$ (somewhat volatile).
$\mathrm{F}_{3} \mathrm{CH}{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-63.99-64.03(\mathrm{~m}, 3 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 2 \mathrm{H})$, $3.67(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{dq}, J=13.9 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-6.44(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 27.8,30.8,61.8,118.9(\mathrm{q}, J=33 \mathrm{~Hz}), 123.0(\mathrm{q}, J=267$ $\mathrm{Hz}), 139.9(\mathrm{q}, J=7 \mathrm{~Hz})$. HRMS (ESI) calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 155.0684$, found 155.0683.

4. A typical procedure for Table 1 (entry 10)

$\left[\operatorname{RhCl}\left((R, R)-\mathrm{Fc}^{-t \mathrm{tf}}{ }^{*}\right)\right]_{2}(4.4 \mathrm{mg}, 0.0060 \mathrm{mmol}$ of Rh$),\left(3-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{BO}\right)_{3}(\mathbf{2 a})(48.2$ $\mathrm{mg}, 0.120 \mathrm{mmol}, 0.360 \mathrm{mmol}$ of B$)$, trifluoromethylalkenes $\mathbf{1 a}(25.9 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{KOH}(14.8 \mathrm{mg}, 0.264 \mathrm{mmol})$ were placed in a Schlenk tube under nitrogen. 1,4-Dioxane (1.0 mL) and water (0.1 mL) were added, and the mixture was stirred at $35^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography with EtOAc/hexane (5/95) to give 3aa ($32.5 \mathrm{mg}, 0.108 \mathrm{mmol}, 90 \%$ yield) as a colorless oil.

In entries 15 and $16,[\mathrm{RhCl}(R)$-binap $)]_{2}$ and $[\mathrm{RhCl}((R) \text {-segphos })]_{2}$ were generated in situ from $\left[\mathrm{RhCl}(\mathrm{coe})_{2}\right]_{2}(2.15 \mathrm{mg}, 0.0060 \mathrm{mmol}$ of Rh$)$ with (R)-binap $(4.11 \mathrm{mg}$, 0.0066 mmol) and (R)-segphos ($4.03 \mathrm{mg}, 0.0066 \mathrm{mmol}$), respectively.

5. A general procedure for Table 2

$[\operatorname{RhCl}((R, R)-\mathrm{Fc}-\mathrm{tfb} *)]_{2}(4.4 \mathrm{mg}, 0.0060 \mathrm{mmol}$ of Rh$)$, arylboroxine $2(0.120 \mathrm{mmol}$, 0.360 mmol of B), trifluoromethylalkene $\mathbf{1}(0.12 \mathrm{mmol})$, and $\mathrm{KOH}(14.8 \mathrm{mg}, 0.264$ mmol) were placed in a Schlenk tube under nitrogen. 1,4-Dioxane (1.0 mL) and water
$(0.1 \mathrm{~mL})$ were added, and the mixture was stirred at $35{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography to give 3.

6. Characterization of the products

Compound (R)-3aa. The ee was measured by HPLC (Daicel Chiralpak IA column), $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $=5 / 95$, flow $0.8 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=10.5$ \min (major), $t_{2}=11.9 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-34.6$ (c 1.11, CHCl_{3}) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-88.5(\mathrm{dd}, \mathrm{J}=42.6 \mathrm{~Hz}, 25.0 \mathrm{~Hz}, 1 \mathrm{~F}),-87.4(\mathrm{~d}, J=42.6$ $\mathrm{Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.61(\mathrm{dd}, J=9.4 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J$ $=9.4 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{ddd}, J=25.0 \mathrm{~Hz}, 9.8 \mathrm{~Hz}$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 40.1$ $(\mathrm{d}, J=5 \mathrm{~Hz}), 55.2,73.0,73.7(\mathrm{t}, J=2 \mathrm{~Hz}), 79.7(\mathrm{dd}, J=23 \mathrm{~Hz}, 19 \mathrm{~Hz}), 112.1,113.6$, 119.8, 127.5, 127.6, 128.3, 129.5, 138.1, 142.5, 156.4 ($\mathrm{t}, J=286 \mathrm{~Hz}$), 159.8. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+} 305.1353$, found 305.1352.

Compound (R)-3ba. The ee was measured by HPLC (Daicel Chiralpak IA column), 2-propanol/hexane $=3 / 97$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=6.1$ \min (major), $t_{2}=8.0 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-20.7\left(c 1.16, \mathrm{CHCl}_{3}\right.$) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-88.3(\mathrm{dd}, J=40 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-85.9(\mathrm{~d}, J=40 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{br} \mathrm{q}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (ddd, $J=24.2 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.68-7.74 (m, 2H), 7.82-7.86(m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 38.8(\mathrm{~d}, \mathrm{~J}=5$
$\mathrm{Hz}), 43.0,55.2,79.4(\mathrm{dd}, J=23 \mathrm{~Hz}, 19 \mathrm{~Hz}), 112.8,113.1,119.6,123.4,129.9,131.8$, 134.0, 141.6, $156.7(\mathrm{t}, \mathrm{J}=287 \mathrm{~Hz}), 159.9,168.1$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~F}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 344.1098$, found 344.1099.

Compound (R)-3bb. The ee was measured by HPLC (Daicel Chiralpak IA column), 2-propanol $/$ hexane $=3 / 97$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=7.7$ \min (major), $t_{2}=9.1 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-17.5$ (c $1.27, \mathrm{CHCl}_{3}$) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-88.5(\mathrm{dd}, J=41 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-86.3(\mathrm{~d}, J=41 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{br} \mathrm{q}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{ddd}, J=24.4 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 38.0(\mathrm{~d}, J=5 \mathrm{~Hz}), 43.1,55.2,79.6(\mathrm{dd}, J=22 \mathrm{~Hz}, 19 \mathrm{~Hz}), 114.2,123.3$, $128.3,131.8,132.1,134.0,156.6(\mathrm{t}, J=287 \mathrm{~Hz}$), 158.8, 168.1. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+} 344.1098$, found 344.1105.

