SUPPORTING INFORMATION

Stabilization of Calcium Hydride Complexes by Fine-tuning of Amidinate Ligands

Andrea Causero, Gerd Ballmann, Jürgen Pahl, Harmen Zijlstra, Christian Färber and Sjoerd Harder*

Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
Contents Page

1. Crystal structures 2
2. Ligand syntheses: $\mathrm{NpAm}^{\text {DIPP }} \mathrm{H}, \mathrm{AdAm}^{\text {DIPP }} \mathrm{H}$ 20
3. Complex syntheses: $\left(t \mathrm{BuAm}{ }^{\mathrm{Mes}}\right)_{2} \mathrm{Ca} \cdot \mathrm{Et}_{2} \mathrm{O},\left(\mathrm{MeAm}^{\mathrm{DIPP}}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2} \mathrm{CaK}$ 22
4. Selected ${ }^{1} \mathrm{H}$ NMR spectra 23
References 45

1. Crystal structures

Experimental

All crystal structures have been measured on a SuperNova (Agilent) diffractometer with dual Cu and Mo microfocus sources and an Atlas S2 detector. Crystals were covered in paraffin oil, mounted on a flexible MiTeGen microloop and immediately transferred to a cold N_{2} stream of 100 K. Structures were determined using Olex2, ${ }^{1}$ ShelXT ${ }^{2}$ for the structure solution by Direct Methods and ShelXL ${ }^{3}$ for least squares refinement. Unless noted otherwise, the hydrogen atoms have been placed at idealized calculated positions and were refined isotropically using a riding model. In case special methods were used, the specific details of the refinement are given separately.

Crystal structure of AdAm ${ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}$

Identification code	hasj160303a
Empirical formula	$\mathrm{C}_{41} \mathrm{H}_{67} \mathrm{CaN}_{3} \mathrm{Si}_{2}$
Formula weight	698.23
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	9.87724(17)
b/Å	12.3264(2)
c/Å	33.7986(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.2021(17)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	4111.98(14)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.128
μ / mm^{-1}	2.090
F(000)	1528.0
Crystal size/mm ${ }^{3}$	$0.1652 \times 0.143 \times 0.1011$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	7.634 to 136.236
Index ranges	$-10 \leq h \leq 11,-14 \leq \mathrm{k} \leq 14,-40 \leq \mathrm{l} \leq 37$
Reflections collected	14210
Independent reflections	$7446\left[\mathrm{R}_{\text {int }}=0.0394, \mathrm{R}_{\text {sigma }}=0.0508\right]$
Data/restraints/parameters	7446/0/438
Goodness-of-fit on F^{2}	1.039
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0511, \mathrm{wR}_{2}=0.1346$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0568, \mathrm{wR}_{2}=0.1404$
Largest diff. peak/hole / e \AA^{-3}	0.70/-0.41

Crystal structure of $t \mathrm{BuAm}{ }^{\mathrm{DIPP}} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$

The crystal was twinned over two domains and has been measured as such. The structure was refined using the data from both domains (HKLF5).

Identification code	hasj160321a_twin1_hklf5
Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{71} \mathrm{CaN}_{3} \mathrm{OSi}_{2}$
Formula weight	694.24
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	10.6373(4)
b/Å	12.4259(3)
c/Å	16.4223(3)
$\alpha /{ }^{\circ}$	90.146(2)
$\beta /{ }^{\circ}$	92.606(2)
V°	98.163(3)
Volume/ ${ }^{3}$	2146.36(10)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.074
μ / mm^{-1}	2.014
F(000)	764.0
Crystal size/mm ${ }^{3}$	$0.3255 \times 0.1707 \times 0.1241$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	7.188 to 147.672
Index ranges	$-13 \leq h \leq 13,-15 \leq k \leq 15,-20 \leq 1 \leq 20$
Reflections collected	16049
Independent reflections	16049 [$\left.\mathrm{inft}^{\text {int }}=-, \mathrm{R}_{\text {sigma }}=0.0211\right]$
Data/restraints/parameters	16049/0/434
Goodness-of-fit on F^{2}	1.078
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0384, \mathrm{wR}_{2}=0.1088$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0426, w \mathrm{R}_{2}=0.1109$
Largest diff. peak/hole / e \AA^{-3}	0.75/-0.32

Crystal structure of $\mathrm{NpAm}^{\mathrm{DIPP}} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$

Disorder of two iPr-groups was refined as two positions with an approximate ration of 75:25. The coordinated ether molecule has also 2 disordered positions each with an approximate ration of 75:25. The less occupied part of the ether molecule was modeled with Rigid Bond (RIGU) Restraints. ${ }^{4}$ Additionally part of the disordered moiety was refined with equal displacement parameters (EADP). A result of the disordered $\mathrm{Et}_{2} \mathrm{O}$ molecule is a short hydrogen distance of 1.91 \AA A between a SiMe_{3} moiety of the adjacent unit cell and the less occupied part of the disorder.

Identification code	hasj151021a
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{73} \mathrm{CaN}_{3} \mathrm{OSi}_{2}$
Formula weight	708.27
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	14.7482(7)
b/Å	18.0397(7)
c/Å	16.8077(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.156(5)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	4460.0(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.055
μ / mm^{-1}	1.947
F(000)	1560.0
Crystal size/mm ${ }^{3}$	$0.1961 \times 0.0896 \times 0.0687$
Crystal color	colorless
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	6.008 to 136.23
Index ranges	$-16 \leq h \leq 17,-21 \leq k \leq 13,-20 \leq 1 \leq 19$
Reflections collected	14692
Independent reflections	$8068\left[\mathrm{R}_{\text {int }}=0.0632, \mathrm{R}_{\text {sigma }}=0.0713\right]$
Data/restraints/parameters	8068/23/518
Goodness-of-fit on F^{2}	1.055
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0638, \mathrm{wR}_{2}=0.1694$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0737, w \mathrm{R}_{2}=0.1944$
Largest diff. peak/hole / e \AA^{-3}	0.49/-0.90

Figure S1. Crystal structure of $\mathrm{NpAm}^{\mathrm{DIPP}} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$.

