SUPPLEMENTARY DATA for Mode of interaction of the signal-transducing protein EIIA^{Glc} with the maltose ABC transporter in the process of inducer exclusion Steven Wuttge, Anke Licht, Mohammad Hadi Timachi, Enrica Bordignon, and Erwin Schneider **Fig. S1. CuPhe-induced cross-linking of MalF*G*K(C40S, E119C)₂ with EIIA^{Glc}(K69C).** Crosslinking was performed in the presence of CuPhe as described in 'Experimental procedures' and the products were analysed by SDS-PAGE (*left panel*) and immunoblots probed with anti-MalK antibodies (*center panel*) and anti-EIIA^{Glc} antibodies (*right panel*). **Fig. S2. Ghost peak suppression in DEER traces.** Q-band DEER primary data [V(t)/V(0)] with fitted background (left), background-corrected DEER traces [F(t)/F(0)] with fitted distribution function (center) and corresponding distance distribution (*right*) calculated using DeerAnalysis2015 for the spin-labeled pair 17MalK/128MalK. Traces are shown for samples with EIIA^{Glc} added before (dark green, as in Fig. 4B) or after (light green, as in Fig. 4C) ATP-EDTA. Traces were obtained using a π pulse in the pump frequency (panels A, B solid lines) as in Figs. 4 panels B-C or a π /3 pulse (panels A, B dashed lines). The latter setup strongly decreases the modulation depth of the DEER traces and minimizes the artefacts exerted by the ghost peaks in a 4-spin system^{1,2}. Negligible effects of ghost peak artefacts are present in the distance range 1.5-4 nm, which reports the opening and closing of the NBDs. (C) Comparison of the traces obtained with the π /3 pulse for the samples pre- or post- incubated with EIIA^{Glc}. The results are consistent with those presented in Fig. 4. ## **Supplementary References** - (1) von Hagens, T., Polyhach, Y., Sajid, M., Godt, A., and Jeschke, G. (2013) Suppression of ghost distances in multiple-spin double electron-electron resonance, *Phys Chem Chem Phys* 15,5854-5866. - (2) Valera, S., Ackermann, K., Pliotas, C., Huang, H., Naismith, J.H., and Bode, B.E. (2016) Accurate Extraction of Nanometer Distances in Multimers by Pulse EPR, *Chemistry* 22, 4700-4703. Table S1. Strains and plasmids used in this study | Strain/Plasmid | Relevant genotype | Reference/Source | | |------------------------|---|----------------------------|--| | Strain | | <u> </u> | | | E. coli JM109 | e14 (mcrA) recA1 endA1 gyrA96 | Stratagene (La Jolla, USA) | | | | thi-1 $hsdR17(rk^{-}, mk^{+})$ $supE44$ | | | | | relA1 Δ(lac-proAB) F`[traD36 | | | | | $proAB^+ lacI^q lacZ\Delta M15$] | | | | E. coli BL21(DE3) Δpts | hsdS gal(λcIts857 ind1 S am7 | [22] | | | | nin5 lacUV-T7 gene 1) | | | | | Δ <i>pts43crr</i> ::kan ^R | | | | Plasmid | | <u> </u> | | | pAL66 | malK(C40S, C350M, C360M, | [32] | | | | V17C, E128C), derivative of | | | | | pMG39 | | | | pBB04 | crr on pET15b, Ap ^R | [28] | | | pBB04(F88Q) | crr(F88Q) derivative of pBB04 | [28] | | | pBB04(K130C) | crr(K130C) derivative of pBB04 | Lab collection | | | pBK02 | malK(C40S, Q122C), derivative | Lab collection | | | | of pMM37 | | | | pBK04 | malK(C40S, R322C), derivative | Lab collection | | | | of pMM37 | | | | pBK05 | malK(C40S, A320C), derivative | Lab collection | | | | of pMM37 | | | | pCB6 | malE on pQE9, p _{T5} , Ap ^R | [39] | | | | |--------|--|---------------------|--|--|--| | pET15b | p _{T7lac} ; His ₆ -coding sequence (5'), | Novagen (Bad Soden, | | | | | | thrombin cleavage site, Ap ^R | Germany) | | | | | pHL04 | crr(P125C), derivative of pBB04 | Lab collection | | | | | pHL09 | malK(C40S, E119C), derivative | Lab collection | | | | | | of pMM37 | | | | | | pMG39 | malK(C40S, C350M, C360M) on | Lab collection | | | | | | pSU19 | | | | | | pMM34 | malF(cys ⁻) malG(cys ⁻) on | Lab collection | | | | | | pTZ18R | | | | | | pMM37 | malK796(C40S) on pSU19 | [37] | | | | | pTZ18R | Phagemid, p _{tac} | GE Healthcare | | | | | pWS02 | crr(K69C), derivative of pBB04 | This study | | | | | pWS08 | crr(Δ1-16, P125C), derivative of | This study | | | | | | pBB04 | | | | | | pWS09 | Crr(E97C), derivative of pBB04 | This study | | | | | pWS19 | crr(Δ1-16, K69C), derivative of | This study | | | | | | pBB04 | | | | | | pWS29 | crr(E160C), derivative of pBB04 | This study | | | | | | | | | | | Table S2. C_{β} - C_{β} distances determined from the X-ray structure of the maltose transporter complexed with EIIA Glc (PDB code 4JBW). | Residues | | C _β - C _β distance (Å) | |----------|---------------------|--| | MalK | EIIA ^{Gle} | | | E119 | K69 | 10.8 | | E119 | E160 | 30.5 | | Q122 | K69 | 12.5 | | Q122 | E97 | 14.0 | | A320 | P125 | 15.4 | | R322 | P125 | 14.8 | Table S3. ATPase activities of maltose transporter variants. | Complex variant | ATPase activity ^a | |------------------------------------|--| | | (μmol P _i mg ⁻¹ ·min ⁻¹) | | MalF*G*K(C40S) ₂ | 1.81 ± 0.22 | | MalF*G*K(C40S, E119C) ₂ | 1.72 ± 0.14 | | MalF*G*K(C40S, Q122C) ₂ | 1.46 ± 0.12 | | MalF*G*K(C40S, A320C) ₂ | 1.42 ± 0.09 | | MalF*G*K(C40S, R322C) ₂ | 1.52 ± 0.10 | ^a ATPase activities of transport complexes reconstituted in proteoliposomes were measured in the presence of MalE/maltose as described in 'Experimental procedures'. The values are the mean of three independent trials with SD corrected for the activity in the absence of MalE/maltose which was below 10%. * denotes cysless subunit. Table S4. Inhibition (%) of ATPase activities of maltose transporter mono-cys variants by mono-cys EIIA^{Glc} mutants | complex variant | EIIA ^{Glc} | EIIA ^{Glc} | EIIA ^{Gle} | EIIA ^{Glc} | EIIA ^{Glc} | |------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | | (wt) | (K69C) | (E97C) | (P125C) | (E160C) | | MalF*G*K(C40S) ₂ | 73 ± 12 | 64 ± 8 | 65 ± 7 | 72 ± 8 | 68 ± 7 | | MalF*G*K(C40S, E119C) ₂ | 64 ± 9 | 63 ± 6 | 52 ± 9 | 61 ± 8 | 64 ± 4 | | MalF*G*K(C40S, Q122C) ₂ | 59 ± 7 | 54 ± 5 | 67 ± 5 | 56 ± 5 | 55 ± 5 | | MalF*G*K(C40S, A320C) ₂ | 14 ± 2 | 12 ± 2 | 11 ± 2 | 12 ± 3 | 11 ± 2 | | MalF*G*K(C40S, R322C) ₂ | 0 | 0 | 0 | 0 | 0 | ATPase activities of the transporter variants in the absence of EIIA^{Glc} (see Table S3) were set 100 %. Values are the mean of three independent trials with SD. nd, not determined. *denotes cysless subunit. Table S5. ATPase activities of MalF*G*K(V17C, E128C) embedded in nanodiscs in the absence and presence of EIIAGlc | Transporter complex | No addition | + MalE/maltose | + MalE/maltose/
EIIA ^{Glc} | + MalE/maltose/
EIIA ^{Glc} (F88Q) | |---|-----------------|-----------------|--|---| | MalF*G*K* ₂ | 0.04 ± 0.02 | 3.31 ± 0.18 | 0.54 ± 0.02 | 3.44 ± 0.27 | | MalF*G*K(V17C/E128C) ₂ + DTT | 0.04 ± 0.01 | 3.53 ± 0.19 | 0.59 ± 0.14 | 3.88± 0.14 | | MalF*G*K(V17R1/E128R1) ₂ | 0.03 ± 0.01 | 3.18 ± 0.15 | 0.72 ± 0.09 | 3.37 ± 0.18 | ATPase activities of purified complex variants in nanodiscs (0.5 μ M) were measured in the absence or presence of MalE (5 μ M) and maltose (10 μ M). Nanodiscs were prepared as described in 'Experimental procedures'. Data represent means of at least three independent experiments. *denotes cys-less subunit, R1 denotes the spin-labeled side chain. Due to an internal cross-link the MalF*G*K(V17C/E128C)₂ complex was assayed in the presence of 1 mM DTT.