Compound (R)-3bc. The ee was measured by HPLC (Daicel Chiralpak IA column), 2-propanol/hexane $=3 / 97$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=10.3$ \min (major), $t_{2}=12.8 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-24.5$ (c 1.10, CHCl_{3}) for 98% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-88.3$ (dd, $\left.J=41 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}\right),-85.9(\mathrm{~d}, J=41 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.90-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{br} \mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (ddd, $J=24.3 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23-7.36 (m, 5 H), 7.68-7.74 (m, 2H), 7.82-7.86 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 38.8(\mathrm{~d}, J=5 \mathrm{~Hz}), 43.1,79.4(\mathrm{dd}, J$ $=23 \mathrm{~Hz}, 19 \mathrm{~Hz}$), 123.3, 127.3, 127.4, 128.8, 131.8, 134.0, 140.0, 156.7 (t, $J=287 \mathrm{~Hz}$), 168.1. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+}$314.0993, found 314.0992.

Compound (R)-3bd. The ee was measured by HPLC (Daicel Chiralpak IA column), IPA/hexane $=1 / 99$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=8.0 \mathrm{~min}$ (major), $t_{2}=9.0 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-28.6\left(c 1.26, \mathrm{CHCl}_{3}\right.$) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-88.6(\mathrm{dd}, J=41 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-86.2(\mathrm{~d}, J=41 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{br} \mathrm{q}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52$ (ddd, $J=24.3 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 21.0, 38.4 (d, $J=5 \mathrm{~Hz}$), 43.1, 79.6 (dd, $J=22 \mathrm{~Hz}, 19 \mathrm{~Hz}$), 123.3, 127.2, 129.5, 131.8, 134.0, 137.0, 137.1, $156.7\left(\mathrm{t}, \mathrm{J}=287 \mathrm{~Hz}\right.$), 168.1. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~F}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 328.1149$, found 328.1140 .

Compound (R)-3be. The ee was measured by HPLC (Daicel Chiralpak IA column), IPA/hexane $=1 / 99$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=12.3 \mathrm{~min}$ (major), $t_{2}=13.4 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-9.7$ (c 2.59, CHCl_{3}) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-87.4(\mathrm{dd}, J=39 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-85.4(\mathrm{~d}, J=39 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{br} \mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (ddd, $J=24.2 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 38.3(\mathrm{~d}, \mathrm{~J}$ $=5 \mathrm{~Hz}), 42.8,79.1(\mathrm{dd}, J=23 \mathrm{~Hz}, 19 \mathrm{~Hz}), 121.3,123.4,129.1,131.7,132.0,134.1$, 139.0, 156.7 (t, $J=288 \mathrm{~Hz}$), 168.0. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~F}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ 392.0098, found 392.0107.

Compound (R)-3bf. The ee was measured by HPLC (Daicel Chiralpak IA column), 2-propanol/hexane $=1 / 99$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=11.1$
\min (major), $t_{2}=14.2 \min$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-14.5$ (c 1.21, CHCl_{3}) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-87.1(\mathrm{dd}, J=38 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-85.0(\mathrm{~d}, J=38 \mathrm{~Hz}, 1 \mathrm{~F})$, $-62.6(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.93(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{br} \mathrm{q}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{ddd}, J=24.0 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 38.7(\mathrm{~d}, J=5 \mathrm{~Hz}), 42.7,78.9(\mathrm{dd}, J=24 \mathrm{~Hz}, 19 \mathrm{~Hz}), 121.5,124.0(\mathrm{q}, J=$ $270 \mathrm{~Hz}), 125.8(\mathrm{q}, J=4 \mathrm{~Hz}), 127.8,129.8(\mathrm{q}, J=32 \mathrm{~Hz}), 131.7,134.2,144.1,156.9(\mathrm{t}$, $J=288 \mathrm{~Hz}$), 168.0. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~F}_{5}[\mathrm{M}+\mathrm{H}]^{+}$382.0866, found 382.0866.

Compound (R)-3bg. The ee was measured by HPLC (Daicel Chiralpak IA column), 2-propanol $/$ hexane $=3 / 97$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=8.9$ \min (major), $t_{2}=10.4 \min$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-9.1\left(c 1.21, \mathrm{CHCl}_{3}\right.$) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-88.1$ (dd, $\left.J=40 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}\right),-86.0(\mathrm{~d}, J=40 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{br} \mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.47 (ddd, $J=24.3 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 38.5(\mathrm{~d}, J=5 \mathrm{~Hz}), 43.1,79.5(\mathrm{dd}, J=23 \mathrm{~Hz}, 19 \mathrm{~Hz}), 101.1$, 107.7, 108.5, 120.5, 123.4, 131.8, 133.9, 134.0, 146.8, 148.0, 156.6 (t, $J=288 \mathrm{~Hz}$), 168.1. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+}$358.0891, found 358.0903.

Compound (R)-3bh. The ee was measured by HPLC (Daicel Chiralpak IA column), 2-propanol/hexane $=1 / 99$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=11.3$ \min (major), $t_{2}=15.9 \min$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-26.7$ (c $1.48, \mathrm{CHCl}_{3}$) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-88.0(\mathrm{dd}, J=40 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-85.6(\mathrm{~d}, J=40 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{br} \mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.64 (ddd, $J=24.3 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.71-7.88(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 39.0(\mathrm{~d}, J=5 \mathrm{~Hz}), 43.0,79.5(\mathrm{dd}, J=23 \mathrm{~Hz}, 19 \mathrm{~Hz})$, $123.4,125.3,126.0,126.1,126.3,127.7,127.8,128.7,131.8,132.7,133.5,134.1$, 137.4, $156.8\left(\mathrm{t}, \mathrm{J}=288 \mathrm{~Hz}\right.$), 168.2. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 364.1149, found 364.1136 .