Crystal structure of $\left[p \text {-TolAm }{ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$

The crystal was twinned over two domains and has been measured as such. The structure was refined using the data from both domains (HKLF5). The unit cell contains two dimers of which one was disordered with a ration of 80:20. The less occupied part of the disorder was modeled using idealized geometries for 6-ring (AFIX 66) and Rigid Bond (RIGU) Restraints. Additionally one iPr-group was refined with equal displacement parameters (EADP). ${ }^{4}$

Identification code	HASJ150309C_twin1_hklf5
Empirical formula	$\mathrm{C}_{104} \mathrm{H}_{150} \mathrm{Ca}_{2} \mathrm{~N}_{6} \mathrm{Si}_{4}$
Formula weight	1676.81
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	16.3967(2)
b/Å	16.4260(3)
c/Å	21.1559(4)
$\alpha /{ }^{\circ}$	110.503(2)
$\beta /{ }^{\circ}$	102.6180(10)
$\mathrm{V} /{ }^{\circ}$	100.0220(10)
Volume/Å ${ }^{3}$	5008.65(16)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.112
μ / mm^{-1}	1.796
F(000)	1824.0
Crystal size/mm ${ }^{3}$	$0.426 \times 0.137 \times 0.1309$
Crystal color	colorless
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	5.744 to 136.434
Index ranges	$-19 \leq h \leq 19,-19 \leq k \leq 19,-25 \leq 1 \leq 25$
Reflections collected	32796
Independent reflections	$32796\left[\mathrm{R}_{\text {int }}=-, \mathrm{R}_{\text {sigma }}=0.0157\right]$
Data/restraints/parameters	32796/191/1284
Goodness-of-fit on F^{2}	1.068
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0594, \mathrm{wR}_{2}=0.1689$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0628, \mathrm{wR}_{2}=0.1719$
Largest diff. peak/hole / e \AA^{-3}	0.86/-0.51

Figure S2. Crystal structure of $\left[p \text {-TolAm }{ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$; iPr substituents and H^{\prime} s omitted for clarity. Only one the two independent dimers is shown (the other dimer is disordered).

Crystal structure of $\left[\mathrm{MeAm}^{\text {DPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$

Solvent accessible voids contain disordered solvent. A satisfactory disorder model for the solvent was not found, and therefore the OLEX2 Solvent Mask routine (similar to PLATON/SQUEEZE) was used to mask out the disordered electron density. ${ }^{5}$ A total void of $1004 \AA^{3}$ per unit cell was filled with $339 \mathrm{e}^{-}$.

Identification code	hasj160412a
Empirical formula	$\mathrm{C}_{64} \mathrm{H}_{110} \mathrm{Ca}_{2} \mathrm{~N}_{6} \mathrm{Si}_{4}$
Formula weight	1156.09
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	11.78345(19)
b/Å	15.5905(2)
c/Å	23.5944(4)
$\alpha /{ }^{\circ}$	102.6714(13)
$\beta /{ }^{\circ}$	94.2421(13)
$\gamma^{\prime}{ }^{\circ}$	106.0615(14)
Volume/ ${ }^{\text {a }}$	4021.75(11)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	0.955
μ / mm^{-1}	2.056
F(000)	1264.0
Crystal size/mm ${ }^{3}$	$0.3767 \times 0.244 \times 0.1763$
Radiation	CuKa ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ} 8.004$ to 136.228	
Index ranges	$-14 \leq h \leq 14,-18 \leq k \leq 14,-28 \leq 1 \leq 28$
Reflections collected	43916
Independent reflections	14614 [$\left.\mathrm{R}_{\text {int }}=0.0364, \mathrm{R}_{\text {sigma }}=0.0342\right]$
Data/restraints/parameters	14614/0/715
Goodness-of-fit on F^{2}	1.022
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0403, \mathrm{wR}_{2}=0.1109$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0435, \mathrm{wR}_{2}=0.1136$
Largest diff. peak/hole / e \AA^{-3}	0.47/-0.33

Crystal structure of (tBuAm $\left.{ }^{\text {DIPP }} \mathbf{C a H}\right)_{2}$

Measurement of the crystal using standard procedures gave the following unit cell:
$a=10.5832(4) \AA, b=10.5905(4) \AA, c=14.2888(5) \AA, \alpha=109.789(4)^{\circ}, \beta=94.757(3)^{\circ}, \gamma=$ $109.004(4)^{\circ}, V=1390.8(5) \AA^{3}$. Triclinic, $\mathrm{P}-1$, one centrosymmetric dimer per unit cell.

Although the structure could be solved, refinement gave poor R-values and thermal displacement factors. It became clear from weaker intermittent satellite reflexes that the structure is modulated.

The structure was transformed to a super cell with following parameters:
$a=19.7248(6) \AA$ A,$b=20.4652(9) \AA$ A,$c=26.5472(8) \AA$, $\alpha=112.570(4)^{\circ}, \beta=93.971(2)^{\circ}, \gamma=$ $96.699(2)^{\circ}, V=9752(1) \AA^{3}$. Triclinic, $P-1$, seven dimers per unit cell.

