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Figure S1: Small gyroid metamaterial domains. Electron micrograph of gold gyroid
metamaterial sample (top view) highlighting the small size and random orientation of the
domains (scale bar: 200 nm).
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Figure S2: Re�ectance spectra of pure gold. a)Re�ectance spectra of pure gold as a
function of angle of incidence calculated from εAu(ω) for transverse magnetic (TM) polarized
light (log colour scale extends from −0.7 to 0). Tabulated data for the permittivity of bulk
gold is that found in Olmon et al1. b)The same for transverse electric (TE) polarized light
(log colour scale extends from −0.4 to 0).
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Figure S3: Comparison of measured and modelled TE re�ectance spectra as a

function of angle of incidence using three e�ective medium theories. a)The meas-
ured re�ectance spectra for transverse electric (TE) polarized light (log colour scale extends
from −1.4 to 0). b)The re�ectance spectra generated using the Maxwell�Garnett theory
(log colour scale extends from −1.3 to −0.45). c)The same generated using the Bruggeman
theory and A = 1/3, i.e. spherical inclusions (log colour scale extends from −1.3 to −0.3).
d)The same generated using the Bruggeman theory and A1 = 0.66, A2 = 0.34 and A3 = 0.
i.e. ellipsoidal inclusions (log colour scale extends from −1.3 to −0.2).
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Bruggeman E�ective Medium Theory

We here present a brief derivation of Equation 3 in the main manuscript. Consider the

e�ective permittivity ε̄ : V → GL(2,C) of a homogenised metamaterial within a domain

V ∈ R3 with volume V de�ned by the equation

〈 ~D〉 = ε̄〈 ~E〉 , (1)

where 〈f(~r)〉 =
∫
V d

3r f(~r)/V is the volume average, and the electric �eld ~E and the dis-

placement �eld ~D := ε ~E are considered functions V → C3. Further assume that the local

permittivity ε(~r) is piecewise constant, that is it takes the value εn within a subdomain

Vn ⊂ V (V =
∑

n Vn, i = 1, 2, . . . , N).

A short calculation reveals that

〈Di〉 =
∑
n

εnfn〈Ei〉n ,

where we take some vector component Di of ~D, 〈·〉n denotes the average over Vn, and

fn = Vn/V is the �ll fraction of the respective subregion. Substitution into Equation 1 thus

yield a general expression for the e�ective permittivity:

ε̄ij =
∑
n

εnfn
〈Ei〉n
〈Ej〉

=
∑
n

(εn − εm)fn
〈Ei〉n
〈Ej〉

+ εmδij . (2)

For a two-component system, this is evidently equivalent to

(ε̄− ε1) f1
〈Ei〉1
〈Ej〉

+ (ε̄− ε2) f2
〈Ei〉2
〈Ej〉

= 0 . (3)

This equation is exact. However, the contribution of the average �eld in domain n to the

total average is unknown. In the following, three approximations are made:

� that all single connected regions within each subdomain are small compared to the
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e�ective wavelength, i.e. each diameter d satis�es λ0 � ε̄d, where λ0 is the vacuum

wavelength of the light,

� that the domains are small compared to the system size, i.e. V is large compared to d

in any direction of space,

� and that all subdomains can be replaced by a monodisperse arrangement of ellipsoids

of arbitrary direction.

We note that these assumptions are both in contradiction to the gyroid metamaterial geo-

metry which is comprised of two interpenetrating domains of in�nite extend, and can never

truly be realised any physically realistic geometry. The resulting e�ective medium equation

is nevertheless widely applied and provides the necessary degrees of freedom to provide a

reasonable �t to our experimental data.

Consider a single closed subdomain of region 1 of ellispoidal shape, embedded within the

metamaterial of permittivity ε̄. Further assume that the average �eld 〈Ei〉 is given and due

to the dimension mismatch can be used as a boundary condition at in�nity for V → R3.

The corresponding electric �eld in the inclusion can be found analytically using the static

Maxwell equations2:

Ek

〈Ek〉
=

1

1 + (ε1/ε̄− 1)Ak

.

Here, k labels the principal axes of the ellipsoid and Ak is the depolarisation factor de�ned

in Equation 2. Converting this equation to an arbitrarily oriented ellipsoid (labelled s) with

respect to the global coordinate system yields

Ei,s

〈Ej〉
=

∑
ks

cos (φiks) cos(φksj)

1 + (ε1/ε̄− 1)Aks

, (4)

where angle φij is the angle between the two axes i and j. For randomly oriented ellipsoids

(i.e. assuming a uniform distribution of angles) we can now calculate the average �eld in
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domain 1 as

〈Ei〉1
〈Ej〉

=
1

Ns

∑
s

∑
ks

cos (φiks) cos(φksj)

1 + (ε1/ε̄− 1)Ak

≈ δij
2

∑
k

1

1 + (ε1/ε̄− 1)Ak

. (5)

In the last step, we approximated the sum over all inclusions by an integral. This is possible

because the number of single inclusions Ns is large; a consequence of the second approxim-

ation above. Following the same procedure for domain 2 and substituting Equation 5 into

Equation 3 yields Equation 3 in the main manuscript where ε̄ is denoted εeff .
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