Compound (R)-3bi. The ee was measured by HPLC (Daicel Chiralpak IA column), 2-propanol/hexane $=1 / 99$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=6.2$ \min (major), $t_{2}=6.9 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-61$ (c $0.80, \mathrm{CHCl}_{3}$) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-88.4$ (dd, $\left.J=41 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}\right),-86.4$ (dd, $J=41 \mathrm{~Hz}, 2$ $\mathrm{Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94$ (dd, $J=13.6 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.55$ (ddd, $J=24.3 \mathrm{~Hz}$, $10.3 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 19.3, $34.6(\mathrm{~d}, J=5 \mathrm{~Hz}), 42.4,79.5(\mathrm{dd}, J=22 \mathrm{~Hz}, 19 \mathrm{~Hz})$, $123.4,126.2,126.5,127.2,130.9,131.8,134.1,136.0,138.4,156.7$ (t, $J=287 \mathrm{~Hz}$), 168.2. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+}$328.1149, found 328.1141 .

Compound (R)-3cc. The ee was measured by HPLC (Daicel Chiralpak IB column), 2-propanol/hexane $=1 / 99$, flow $0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, t_{1}=9.1 \mathrm{~min}$ (minor), $t_{2}=10.3 \mathrm{~min}$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}+21.8\left(c 1.04, \mathrm{CHCl}_{3}\right.$) for 97% ee $(R) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-87.9(\mathrm{dd}, J=42 \mathrm{~Hz}, 25 \mathrm{~Hz}, 1 \mathrm{~F}),-86.7(\mathrm{~d}, J=42 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.83(\mathrm{br} \mathrm{q}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{ddd}, J=24.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 39.3(\mathrm{~d}, J=4 \mathrm{~Hz}), 49.5,80.2(\mathrm{dd}, J=22 \mathrm{~Hz}$, 20 Hz), 113.2, 117.9, 127.2, 127.4, 128.9, 129.3, 141.1, 147.5, 156.6 (t, $J=287 \mathrm{~Hz}$). HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NF}_{2}[\mathrm{M}+\mathrm{H}]^{+}$260.1251, found 260.1252.

Compound (R)-3dc. The ee was measured by HPLC (Daicel Chiralpak IB column), 2-propanol/hexane $=1 / 99$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, t_{1}=5.5 \mathrm{~min}$ (minor), $t_{2}=6.3 \mathrm{~min}$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}+53\left(c 0.98, \mathrm{CHCl}_{3}\right)$ for 98% ee $(R) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-88.4(\mathrm{dd}, J=43 \mathrm{~Hz}, 25 \mathrm{~Hz}, 1 \mathrm{~F}),-87.0(\mathrm{~d}, J=43 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.74$ (s, 3H), 3.50 (dd, $J=14.6 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (dd, $J=14.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{br} \mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{ddd}, J=24.5 \mathrm{~Hz}, 10.1 \mathrm{~Hz}$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 5 \mathrm{H})$, $7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 38.4(\mathrm{~d}, J=4 \mathrm{~Hz}), 39.3,59.4$, 80.0 (dd, $J=22 \mathrm{~Hz}, 20 \mathrm{~Hz}$), 112.0, 116.4, 127.0, 127.4, 128.8, 129.2, 141.7, 148.7, 156.3 (t, $J=287 \mathrm{~Hz}$). HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NF}_{2}[\mathrm{M}+\mathrm{H}]^{+}$274.1407, found 274.1404.

Compound (R)-3ea. The ee was measured by HPLC (Daicel Chiralpak IB column), 2-propanol/hexane $=1 / 99$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, t_{1}=7.7$ \min (minor), $t_{2}=8.3 \mathrm{~min}$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}-40.6$ (c $1.78, \mathrm{CHCl}_{3}$) for 95% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-89.3(\mathrm{dd}, J=44 \mathrm{~Hz}, 25 \mathrm{~Hz}, 1 \mathrm{~F}),-88.1(\mathrm{~d}, J=44 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.93-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.37(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{br} \mathrm{q}, \mathrm{J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.36$ (ddd, $J=24.5 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.73-6.80 (m, 3H), $7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 31.6,31.9$, $39.1(\mathrm{~d}, J=5 \mathrm{~Hz}), 51.6,55.2,81.8(\mathrm{dd}, J=21 \mathrm{~Hz}, 19 \mathrm{~Hz}), 111.9,113.1,119.3,129.8$, 144.6, $156.2(\mathrm{t}, \mathrm{J}=286 \mathrm{~Hz}), 159.9$, 173.5. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 271.1146, found 271.1147.

Compound (R)-3ec. The ee was measured by HPLC (Daicel Chiralpak IB column), 2-propanol/hexane $=1 / 99$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, t_{1}=5.6$ \min (minor), $t_{2}=6.3 \mathrm{~min}$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}-47.0\left(c 1.08, \mathrm{CHCl}_{3}\right.$) for 96% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-89.4$ (dd, $\left.J=45 \mathrm{~Hz}, 25 \mathrm{~Hz}, 1 \mathrm{~F}\right),-88.1(\mathrm{~d}, J=45 \mathrm{~Hz}, 1 \mathrm{~F})$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.94-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.37(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{br} \mathrm{q}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{ddd}, J=24.5 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}$, $3 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 31.6,31.9,39.0(\mathrm{~d}, J=5$ $\mathrm{Hz}), 51.6,81.7(\mathrm{dd}, J=21 \mathrm{~Hz}, 20 \mathrm{~Hz}), 126.8,127.0,128.8,142.9,156.2(\mathrm{t}, \mathrm{J}=286$ Hz), 173.5. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+}$241.1040, found 241.1038.