Refinement in the super cell gave a more reliable structure refinement but due to many very weak reflexes, refinement as a modulated structure should be preferred. Since the structure of $\left(t B u A m^{\text {DIPP }} C a H\right)_{2}$ is similar to that of $\left(A d A m^{\text {DIPP }} C a H\right)_{2}$, which could be determined without crystallographic artefacts, we report here only data for the latter.

Figure S3. Crystal structure of $\left(t \mathrm{BuAm}{ }^{\text {DIPP }} \mathrm{CaH}\right)_{2}$ solved in a super cell. Only one of the 3.5 dimers in the asymmetric unit is shown. Due to modulation problems only connectivity is shown.

Crystal structure of (AdAm $\left.{ }^{\text {DIPP }} \mathbf{C a H}\right)_{2}$

The hydridic hydrogen atoms could be localized in the difference Fourier map and were refined isotropically. At two positions two co-crystallized benzene molecules could be observed which were in each case disordered over two position with a ratio of approximately $1: 1$. Due to substantial differences in C-C bond lengths of the disordered benzene molecules an idealized geometry was used (AFIX 66). ${ }^{4}$

Identification code	hasj151204b
Empirical formula	$\mathrm{C}_{94} \mathrm{H}_{124} \mathrm{Ca}_{2} \mathrm{~N}_{4}$
Formula weight	1390.12
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.4550(2)
b/Å	10.5225(2)
c/Å	19.8508(3)
$\alpha /{ }^{\circ}$	83.3598(15)
$\beta /{ }^{\circ}$	87.9438(15)
$\mathrm{V} /{ }^{\circ}$	69.2211(18)
Volume/Å ${ }^{3}$	2028.06(7)
Z	1
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.138
μ / mm^{-1}	1.569
F(000)	756.0
Crystal size/mm ${ }^{3}$	$0.4655 \times 0.1638 \times 0.1088$
Crystal color	colorless
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	8.97 to 136.186
Index ranges	$-12 \leq h \leq 12,-12 \leq k \leq 12,-23 \leq \mathrm{l} \leq 23$
Reflections collected	41056
Independent reflections	7410 [$\left.\mathrm{R}_{\text {int }}=0.0728, \mathrm{R}_{\text {sigma }}=0.0371\right]$
Data/restraints/parameters	7410/36/537
Goodness-of-fit on F^{2}	1.022
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0569, \mathrm{wR}_{2}=0.1546$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0596, w \mathrm{R}_{2}=0.1570$
Largest diff. peak/hole / e \AA^{-3}	0.72/-0.57

Crystal structure of $\left(t \mathrm{BuAm}^{\mathrm{DPP}} \mathrm{CaH}^{\mathrm{D}}\right)_{3} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2}$

Solvent accessible voids contain disordered solvent. A satisfactory disorder model for the solvent was not found, and therefore the OLEX2 Solvent Mask routine (similar to PLATON/SQUEEZE) was used to mask out the disordered electron density. ${ }^{5}$ A total void of $1696 \AA^{3}$ per unit cell was filled with $463 e^{-}$.

Identification code	hasj150424a
Empirical formula	$\mathrm{C}_{95} \mathrm{H}_{152} \mathrm{Ca}_{3} \mathrm{~N}_{6} \mathrm{O}_{6}$
Formula weight	1530.48
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P2 $1^{\text {/c }}$
a/Å	27.3041(2)
b/Å	12.4085(1)
c/Å	58.1368(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.455(1)
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	19637.5(2)(7)
Z	8
$\rho_{\text {calcg }} \mathrm{g} / \mathrm{cm}^{3}$	1.035
μ / mm^{-1}	1.800
F(000)	6720
Crystal size/mm ${ }^{3}$	$0.12 \times 0.08 \times 0.04$
Crystal color	colorless
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	6.0 to 147.4
Index ranges	$-30 \leq h \leq 33,-14 \leq k \leq 14,-72 \leq 1 \leq 68$
Reflections collected	115425
Independent reflections	38340 [$\left.\mathrm{inft}^{\text {int }}=0.047, \mathrm{R}_{\text {sigma }}=0.0368\right]$
Data/restraints/parameters	38340/0/1933
Goodness-of-fit on F^{2}	1.03
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0510, \mathrm{wR}_{2}=0.1409$
Largest diff. peak/hole / e \AA^{-3}	1.08/-0.98

Crystal structure of $\left(\mathrm{AdAm}^{\mathrm{DIPP}} \mathrm{CaH}\right)_{3} \cdot(\mathrm{THF})_{2}$

The hydridic hydrogen atoms could be localized in the difference Fourier map and were refined isotropically. Solvent accessible voids contain disordered solvent. A satisfactory disorder model for the solvent was not found, and therefore the OLEX2 Solvent Mask routine (similar to PLATON/SQUEEZE) was used to mask out the disordered electron density. ${ }^{5}$ A total void of 1318 \AA^{3} per unit cell was filled with $345 \mathrm{e}^{-}$.

Identification code	hasj151127b
Empirical formula	$\mathrm{C}_{119} \mathrm{H}_{180} \mathrm{Ca}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}$
Formula weight	1846.92
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	15.1967(2)
b/Å	18.2301(3)
c/Å	25.8609(4)
$\alpha /{ }^{\circ}$	92.8035(13)
$\beta /{ }^{\circ}$	101.6317(12)
$\mathrm{V} /{ }^{\circ}$	114.0730(15)
Volume/Å ${ }^{3}$	6337.72(18)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	0.968
μ / mm^{-1}	1.463
F(000)	2024.0
Crystal size/mm ${ }^{3}$	$0.3117 \times 0.2182 \times 0.1941$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ} 6.468$ to 136.236	
Index ranges	$-18 \leq h \leq 18,-21 \leq k \leq 19,-30 \leq 1 \leq 31$
Reflections collected	39256
Independent reflections	22879 [$\left.\mathrm{R}_{\text {int }}=0.0317, \mathrm{R}_{\text {sigma }}=0.0447\right]$
Data/restraints/parameters	22879/0/1209
Goodness-of-fit on F^{2}	1.070
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0552, \mathrm{wR}_{2}=0.1541$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0631, w R_{2}=0.1623$
Largest diff. peak/hole / e \AA^{-3}	0.89/-0.51

Crystal structure of $\left(t \mathrm{BuAm}^{\mathrm{Mes}}\right)_{2} \mathrm{Ca}^{\mathrm{Et}} \mathbf{t}_{2} \mathrm{O}$

The two tBu-backbone substituents are rotationally disordered over two positions with an approximate ratio of 85:15. This was treated using an appropriate disorder model.

Identification code	hasj151102a
Empirical formula	$\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{CaN}_{4} \mathrm{O}$
Formula weight	785.19
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	12.12062(13)
b/Å	16.59171(16)
c/Å	22.9746(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.4699(9)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	4620.09(8)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.129
μ / mm^{-1}	1.458
F(000)	1712.0
Crystal size/mm ${ }^{3}$	$0.4097 \times 0.3125 \times 0.1885$
Radiation	CuK ${ }^{(\lambda)}=1.54184$)
2Θ range for data collection/ ${ }^{\circ} 6.572$ to 136.232	
Index ranges	$-14 \leq h \leq 14,-17 \leq k \leq 19,-27 \leq 1 \leq 27$
Reflections collected	49263
Independent reflections	$8433\left[\mathrm{R}_{\text {int }}=0.0405, \mathrm{R}_{\text {sigma }}=0.0220\right]$
Data/restraints/parameters	8433/0/587
Goodness-of-fit on F^{2}	1.040
Final R indexes [l>=2 σ (1]]	$\mathrm{R}_{1}=0.0363, \mathrm{wR}_{2}=0.0991$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0376, w \mathrm{R}_{2}=0.1004$
Largest diff. peak/hole / e \AA^{-3}	0.24/-0.19

Figure S4. Crystal structure of $\left(t B u A m{ }^{\text {Mes }}\right)_{2} \mathrm{Ca} \cdot \mathrm{Et}_{2} \mathrm{O}$. Selected bond distances (A) and angles (${ }^{\circ}$): Ca-N1 2.406(1), Ca-N2 2.397(1), Ca-N3 2.401(1), Ca-N4 2.410(1), Ca-O1 2.407(1), N1-Ca-N2 54.89(4), N3-Ca-N4 55.15(4).

Crystal structure of ($\left.\mathrm{MeAm}^{\mathrm{DIPP}}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2} \mathrm{CaK}$

Identification code	hasj160404b
Empirical formula	$\mathrm{C}_{38} \mathrm{H}_{73} \mathrm{CaKN}_{4} \mathrm{Si}_{4}$
Formula weight	777.54
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	18.9149(2)
b/Å	11.58948(14)
c/Å	21.6672(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.4158(12)
V/ ${ }^{\circ}$	90
Volume/ A 3	4685.75(10)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.102
μ / mm^{-1}	3.136
F(000)	1696.0
Crystal size/mm ${ }^{3}$	$0.3174 \times 0.082 \times 0.0604$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	8.272 to 136.232
Index ranges	$-22 \leq h \leq 22,-9 \leq k \leq 13,-26 \leq 1 \leq 24$
Reflections collected	16064
Independent reflections	$8501\left[\mathrm{R}_{\text {int }}=0.0297, \mathrm{R}_{\text {sigma }}=0.0412\right]$
Data/restraints/parameters	8501/0/454
Goodness-of-fit on F^{2}	1.026
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0370, \mathrm{wR}_{2}=0.0976$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0419, \mathrm{wR}_{2}=0.1021$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.45

Figure S5. Crystal structure of $\left(\mathrm{MeAm}^{\mathrm{DIPP}}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2} \mathrm{CaK}$. Selected bond distances (A) and angles $\left({ }^{\circ}\right)$: CaN1 2.397(1), Ca-N2 2.408(1), Ca-N3 2.377(1), Ca-N4 2.375(1), K-N3 2.871(1), K-N4 2.997(1), C6-K' 3.106(2), N1-Ca-N2 56.32(5), N3-Ca-N4 105.02(5), N3-K-N4 79.94(4).

Crystal structure of $\left(\mathrm{AdAm}^{\mathrm{DIPP}}\right) \mathrm{Ca}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \cdot \mathrm{THF}$

Identification code	hasj160706
Empirical formula	$\mathrm{C}_{144} \mathrm{H}_{234} \mathrm{Ca}_{3} \mathrm{~N}_{9} \mathrm{O}_{3} \mathrm{Si}_{6}$
Formula weight	2428.29
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	31.2740(5)
b/Å	22.9849(2)
$c / A ̊$	21.3045(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	108.0355(13)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	14561.8(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.108
μ / mm^{-1}	1.848
F(000)	5316.0
Crystal size/mm ${ }^{3}$	$0.33 \times 0.20 \times 0.33$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	5.8 to 136.2
Index ranges	$-36 \leq h \leq 37,-27 \leq k \leq 15,-25 \leq 1 \leq 21$
Reflections collected	53201
Independent reflections	26403 [$\left.\mathrm{i}_{\text {int }}=0.031, \mathrm{R}_{\text {sigma }}=0.043\right]$
Data/restraints/parameters	26403/0/1528
Goodness-of-fit on F^{2}	1.03
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0437, \mathrm{wR}_{2}=0.1177$
Largest diff. peak/hole / e \AA^{-3}	0.98/-0.40

Figure S6. Crystal structure of $t \mathrm{BuAm}{ }^{\mathrm{DIPP}} \mathrm{Ca}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$.THF. Selected bond distances (A) and angles (${ }^{\circ}$) (average values from three independent molecules: Ca-N1 2.327(2), Ca-N2 2.399(2), Ca-N3 2.300(2), CaO1 2.348(2), N1-Ca-N2 112.19(1).