Compound (R)-3ef. The ee was measured by HPLC (Daicel Chiralpak IB column), 2-propanol/hexane $=1 / 99$, flow $0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, t_{1}=9.7$ \min (minor), $t_{2}=10.1 \min$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}-38$ (c $0.92, \mathrm{CHCl}_{3}$) for 98% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-88.3$ (dd, $\left.J=42 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}\right),-87.1(\mathrm{~d}, J=42 \mathrm{~Hz}, 1 \mathrm{~F})$, $-62.5(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.95-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.38(\mathrm{~m}, 2 \mathrm{H})$, 3.57 (br q, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (s, 3H), 4.37 (ddd, $J=24.2 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 31.4$, 31.7, 38.9 (d, $J=5 \mathrm{~Hz}$), 51.7, $81.1(\mathrm{dd}, J=22 \mathrm{~Hz}, 20 \mathrm{~Hz}), 124.0(\mathrm{q}, J=270 \mathrm{~Hz})$, $125.7(\mathrm{q}, J=4 \mathrm{~Hz}), 127.4,129.3(\mathrm{q}, J=32 \mathrm{~Hz}), 147.0,156.4(\mathrm{t}, J=288 \mathrm{~Hz}), 173.2$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~F}_{5}[\mathrm{M}+\mathrm{H}]^{+}$309.0914, found 309.0911 .

Compound (R)-3ej. The ee was measured by HPLC (Daicel Chiralpak IA column), $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $=5 / 95$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, t_{1}=13.4$ \min (major), $t_{2}=15.2 \min$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-55\left(c 0.92, \mathrm{CHCl}_{3}\right)$ for 96% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-88.8(\mathrm{dd}, J=43 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-87.6(\mathrm{~d}, J=43 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.92-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.32(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{br} \mathrm{q}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{ddd}, J=24.3 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 31.5,31.8,38.4$ (d, $J=5 \mathrm{~Hz}$), 51.6, $81.5(\mathrm{dd}, J=21 \mathrm{~Hz}, 20 \mathrm{~Hz}), 128.4,128.9,132.6,141.4,156.3$ (t, J $=287 \mathrm{~Hz}$), 173.3. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$275.0659, found

Compound (R)-3fc. The ee was measured by HPLC (Daicel Chiralpak IA column), IPA/hexane $=1 / 99$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=4.2 \mathrm{~min}$ (major), $t_{2}=5.4 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-30\left(c 0.98, \mathrm{CHCl}_{3}\right)$ for 96% ee $(R) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-88.7(\mathrm{dd}, J=43 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-87.3(\mathrm{~d}, J=43 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.20-2.42(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{br} \mathrm{q}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.38$ (ddd, $J=24.2 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.30 (m, 5H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 35.5,37.7(\mathrm{~d}, J=5 \mathrm{~Hz}), 49.8$, $52.59,52.63,81.4(\mathrm{dd}, \mathrm{J}=22 \mathrm{~Hz}, 19 \mathrm{~Hz}), 127.0,127.1,128.8,142.2,156.3(\mathrm{t}, \mathrm{J}=$ 288 Hz), 169.3, 169.5. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+}$299.1095, found 299.1095.

Compound (R)-3ga. The ee was measured by HPLC (Daicel Chiralpak IC column), 2-propanol/hexane $=3 / 97$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=13.0$ \min (minor), $t_{2}=16.4 \min$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}-60.9$ (c $1.40, \mathrm{CHCl}_{3}$) for 98% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-90.0(\mathrm{dd}, J=46 \mathrm{~Hz}, 25 \mathrm{~Hz}, 1 \mathrm{~F}),-88.8(\mathrm{~d}, J=46 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.31$ (br s, 1H), 1.46-1.86 (m, 4H), 3.43 (br q, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.64 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80 ($\mathrm{s}, 3 \mathrm{H}$), 4.37 (ddd, $J=24.7 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74-6.80(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 30.6, 32.9, $39.5(\mathrm{~d}, J=5 \mathrm{~Hz})$, 55.2, 62.6, $82.4(\mathrm{t}, J=20 \mathrm{~Hz})$, 111.6, 113.1, 119.3, 129.6, 145.5, $156.0\left(\mathrm{t}, J=286 \mathrm{~Hz}\right.$), 159.8. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 243.1197, found 243.1188.

Compound (R)-3ha (It was purified by GPC. It would decompose in silica-gel column). The ee was measured by HPLC (Daicel Chiralpak IB column), pure hexane, flow $0.8 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=9.5 \mathrm{~min}$ (minor), $t_{2}=16.4 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{25}-33.4\left(c \quad 1.73, \mathrm{CHCl}_{3}\right)$ for 96% ee $(R) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-90.6(\mathrm{dd}$, $J=49 \mathrm{~Hz}, 23 \mathrm{~Hz}, 1 \mathrm{~F}),-90.3(\mathrm{ddd}, J=49 \mathrm{~Hz}, 4 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz) $\delta 0.00(\mathrm{~s}, 9 \mathrm{H}), 2.95(\mathrm{dd}, J=11.7 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{ddd}, J=$ $22.6 \mathrm{~Hz}, 11.7 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.70(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta-3.2,31.5(\mathrm{~d}, J=2 \mathrm{~Hz}), 55.1,78.3(\mathrm{t}, J=22 \mathrm{~Hz}), 110.0,113.0$, 119.4, 129.3, 143.2, 155.3 ($\mathrm{t}, \mathrm{J}=284 \mathrm{~Hz}$), 159.6. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{OF}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}$257.1173, found 257.1170.

Compound 4 [1402156-80-2 $]^{12} .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-64.5$ (t, $J=10 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.27(\mathrm{q}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 2.6, \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99$ (dd, $J=8.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$;

7. A typical procedure for scheme 3.

$[\mathrm{RhCl}((R, R)-\mathrm{Fc}-\mathrm{tfb} *)]_{2}(4.4 \mathrm{mg}, 0.0060 \mathrm{mmol}$ of Rh$)$ and trifluoromethylalkene $\mathbf{1 i}$ ($24.3 \mathrm{mg}, 0.12 \mathrm{mmol}$) were placed in a Schlenk tube under nitrogen. $\mathrm{PhZnCl}(0.48$ mmol , 4.0 equiv, prepared from ZnCl_{2} and PhMgBr) was added, and the mixture was stirred at room temperature $\left(23^{\circ} \mathrm{C}\right)$ for $16 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ was added at $0{ }^{\circ} \mathrm{C}$ and it was extracted with ethyl acetate. The organic layer was combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under vacuum. The crude product was purified by silica-gel column chromatography with ethyl EtOAc/hexane (5/95) to give 3ic ($26.5 \mathrm{mg}, 85 \%$) as slight yellow liquid.

Compound (R)-3ic. The ee was measured by HPLC (Daicel

Chiralpak IA x 2 columns) (Two IA columns are connected), pure hexane, flow 0.6 $\mathrm{mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=28.9 \mathrm{~min}$ (minor), $t_{2}=30.0 \mathrm{~min}$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}+16.8$ (c 1.30 , CHCl_{3}) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-90.1(\mathrm{dd}, J=44 \mathrm{~Hz}, 25 \mathrm{~Hz}$, 1F), $-88.5(\mathrm{~d}, J=44 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.75(\mathrm{ddd}, J$ $=23.6 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 43.7(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 55.3,82.2(\mathrm{dd}, J=19$ $\mathrm{Hz}, 22 \mathrm{~Hz}), 114.0,126.6,127.9,128.6,128.9,135.3,143.5,155.9$ (t, $J=286 \mathrm{~Hz})$, 158.4. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{OF}_{2}[\mathrm{M}+\mathrm{H}]^{+}$261.1091, found 201.1095

Compound 5ic [1618086-15-9] ${ }^{13}$. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta$ $-63.7(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 3 \mathrm{~F}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.88(\mathrm{qd}, J=10.4 \mathrm{~Hz}, 7.4 \mathrm{~Hz}$, 2H), 3.78 (s, 3H), 4.29 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.

Compound (R)-3jc. The ee was measured by HPLC (Daicel Chiralpak IF column), 2-propanol/hexane $=1 / 99$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{1}=7.3$ \min (minor), $t_{2}=7.9 \mathrm{~min}$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}-2.76$ (c $1.05, \mathrm{CHCl}_{3}$) for 99% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-89.1(\mathrm{dd}, J=41 \mathrm{~Hz}, 24 \mathrm{~Hz}, 1 \mathrm{~F}),-87.4(\mathrm{~d}, J=41 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.75$ (ddd, $J=23.7 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.3,44.5(\mathrm{~d}, J=5 \mathrm{~Hz}), 60.9,81.5(\mathrm{dd}, J=23 \mathrm{~Hz}, 19 \mathrm{~Hz}), 127.0$, 127.86, 127.92, 128.8, 129.1, 129.9, 142.4, 148.1, 156.1 ($\mathrm{t}, \mathrm{J}=287 \mathrm{~Hz}$), 166.4. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+} 303.1197$, found 303.1194.

Compound (S)-3ij. The ee was measured by HPLC (Daicel Chiralpak IA x 2 columns) (Two IA columns are connected), pure hexane, flow 0.6 $\mathrm{mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=38.8 \mathrm{~min}$ (major), $t_{2}=43.6 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-26$ (c 0.75 , CHCl_{3}) for 99% ee $(S) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-89.6(\mathrm{dd}, J=42 \mathrm{~Hz}, 23 \mathrm{~Hz}$, 1F), -87.9 (d, $J=42 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{ddd}, J$ $=23.6 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.07 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 43.2(\mathrm{~d}, J=5 \mathrm{~Hz}), 55.3,81.9(\mathrm{dd}, J=22 \mathrm{~Hz}, 19 \mathrm{~Hz}), 114.1$, 128.7, 128.8, 129.2, 132.5, 134.7, 142.0, 156.0 (t, $J=287 \mathrm{~Hz}$), 158.5. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OF}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$295.0701, found 295.0705.

8. Derivatization of the Arylation/Defluorination Products

(1) Transformation of 3dc to 8 a and $\mathbf{8 b}$

To a solution of 3dc ($41.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{NiCl}_{2}(\mathrm{dppp})(8.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ in benzene (1.0 mL), $\mathrm{MeMgBr}(1.4 \mathrm{M}$ in THF/toluene ($1 / 3$), $1.07 \mathrm{~mL}, 1.50 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was heated to reflux for $15 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ was added at $0^{\circ} \mathrm{C}$ and it was extracted with ethyl acetate. The organic layer was combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under vacuum. The crude product was purified by silica gel column chromatography with ethyl EtOAc/hexane (5/95) to give 8a (38.2 $\mathrm{mg}, 96 \%$ yield) as a slight yellow liquid.
$\mathbf{8 b}$ was prepared according to the above procedure using PhMgBr (3.0 M in diethyl ether, $5.0 \mathrm{~mL}, 1.5 \mathrm{mmol}$) instead of MeMgBr in 85% yield.