2. Ligand syntheses: $\mathrm{NpAm}^{\text {DIPP }} \mathrm{H}, \mathrm{AdAm}^{\text {DIPP }} \mathrm{H}$

Synthesis of $\operatorname{AdC}(\mathbf{O}) \mathbf{N}(H)$ DIPP In a 500 ml Schlenk flask, 2,6-diisopropylaniline ($4.74 \mathrm{ml}, 25.2 \mathrm{mmol}$) and triethylamine ($3.50 \mathrm{ml}, 25.2 \mathrm{mmol}$) were stirred in ethyl acetate (150 ml) under N_{2}, and adamantanecarbonyl chloride ($5.00 \mathrm{~g}, 25.2$ mmol) was dissolved in 100 ml of ethyl acetate to be added slowly and drop wise. The solution got immediately turbid, and the reaction was placed at $70^{\circ} \mathrm{C}$ under reflux conditions for three hours. The suspension was washed with water ($3 \times 200 \mathrm{ml}$), collected apart and the solvent removed under high vacuum. Yield: $8.52 \mathrm{~g}, 25.1 \mathrm{mmol}$, 99.8\%. Two stereo-isomers (trans/cis) in a 67/33 ratio were observed. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.19(67 \%, \mathrm{~d}$, $\left.{ }^{3} J_{H H}=6.8 \mathrm{~Hz}, 12 \mathrm{H}\right), 1.28(33 \%, \mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.47-2.23(\mathrm{~m}, 15 \mathrm{H}), 2.92\left(33 \%\right.$, hept, $\left.{ }^{3} J_{H H}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.01(67 \%$, hept, $\left.{ }^{3} J_{H H}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.74(\mathrm{~s}, 1 \mathrm{H}), 6.81\left(\mathrm{t},{ }^{3} \mathrm{~J}_{H H}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04\left(33 \%, \mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{H H}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.16\left(67 \%, \mathrm{~d},{ }^{3} J_{H H}=7.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.6$ (iPr), 23.6 (Ad), 23.68 (Ad), 27.83 (Ad), 28.09 (iPr), 28.41 (Ad), 28.83 (Ad), 36.47 (Ad), 36.71 (Ad), 38.43 (Ad), $39.60(\mathrm{Ad}), 39.71$ (Ad), 41.37 (iPr), 118.66 (Ar), 122.92 (Ar), 123.43 (Ar), 128.16 (Ar), 131.58 (Ar), 132.59 (Ar), 146.28 (Ar), 176.75 (CO). Elemental analysis: Calculated for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}: \mathrm{C} 81.37$, H 9.80; Found: C 81.17, H 9.73.

Synthesis of $\operatorname{AdC}(C I)$ NDIPP In a 500 ml Schlenk flask $\operatorname{AdC}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{DIPP}(6.00 \mathrm{~g}, 17.7 \mathrm{mmol})$ was suspended in dry toluene (200 ml), then $\mathrm{PCl}_{5}(3.86 \mathrm{~g}, 18.6 \mathrm{mmol})$ was added under N_{2} and the reaction was placed at $60^{\circ} \mathrm{C}$ for 3 days. The solvent was removed under high vacuum and the resulting off white dust was left under high vacuum at $85^{\circ} \mathrm{C}$ for 2 h to remove both byproduct and unreacted PCl_{5}, and used without any additional purification. Yield: $6.21 \mathrm{~g}, 17.35$ mmol, $98.2 \% .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{H H}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{iPr}\right), 1.64-2.21(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ad}), 2.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{H H}=\right.$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}$, hept), $7.08-7.22(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.45$ (iPr), 36.21 (Ad), 36.67 (Ad), 39.16 (Ad), 40.63 (Ad), 45.66 (iPr), 122.98 (Ar), 124.47 (Ar), 136.54 (Ar), 143.40 (Ar), 154.60 (NCCI). Elemental analysis: Calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{ClN}$: C 77.17, H 9.01; Found: C 77.20, H 9.09.

Synthesis of AdAm ${ }^{\text {DIPP }} \mathbf{H}$ In a 500 ml Schlenk flask AdC(CI)NDIPP ($6.21 \mathrm{~g}, 17.4 \mathrm{mmol}$) was dissolved in dry toluene (200 ml) and reacted under N_{2} with 2,6-diisopropylaniline ($3.6 \mathrm{ml}, 19.1 \mathrm{mmol}$) at $110^{\circ} \mathrm{C}$ under reflux conditions for 5 d . The volatiles were removed under high vacuum and the resulting pale pink dust suspended in $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{ml})$ and then washed with a saturated solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(250 \mathrm{ml})$, brine $(250 \mathrm{ml})$ and water (300 ml). The organic phase was collected, dried with MgSO_{4} and filtered. The product was obtained pure recrystallizing it from methanol. Yield: 6.15 $\mathrm{g}, 12.33 \mathrm{mmol}, 71 \% .{ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d): $\delta=0.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{iPr}\right.$), $1.18-1.40(\mathrm{~m}, 18 \mathrm{H}, \mathrm{iPr})$, $1.56-2.04(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ad}), 3.08$ (hept, ${ }^{3} \mathrm{~J}_{H H}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{iPr}$), 3.37 (hept, ${ }^{3} \mathrm{~J}_{H H}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{iPr}$), $5.17(\mathrm{bs}, 1 \mathrm{H}), 6.94-7.25$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ar}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.70$ (iPr), 22.18 (iPr), 24.25 (iPr), 25.97 (iPr), 28.77 (Ad), 36.83 (Ad), 40.99 (Ad), 42.00 (Ad), 122.30 (Ar), 122.78 (Ar), 123.19 (Ar), 128.17 (Ar), 136.18 (Ar), 138.45 (Ar), 144.88 (Ar), 147.58 (Ar), 159.10 (NCN). Elemental analysis: Calculated for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{~N}_{2}$: C 84.28, H 10.10, N 5.62; Found: C 84.55, H 10.13, N 5.64.

Synthesis of NpC(O)N(H)DIPP In a 500 ml Schlenk flask, 2,6-diisopropylaniline ($5.60 \mathrm{ml}, 29.7 \mathrm{mmol}$) and triethylamine $(4.10 \mathrm{ml}, 29.7 \mathrm{mmol})$ were stirred in ethyl acetate (200 ml) under N_{2}. 3,3-dimethylbutyryl chloride ($4.00 \mathrm{~g}, 29.7$ mmol) was separately dissolved in ethyl acetate (100 ml) and added drop wise. The solution got immediately turbid, and the reaction was placed at $50^{\circ} \mathrm{C}$ for 3 h . The suspension was washed with water ($3 \times 200 \mathrm{ml}$), collected apart and
the solvent removed under high vacuum. Yield: $8.15 \mathrm{~g}, 29.6 \mathrm{mmol}, 99.7 \% .{ }^{1} \mathrm{H} N \mathrm{NR}(400 \mathrm{MHz}, \mathrm{Chloroform}-d): \delta=1.14$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}-\mathrm{Np}$), 1.19 ($\mathrm{d},{ }^{3} \mathrm{~J}_{H H}=6.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{iPr}$), $2.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Np}\right.$), 3.10 (hept, ${ }^{3} \mathrm{~J}_{H H}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{iPr}$), $6.60(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 7.12-7.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.82,28.92,30.08,31.30,50.71,123.51,128.42,131.45$, 146.38, 171.23. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.82\left(\mathrm{CH}_{2}-\mathrm{Neopent}\right), 28.92(\mathrm{iPr}), 30.08\left(\mathrm{CH}_{3}-\mathrm{Np}\right), 31.30(\mathrm{C}-\mathrm{Np}), 50.71$ (iPr), 123.51 (Ar), 128.42 (Ar), 131.45 (Ar), 146.38 (Ar), 171.23 (CO). Elemental analysis: Calculated for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}: \mathrm{C}$ 78.49, H 10.61; Found: C 78.36, H 10.55.

Synthesis of $\mathrm{NpC}(\mathrm{Cl})$ NDIPP In a 500 ml Schlenk flask $\mathrm{NpC}(\mathrm{O}) \mathrm{N}(\mathrm{H})$ DIPP $(8.15 \mathrm{~g}, 29.6 \mathrm{mmol})$ was suspended in dry toluene (150 ml), then $\mathrm{PCl}_{5}(6.47 \mathrm{~g}, 31.1 \mathrm{mmol})$ was added under N_{2} and the reaction was placed at $60^{\circ} \mathrm{C}$ for 3 days. The solvent was removed under high vacuum and the resulting off white dust was left under high vacuum at $85^{\circ} \mathrm{C}$ for 2 h to remove both byproduct and unreacted PCl_{5}, and used without any additional purification. Yield: $8.15 \mathrm{~g}, 29.5$ $\mathrm{mmol}, 93.7 \%{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20-1.24(\mathrm{~m}, 21 \mathrm{H}, \mathrm{tBu}-\mathrm{Np}+\mathrm{iPr}), 2.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Np}\right), 2.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{iPr}), 7.16-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.34\left(\mathrm{CH}_{2}\right.$-Neopent), 28.61 (iPr), $29.74\left(\mathrm{CH}_{3}-\right.$ Neopent), 32.25 (C-Np), 55.84 (iPr), 123.09 (Ar), 124.89 (Ar), 136.86 (Ar), 143.53 (Ar), 168.26 (Ar). Elemental analysis: Calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{CIN}: \mathrm{C} 73.57, \mathrm{H} 9.60, \mathrm{~N} 4.77$; Found: C 73.55, H 9.69, N 4.64.