Compound (R)-8a. The ee was measured by HPLC (Daicel Chiralpak IB column), pure hexane, flow $0.7 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=13.1 \mathrm{~min}$ (minor), $t_{2}=13.9 \mathrm{~min}$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}+12.4$ (c 1.32, CHCl_{3}) for 98% ee $(R) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62$ (dd, $J=11.2 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{br} \mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.34(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 18.2,26.1,39.6,42.8,59.8,111.8$, 115.7, 125.7, 126.3, 127.7, 128.6, 129.1, 133.5, 144.0, 148.9. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$266.1909, found 266.1910.

Compound (R)-8b. The ee was measured by HPLC (Daicel Chiralpak IF column), $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $=1 / 99$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=13.1$ \min (major), $t_{2}=14.3 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-94.7$ (c $1.55, \mathrm{CHCl}_{3}$) for 98% ee $(R) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.67(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=14.5 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}$, $J=14.5 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=10.6 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.38(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 39.1,44.2,59.5,68.7,111.9,115.8,126.5,127.09,127.10$, 127.3, 127.7, 128.0, 128.1, 128.7, 128.8, 129.1, 129.7, 139.7, 142.3, 142.94, 142.96, 148.8. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 390.2222$, found 390.2219 .
(2) Transformation of 3dc to 9

98\%ee
$[\mathrm{RhCl}((\mathrm{S}, \mathrm{S})-\mathrm{Ph}-\text { bod })]_{2}$
$(5 \mathrm{~mol} \%$ of Rh$)$
$\xrightarrow[\text { toluene/ } \mathrm{H}_{2} \mathrm{O}(1.0 / 0.5 \mathrm{~mL})]{\text { (S,S)-Ph-bod }(20 \mathrm{~mol} \%)}$ $60{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$

9
95\% yield, $Z / E=9 / 1$ 98\% ee
$\left[\operatorname{RhCl}\left((S, S)-\mathrm{Ph}-\mathrm{bod}^{*}\right)\right]_{2}(2.9 \mathrm{mg}, 0.0075 \mathrm{mmol}$ of Rh$),(S, S)-\mathrm{Ph}-$ bod $(7.8 \mathrm{mg}, 0.03$ mmol), phenylboroxine (2c) ($46.8 \mathrm{mg}, 0.150 \mathrm{mmol}, 0.450 \mathrm{mmol}$ of B), 3dc (41.0 mg ,
0.15 mmol), and $\mathrm{KOH}(18.5 \mathrm{mg}, 0.330 \mathrm{mmol})$ were placed in a Schlenk tube under nitrogen. Toluene $(1.0 \mathrm{~mL})$ and water $(0.5 \mathrm{~mL})$ were added, and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The solvent was removed on a rotary evaporator. The crude ${ }^{19} \mathrm{~F}$ NMR of the mixture revealed Z / E isomers were formed in a ratio of $9 / 1$. The residue was further purified by silica-gel chromatography.

Compound (R)-9. The ee was measured by HPLC (Daicel Chiralpak IC column), $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $=1 / 99$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{1}=34.4$ \min (minor), $t_{2}=39.9 \mathrm{~min}$ (major). $[\alpha]_{\mathrm{D}}{ }^{25}-16.1$ (c $1.77, \mathrm{CHCl}_{3}$) for 98% ee (R) (mixture of Z / E isomers in a ratio of 9:1). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-117.2(\mathrm{~d}, J$ $=36 \mathrm{~Hz}, 1 \mathrm{~F}$, for Z -isomer $),\left(-95.7(\mathrm{~d}, J=22 \mathrm{~Hz}, 1 \mathrm{~F}\right.$, for E-isomer $)$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 2.73$ (s, 3H), $3.60(\mathrm{dd}, J=14.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=14.6 \mathrm{~Hz}$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{br} \mathrm{q}, ~ J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=36.3 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 10 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 39.2,40.0(\mathrm{~d}, J=3 \mathrm{~Hz}), 59.4(\mathrm{~d}, J=1 \mathrm{~Hz}), 106.9(\mathrm{~d}, J$ $=17 \mathrm{~Hz}), 112.1,116.1,124.2(\mathrm{~d}, J=7 \mathrm{~Hz}), 126.7,127.7,128.4(\mathrm{~d}, J=2 \mathrm{~Hz}), 128.7$, 129.2, 132.3 (d, $J=29 \mathrm{~Hz}$), 142.4, 148.9, 157.3 (d, $J=248 \mathrm{~Hz}$). HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NF}[\mathrm{M}+\mathrm{H}]^{+} 332.1815$, found 332.1818.
(3) Transformation of 3bc to 10

To a 25 mL flask equipped with a stir bar were added (R) - $\mathbf{3 b c}(47.0 \mathrm{mg}, 0.15$ mmol), which was obtained in entry 4 in Table 2, in 2 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}$ ($16.5 \mathrm{mg}, 0.015 \mathrm{mmol}$). The mixture was allowed to stir under H_{2} atmosphere (using H_{2} balloon) at room temperature $\left(23{ }^{\circ} \mathrm{C}\right)$ for 1.5 h . The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The filtrate was
concentrated under reduce pressure and the residue was subjected to silica-gel chromatography with EtOAc/hexane (1/8) to give $\mathbf{1 0}$ ($43.0 \mathrm{mg}, 91 \%$) as a white solid.