Synthesis of NpAm ${ }^{\text {DIPP }} \mathbf{H}$ In a 500 ml Schlenk flask $\mathrm{NpC}(\mathrm{Cl})$ NDIPP ($8.66 \mathrm{~g}, 29.5 \mathrm{mmol}$) was dissolved in dry toluene $(150 \mathrm{ml})$ and reacted under N_{2} with 2,6-diisopropylaniline ($5.8 \mathrm{ml}, 30.9 \mathrm{mmol}$) at $110^{\circ} \mathrm{C}$ under reflux conditions for 3d. The volatiles were removed under high vacuum and the resulting pale yellow dust suspended in $\mathrm{Et}_{2} \mathrm{O}$ (400 ml) and then washed with a saturated solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(250 \mathrm{ml})$, brine (250 ml) and water (300 ml). The organic phase was collected, dried with MgSO_{4} and filtered. The product was obtained pure recrystallizing it from methanol. Yield: $10.53 \mathrm{~g}, 24.2 \mathrm{mmol}, 82.1 \%{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d): $\delta=0.96-1.37(\mathrm{~m}, 33 \mathrm{H}, \mathrm{iPr}+\mathrm{tBu}-\mathrm{Np}$), $1.82-1.96$ (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Np}\right), 2.92-3.46(\mathrm{~m}, 4 \mathrm{H}, \mathrm{iPr}), 5.14-5.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 6.98-7.25(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 22.14 (CH_{3}-Neopent), 23.19 (iPr), 24.85 (iPr), 25.12 (C-Np), 28.27 (iPr), 28.67 (iPr), 29.98 (CH_{2}-Neopent), 30.91 (iPr), 43.49 (iPr), 122.62 (Ar), 123.04 (Ar), 123.66 (Ar), 128.11 (Ar), 133.68 (Ar), 138.89 (Ar), 144.53 (Ar), 147.05 (Ar), 153.02 (NCN). Elemental analysis: Calculated for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2}$: C 82.89, H 10.67, N 6.44; Found: C 82.94, H 10.70, N 6.48.

3. Complex syntheses: $\left(t \mathrm{BuAm}^{\mathrm{Mes}}\right)_{2} \mathrm{Ca} \cdot \mathrm{Et}_{2} \mathrm{O},\left(\mathrm{MeAm}^{\mathrm{DIPP}}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2} \mathrm{CaK}$

Synthesis of ($t \mathrm{BuAm}{ }^{\mathrm{Mes})_{2}} \mathrm{Ca}^{\mathrm{Ct}} \mathrm{Et}_{2} \mathrm{O}$ Attempted preparation of $t \mathrm{BuAm}{ }^{\mathrm{Mes}} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ according to the routes A and B (Scheme 3b) gave in both cases the homoleptic bis-amidinate calcium product. Route A: tBuAm ${ }^{\mathrm{Mes}} \mathrm{H}(300 \mathrm{mg}, 0.89$ $\mathrm{mmol})$ and $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(355 \mathrm{mg}, 1.78 \mathrm{mmol})$) were dissolved in 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ and stirred at room temperature for one hour. Then Cal_{2} ($262 \mathrm{mg}, 0.89 \mathrm{mmol}$) was added under N_{2} and the slurry was stirred at $40^{\circ} \mathrm{C}$ under reflux conditions for two days. $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum and the product was extracted with 20 ml of hexane. After centrifugation, the hexane phase was separated from the precipitate and concentrated to one fourth of the initial volume. Cooling the solution to $-20^{\circ} \mathrm{C}$ gave the product in the form of small block-like crystals. Yield: 503 mg , 92%. Route B: tBuAm ${ }^{\text {Mes }} \mathrm{H}(300 \mathrm{mg}, 0.89 \mathrm{mmol})$ was dissolved in 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ and added slowly and drop wise to $\mathrm{Ca}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2}(454 \mathrm{mg}, 0.89 \mathrm{mmol})$ under N_{2} through a septum. The clear solution was stirred for one day at room temperature, after which $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum. 20 ml of hexane were added to extract the product and the hexane phase was centrifuged, collected and concentrated to one fifth of its initial volume. Cooling the solution to $-20^{\circ} \mathrm{C}$ gave the product in the form of small colorless crystals. The crystals were washed with cold pentane (3 ml) and dried under vacuum. Yield: $615 \mathrm{mg}, 88 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.67\left(\mathrm{t},{ }^{3} \mathrm{~J}_{H H}=6.8 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\mathrm{Et}_{2} \mathrm{O}$), $1.07(\mathrm{~s}, 18 \mathrm{H}, \mathrm{tBu}), 2.21\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3}, \mathrm{Mes}\right), 2.24\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3}, \mathrm{Mes}\right), 2.91\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Et}_{2} \mathrm{O}\right), 6.81(\mathrm{~s}$, $8 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=13.82$ ($\mathrm{Et}_{2} \mathrm{O}$), 20.57 ($p-\mathrm{Me}, \mathrm{Mes}$), 20.94 (tBu), 30.05 (o-Me, Mes), 43.91 (C-tBu), 66.88 ($\mathrm{Et}_{2} \mathrm{O}$), 129.08 (Ar), 129.49 (Ar), 130.69 (Ar), 148.07 (Ar), 176.33 (NCN). Elemental analysis: Calculated for $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{OCa}: \mathrm{C} 76.48, \mathrm{H} 9.24, \mathrm{~N} 7.14$; Found: C 76.40, H 9.45, N 7.25 .