Compound (R)-10. The ee was measured by HPLC (Daicel Chiralpak IA column), 2-propanol/hexane $=3 / 97$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}, t_{1}=9.8$ \min (major), $t_{2}=11.1 \mathrm{~min}$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}+92\left(c 0.85, \mathrm{CHCl}_{3}\right.$) for 98% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-117.6(\mathrm{dddd}, J=284 \mathrm{~Hz}, 57 \mathrm{~Hz}, 25 \mathrm{~Hz}, 17 \mathrm{~Hz}, 1 \mathrm{~F})$, -114.9 (ddt, $J=284 \mathrm{~Hz}, 56 \mathrm{~Hz}, 11 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.20-2.33$ (m, 2H), 3.46 (quint, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.87-3.97$ (m, 2H), 5.56 (tdd, $J=56.5 \mathrm{~Hz}, 6.7$ $\mathrm{Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.70-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 37.8(\mathrm{t}, J=21 \mathrm{~Hz}), 39.1(\mathrm{dd}, J=8 \mathrm{~Hz}, 3 \mathrm{~Hz}), 43.2,116.1(\mathrm{t}, J=$ 238 Hz), 123.3, 127.6, 127.7, 128.9, 131.7, 134.0, 139.3, 168.1. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+} 316.1149$, found 316.1149.
(4) Transformation of 3bc to 11

To a solution of (R)-3bc (98% ee, $62.7 \mathrm{mg}, 0.20 \mathrm{mmol}$), which was obtained in entry 4 in Table 2, in EtOH (2 mL) was added $\mathrm{NH}_{2} \mathrm{NH}_{2}\left(80 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 61 \mu \mathrm{~L}, 1.0$ $\mathrm{mmol})$. After stirring at $80^{\circ} \mathrm{C}$ for 3 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. The precipitated solid was filtered off and the filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated on a rotary evaporator. To a solution of the residue in THF $(2 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(12.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the mixture was stirred at room temperature for 2 h . The reaction mixture was extracted with dichloromethane ($20 \mathrm{~mL} \times 3$). The organic layers were combined, washed with brine and water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and removal of solvent gave
the crude primary amine.
The crude primary amine obtained above was dissolved in 10 mL dichloromethane and the solution was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{AcCl}(17.3 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(40.4 \mathrm{mg}$, 0.4 mmol) were added dropwise sequently. After addition, the reaction mixture was warmed to room temperature and kept stirring for 10 h . After removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/hexane $=1 / 3$) to give $\mathbf{1 1}$ ($41.0 \mathrm{mg}, 91 \%$ yield based on (R)-3bc) as a slight yellow oil.

Compound (R)-11. The ee was measured by HPLC (Daicel Chiralpak IC column), 2-propanol/hexane $=5 / 95$, flow $2.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{1}=10.8$ \min (major), $t_{2}=12.9 \min$ (minor). $[\alpha]_{\mathrm{D}}{ }^{25}-21.5$ (c 1.18, CHCl_{3}) for 98% ee $(R) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 377 \mathrm{MHz}\right) \delta-88.0(\mathrm{dd}, J=42 \mathrm{~Hz}, 25 \mathrm{~Hz}, 1 \mathrm{~F}),-86.7(\mathrm{~d}, J=42 \mathrm{~Hz}, 1 \mathrm{~F})$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.96(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{br} \mathrm{q}, J=8.4 \mathrm{~Hz}$, 1 H), 4.46 (ddd, $J=24.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.63 (br s, 1H), 7.23 (d, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 23.2, $39.8(\mathrm{~d}, ~ J=5 \mathrm{~Hz}), 44.6,79.8(\mathrm{dd}, J=22 \mathrm{~Hz}, 19 \mathrm{~Hz})$, 127.26, 127.29, 128.9, 140.7, 156.6 ($\mathrm{t}, J=287 \mathrm{~Hz}$), 170.2. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NOF}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 226.1043, found 226.1040.

9. Reference

[1] Giordano, G.; Crabtree, R. H. Inorg. Synth. 1990, 28, 88.
[2] Ent, A.; Onderdelinden, A. L. Inorg. Synth. 1990, 28, 90.
[3] Nishimura, T.; Kumamoto, H.; Nagaosa, M.; Hayashi, T. Chem. Commun. 2009, 5713.
[4] Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.
[5] Dou, X.; Huang, Y.; Hayashi, T. Angew. Chem. Int. Ed. 2015, 54, 7891.
[6] Nishimura, T.; Noishiki, A.; Tsui, G. C.; Hayashi, T. J. Am. Chem. Soc. 2012,

134, 5056.
[7] So, C. M.; Kume, S.; Hayashi, T. J. Am. Chem. Soc. 2013, 135, 10990.
[8] Wang, B. L.; Yu, F.; Qiu, X.-L.; Jiang, Z.-X.; Qing, F.-L. J. Fluorine Chem. 2006, 127, 580.
[9] Forcellini, E.; Hemelaere, R.; Desroches, J.; Paquin, J.-F. J. Fluorine Chem. 2015, 180, 216.
[10] Omote, M.; Tanaka, M.; Ikeda, A.; Nomura, S.; Tarui, A.; Sato, K.; Ando, A. Org. Lett. 2012, 14, 2286.
[11] Liu, N.; Wang, H.-Y.; Zhang, W.; Jia, Z.-H.; Guzei, I.; Xu, H.-D.; Tang, W. Chirality 2013, 25, 805.
[12] Mizuta, S.; Galicia-Lopez, O.; Engle, K.; Verhoog, S.; Wheelhouse, K.; Rassias, G.; Gouverneur, V. Chem. Eur. J. 2012, 18, 8583.
[13] Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 10202.

10. Data for X-ray crystal structure of (R)-3be

Figure S1. ORTEP illustration of (R)-3be with thermal ellipsoids drawn at 50% probability level.

Table 1. Sample and crystal data for (R)-3be.