Synthesis of (MeAm $\left.{ }^{\text {DIPP }}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2} \mathrm{CaK}$ MeAm ${ }^{\text {DIPP }} \mathrm{H}(600 \mathrm{mg}, 1.58 \mathrm{mmol})$ and $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(632 \mathrm{mg}, 3.17 \mathrm{mmol})$ were dissolved in 30 ml of $\mathrm{Et}_{2} \mathrm{O}$ and stirred at room temperature for one hour. Cal_{2} ($466 \mathrm{mg}, 1.58 \mathrm{mmol}$) was added under N_{2} and the slurry was stirred at $40^{\circ} \mathrm{C}$ under reflux conditions for three days. $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum and the product extracted with 20 ml of hexane/ $\mathrm{Et}_{2} \mathrm{O}(9: 1)$. The liquid phase was collected after centrifugation and concentrated slightly. Slow cooling to $-20^{\circ} \mathrm{C}$ resulted in the precipitation of a white microcrystalline product, which was washed with cold pentane (1 ml) and shortly dried under vacuum. Crystals suitable for X-ray spectroscopy were obtained by slowly evaporating the solvent from a saturated $\mathrm{Et}_{2} \mathrm{O}$ solution. Yield: $420 \mathrm{mg}, 34 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.09\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{SiMe}_{3}\right), 1.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{iPr}\right), 1.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{iPr}\right), 1.54(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.63$ (hept, $\left.{ }^{3} J_{H H}=6.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{iPr}\right), 7.12-7.24(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=6.62\left(\mathrm{SiMe}_{3}\right), 18.23$ (pTol-CH CH_{3}), 25.17 (iPr), 25.27 (iPr), 28.20 (iPr), 123.40 (Ar), 123.61 (Ar), 142.73 (Ar), 147.27 (Ar), 173.75 (NCN). Elemental analysis: Calculated for $\mathrm{C}_{38} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{Si}_{4} \mathrm{KCa}$: $\mathrm{C} 58.70, \mathrm{H} 9.46$; Found: $\mathrm{C} 58.54, \mathrm{H} 9.40$.

4. Selected ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure S7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{NpC}(\mathrm{O}) \mathrm{N}(\mathrm{H})$ DIPP in CDCl_{3}

Figure S8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{NpC}(\mathrm{Cl})$ NDIPP in CDCl_{3}

Figure S9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{NpAm}{ }^{\text {DIPP }} \mathrm{H}$ in CDCl_{3} : several isomers present in solution make the spectra hard to interpret.

Figure S10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{AdC}(\mathrm{O}) \mathrm{N}(\mathrm{H})$ DIPP in CDCl_{3} : two isomers present in solution (syn and anti)

Figure S11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{AdC}(\mathrm{Cl})$ NDIPP in CDCl_{3}

Figure S12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{AdAm}{ }^{\mathrm{DIPP}} \mathrm{H}$ in CDCl_{3} : several isomers present in solution make the spectra hard to interpret.

Figure S13. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\left[\mathrm{MeAm}{ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S14. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\left(\mathrm{MeAm}{ }^{\mathrm{DIPP}}\right)\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2} \mathrm{CaK}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S15. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\left(t \mathrm{BuAm}{ }^{\mathrm{Mes})_{2}} \mathrm{Ca} \cdot \mathrm{Et}_{2} \mathrm{O}\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S16. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\left[p \text {-TolAm }{ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S17. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{NpAm}{ }^{\mathrm{DIPP}} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S18. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $t \mathrm{BuAm}{ }^{\mathrm{DIPP}} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S19. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{AdAm}{ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in toluene- d_{8} at $-30^{\circ} \mathrm{C}$

Figure S20. ${ }^{1} \mathrm{H}$ spectrum of $\mathrm{AdAm}{ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in toluene- d_{8} at $+80^{\circ} \mathrm{C}$

Figure S21. Stacked ${ }^{1} \mathrm{H}$ spectra of $\mathrm{AdAm}{ }^{\mathrm{DIPP}} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ measured from $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}(0-3.6 \mathrm{ppm})$.

Figure S22. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\mathrm{AdAm}{ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2} \cdot \mathrm{THF}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S23. Reaction of $\mathrm{AdAm}^{\mathrm{DIPP}} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ with 2 equivalents of THF and formation of $\mathrm{AdAm}{ }^{\text {DIPP }} \mathrm{CaN}\left(\mathrm{SiMe}_{3}\right)_{2} \cdot \mathrm{THF}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S24. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\left(t \mathrm{BuAm}{ }^{\mathrm{DIPP}} \mathrm{CaH}\right)_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S25. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of $\left(\mathrm{AdAm}{ }^{\text {DIPP }} \mathrm{CaH}\right)_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S26. Spectrum of $\left(A d A m^{\text {DIPP }} C a H\right)_{2}$ in toluene- d_{8}

Figure S27. 2D-NOESY spectrum of $\left(t B u A m^{\text {DIPP }} \mathrm{CaH}\right)_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S28. Coalescence of $\left(t \mathrm{BuAm}{ }^{\text {DIPP }} \mathrm{CaH}\right)_{2}$ reached at $77^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S29. Coalescence of $\left(A d A m{ }^{\text {DIPP }} \mathrm{CaH}\right)_{2}$ reached at $95^{\circ} \mathrm{C}$ in toluene $-d_{8}$.

Figure S30. Coalescence of $\left(A d A m^{\text {DIPP }} C a H\right)_{2}$ in toluene- d_{8}. Zoom in the iPr region and Ar region respectively shown

Figure S31. Spectrum of $\left(t B u A m{ }^{\text {DIPP }} \mathrm{CaH}_{3}\right)_{3} \cdot\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$: broad signals match with those for dimeric $\left(t \mathrm{BuAm}{ }^{\text {DIPP }} \mathrm{CaH}\right)_{2}$ and free $\mathrm{Et}_{2} \mathrm{O}$ can be seen.

Figure S32. Spectrum of the decomposition products of $\left(\mathrm{AdAm}^{\mathrm{DIPP}} \mathrm{CaH}\right)_{3} \cdot(\mathrm{THF})_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The only one detectable is the homoleptic compound.

References

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K.; Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
3. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
4. Thorn, Dittrich \& Sheldrick, Acta Cryst. A68 (2012) 448-451.
5. Acta Cryst. D61, 2005, 1299-1301.