Chemical formula	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrF}_{2} \mathrm{NO}_{2}$
Formula weight	$392.20 \mathrm{~g} / \mathrm{mol}$


```
1b
```


| 1 | 1 | | |
| :--- |
| 190 | 180 | 170 | 1 |

（2）

| 00 | 19 | 1 | 1 |
| :--- |

（19

洔きすきす

[^0]

	\％${ }^{8} 8$		İ	88		知	？
新新	新	数部	\％	非		4	－
1／11	Y I	4\％	1	11	いy	1	V

425

3ha

3ba

$$
\square
$$

중호른

" 0 CHO

											$\stackrel{T}{8}$	TiT							
${ }^{1} 10$	9.5	9.	8.5	8.0	7.5	${ }^{1}$	6.5	6.0			4	10	315	310	2.5	10	1.5	10	0.5
10.0			8.5	8.0	7.5	7.0		6.0			4.5	4.0	3.5	1.0	2.5	2.0	1.5	1.0	0.5

$\xrightarrow[4]{4}$

[^1]

3bh

+	- +1/

3cc

$3 \mathbf{c c}$

 ricisitivititisidut

l

tiviJI 227235

\＃	整最	答	
E		$\stackrel{+}{4}$	
1	／1	1	$\cdots 1$

3ef

\％䩗

肚

䙲窘宗	
635	5589
IV	S11／

3ga

$$
\begin{aligned}
& \text { rtution }
\end{aligned}
$$

8

語部語

I-2

| 190 | 180 | 170 | 160 | 150 | 1 |
| :--- |

8\％	
\％	88.88
11	V／1／

荡

＋

8 a

过折
$\stackrel{8}{7}$

$\frac{8}{8}$

部要

mV

<Peak Table>

Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>

Detector A Channel 1280 nm
Peak\# Ret. Time Area Height Conc. Unit Mark\quad Name
1

$\mathrm{m} V$

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 280nm

| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |\quad Name

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3bc
mV

<Peak Table>
Detector A Channel 1280 nm

Deak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.379	1861502	126752	49.971		M	
2	12.770	1863651	104242	50.029		M	
Total		3725153	230994				

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	$	$	Name
:---									
1									

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.270	1072265	55843	99.975		M	
2	13.404	266	37	0.025		M	
Total		1072532	55880				

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
1	11.145	4223211	236475	99.506		M
2	14.181	20981	938	0.494		M
Total		4244192	237413			

mV

<Peak Table>

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.875	13039089	902707	49.919		M	
2	10.416	13081154	734479	50.081		M	
Total		26120243	1637186				

mv

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
1	8.878	25781118	1746772	99.405		M
2	10.442	154251	8769	0.595		M
Total		25935369	1755541			

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3bi
mV

<Peak Table>
Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>

Detector A Channel 1280 nm
Peak\# Ret. Time Area Height Conc. Unit Mark
1

<Peak Table>

mV

<Peak Table>
Detector A Channel 2254 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

<Peak Table>
Detector A Channel 2 254nm

\left.| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |$\right]$ Name

mV

<Peak Table>

Detector A Channel 2 254nm

\left.| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |
| ---: | ---: | ---: | ---: | ---: | :---: | :---: |$\right]$ Name

<Peak Table>
Detector A Channel 1220 nm

Peak\#	Time	Area	Height	Conc.	Unit	Mark	Name
1	7.672	2502178	293407	50.726		M	
2	8.329	2430535	263760	49.274		M	
Total		4932713	557167				

mV

<Peak Table>
Detector A Channel 1220 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>

Detect Peak\#	Ret A Chann	220nm	Height	Conc.	Unit	Mark	Name
1	5.639	2661151	381404	50.047		M	
2	6.253	2656166	355424	49.953		M	
Total		5317317	736827				

mV

<Peak Table>
Detector A Channel 1220 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 220nm
$\left.\begin{array}{|r|r|r|r|c|c|c|}\hline \text { Peak\# } & \text { Ret. Time } & \text { Area } & \text { Height } & \text { Conc. } & \text { Unit } & \text { Mark }\end{array}\right]$ Name
mV

<Peak Table>
Detector A Channel 1 220nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 2 230nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 2 230nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.378	5522722	299902	98.079		M	
2	15.214	108182	5376	1.921		M	
Total		5630904	305279				

3fc
mV

<Peak Table>
Detector A Channel 1220 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
1	4.250	766469	115325	50.494		M
2	5.461	751470	86090	49.506		M
Total		1517938	201415			

mV

<Peak Table>

Detector A Channel 1 220nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3 ga
mV

<Peak Table>
Detector A Channel 1 280nm
$\left.\begin{array}{|r|r|r|r|c|c|c|}\hline \text { Peak\# } & \text { Ret. Time } & \text { Area } & \text { Height } & \text { Conc. } & \text { Unit } & \text { Mark }\end{array}\right]$ Name
mV

<Peak Table>

Detector A Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

3ha
mV

<Peak Table>

UV Channel 1280nm
Peak\# Ret. Time Area Height Conc. Unit Mark
1

mV

<Peak Table>
UV Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>

UV Channel 1280 nm

| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |\quad Name

mv

<Peak Table>
UV Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>

UV Channel 2254 nm

Peak\# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.179	5072620	375132	49.139		M
2	7.830	5250436	270141	50.861		V M
Total		10323056	645273			

mV

<Peak Table>
UV Channel 2 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
UV Channel 1280 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
UV Channel 1280 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
UV Channel 1280 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
UV Channel 1280 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

8b
<Chromatogram>
mV

<Peak Table>

UV Channel 2 254nm

| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |\quad Name

mV

<Peak Table>

UV Channel 2 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	35.351	2382660	26814	50.631		M	
2	39.591	2323294	22902	49.369		M	
Total		4705954	49716				

mV

<Peak Table>
UV Channel 1280 nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
UV Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
UV Channel 1 280nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

mV

<Peak Table>
Detector A Channel 1 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

[^0]:

[^1]:

