Supporting Information

Orthogonal Bodipy Trimers as Photosensitizers for Photodynamic Action

Tugba Ozdemir, ${ }^{\dagger}$ Jose Luis Bila, ${ }^{\S}$ Fazli Sozmen, ${ }^{\dagger}$ Leyla T. Yildirim, ${ }^{〔}$ Engin U. Akkaya* ${ }^{\dagger} \S$
${ }^{\dagger}$ UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
${ }^{\S}$ Department of Chemistry, Bilkent University, 06800, Ankara, Turkey
${ }^{\ddagger}$ Department of Nanotechnology Engineering, Cumhuriyet University, 58140 Sivas, Turkey
${ }^{4}$ Department of Engineering Physics, Hacettepe University, Beytepe, 06800, Ankara, Turkey
e-mail: eua@fen.bilkent.edu.tr

General:

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Spectrospin Avance DPX 400 spectrometer using CDCl_{3} as the solvent. Chemical shifts values are reported in ppm from tetramethylsilane as internal standard. Spin multiplicities are reported as the following: s (singlet), d (doublet), m (multiplet). HRMS data were acquired on an Agilent Technologies 6530 Accurate-Mass Q-TOF LC/MS. UV-Vis Absorption spectra were taken on a Varian Cary-100 and Varian Cary 5000 UV-VIS-NIR absorption spectrophotometer. Fluorescence measurements were done on a Varian Eclipse spectrofluorometer. Spectrophotometric grade solvents were used for spectroscopy experiments. Flash column chromatography (FCC) was performed by using glass columns with a flash grade silica gel (Merck Silica Gel 60 (40-63 $\mu \mathrm{m})$). Reactions were monitored by thin layer chromatography (TLC) using precoated silica gel plates (Merck Silica Gel PF-254), visualized by UV-Vis light and DNP stains as appropriate. All commercial chemicals were purchased from Merck, Sigma-Aldrich and ABCR and were used without any further purification. Compound $\mathbf{2 a}{ }^{1}$ and $\mathbf{3 a}^{2}$ were synthesized according to literature.

1a, 2a, 3a, 4a, 5a R = tert -Bu
1b, 2b, 3b, 4b, 5b R = $-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}$

Scheme 1. Schematic representation for the synthesis of compound 5.

Figure 1. Synthesis of compound 2a.

Synthesis of Compound 2a: ${ }^{1}$

To a 500 mL round-bottomed flask containing 250 mL argon-degassed dichloromethane, 2,4-dimethylpyrrole ($1.05 \mathrm{~mL}, 10.26 \mathrm{mmol}$), 4-tert-butylbenzaldehyde ($0.773 \mathrm{~mL}, 4.623$ $\mathrm{mmol})$ (1a) were added. Then, trifluoroacetic acid $(400 \mu \mathrm{~L})$ was added to the reaction mixture and left to stirr overnight. Then, p-chloranil ($1.36 \mathrm{~g}, 5.5 \mathrm{mmol}$) was added and mixed for 1 additional hour. After that, TEA (3.5 mL) was added and mixed for 1 additional hour and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(3.5 \mathrm{~mL})$ was added and the reaction mixture was left to stir at room temperature for 1 h . When the starting material was consumed, water (100 mL) was added and the reaction mixture was extracted with DCM ($3 \times 100 \mathrm{~mL}$), evaporated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by silica gel column chromatography using DCM:Hexane (1:1) as the eluant and the compound was obtained as purple redish solid (1.49 g, 85%). 1H NMR (CD2Cl2, 250 MHz): $\delta=7.42$ (d, 2H), 7.11 (d, 2H), 5.91 (s, 2H), $2.42(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) .13 \mathrm{C}$ NMR (CD2Cl2, 62.5 MHz$): \delta=155.7,153.2$, $144.2,143.4,132.2,128.2,126.5,121.8,35.5,31.8,15.0,14.8$. ESI-HRMS $\left(\mathrm{M}-\mathrm{H}^{+}\right)$ calculated 380.2344 , found $380.2297, \Delta=12.48 \mathrm{ppm}$

Figure 2. Synthesis of compound 3a.

Synthesis of Compound 3a: ${ }^{2}$

1 mL of DMF and 1 mL of POCl_{3} was stirred in an ice bath for 5 min under argon. Then it was warmed to room temperature and waited for 30 minutes. To this mixture compound 2a ($300 \mathrm{mg}, 0.789 \mathrm{mmol}$) was added in dichloroethane (60 mL). The temperature was raised to $50^{\circ} \mathrm{C}$ and stirred for 2 hours. The reaction was then cooled to room temperature and poured to an ice cold NaHCO_{3} solution (150 mL). This mixture was extracted with DCM $(3 \times 100 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated in vacuo and purified by silica gel column chromatography using DCM:MeOH (98:2) as the eluent. Product 3a was obtained as an orange solid ($289.9 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 10.02$ (s, $1 \mathrm{H}), 7.55(\mathrm{dd}, J=6.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 2.83(\mathrm{~s}$, $3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $185.9,161.3,156.3,153.2,147.4,144.1,143.0,134.2,131.1,127.3,126.3,123.9,34.9$, 31.3, 15.0, 14.7, 13.0, 11.4. MS (TOF-ESI): m/z: Calcd: 408.2293 [M-H] ${ }^{+}$, Found: $408.2267[\mathrm{M}-\mathrm{H}]^{+}, \Delta=6.51 \mathrm{ppm}$.

Figure 3. Synthesis of compound 4a.

Synthesis of Compound 4a:

1 mL of DMF and 1 mL of POCl_{3} was stirred in an ice bath for 5 min under argon. Then it was warmed to room temperature and waited for 30 minutes. To this mixture compound 3a ($200 \mathrm{mg}, 0.490 \mathrm{mmol}$) was added in dichloroethane (60 mL). The temperature was raised to $50^{\circ} \mathrm{C}$ and stirred for 2 hours. The reaction was then cooled to room temperature and poured to an ice cold NaHCO_{3} solution (150 mL). This mixture was extracted with DCM ($3 \times 100 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated in vacuo and purified by silica gel column chromatography using DCM:MeOH (98:2) as the eluent. Product 4a was obtained as an orange solid ($171 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.07$ (s, $2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.6,160.5,154.0,148.4,147.9,132.0,130.5,128.0$, 127.0, 126.9, 35.0, 31.3, 13.7, 12.0. MS (TOF-ESI): m/z: Calcd: $481.21045[\mathrm{M}-\mathrm{H}]^{+}$, Found: $481.17248[\mathrm{M}-\mathrm{H}]^{+}, \Delta=74.13 \mathrm{ppm}$.

Figure 4. Synthesis of compound 5a.

Synthesis of Compound 5a:

To a 500 mL round-bottomed flask containing 250 mL argon-degassed dichloromethane, 2,4-dimethylpyrrole ($2.10 \mathrm{~mL}, 20.5 \mathrm{mmol}$), compound $4 \mathbf{4 a}$ ($200 \mathrm{mg}, 0.458 \mathrm{mmol}$) were added. Then, trifluoroacetic acid $(500 \mu \mathrm{~L})$ was added to the reaction mixture and left to stirr overnight. Then, p-chloranil $(2.72 \mathrm{~g}, 11 \mathrm{mmol})$ was added and mixed for 1 additional hour. After that, TEA (5 mL) was added and mixed for 1 additional hour and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(5$ mL) was added and the reaction mixture was left to stir at room temperature for 1 h . When the starting material was consumed, water $(100 \mathrm{~mL})$ was added and the reaction mixture was extracted with DCM ($3 \times 100 \mathrm{~mL}$), evaporated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by silica gel column chromatography using DCM:Hexane (1:1) as the eluant and the compound was obtained as purple redish solid ($160 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 4 \mathrm{H}), 2.56(\mathrm{~s}, 12 \mathrm{H})$, $2.48(\mathrm{~s}, 6 \mathrm{H}), 1.79(\mathrm{~s}, 12 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $156.0,153.6,153.5,144.0,142.3,140.8,132.9,131.7,131.0,127.2,126.9,126.4,121.3$, $53.4,34.8,31.6,31.3,22.6,14.6,14.3,14.1,13.0,12.4$. ESI-HRMS $\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$calculated 869.46295 , found $869.44414, \Delta=21.63 \mathrm{ppm}$.

1b

2b

Figure 5. Synthesis of compound 2b.

Synthesis of Compound 2b:

To a 500 mL round-bottomed flask containing 250 mL argon-degassed dichloromethane, 2,4-dimethylpyrrole ($1.05 \mathrm{~mL}, 10.26 \mathrm{mmol}$), 4-((5-hydroxypentyl)oxy)benzaldehyde (300 $\mathrm{mg}, 1.44 \mathrm{mmol}$) ($\mathbf{1 b}$) were added. Then, trifluoroacetic acid ($400 \mu \mathrm{~L}$) was added to the reaction mixture and left to stirr overnight. Then, p-chloranil ($1.36 \mathrm{~g}, 5.5 \mathrm{mmol}$) was added and mixed for 1 additional hour. After that, TEA (3.5 mL) was added and mixed for 1 additional hour and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(3.5 \mathrm{~mL})$ was added and the reaction mixture was left to stir at room temperature for 1 h . When the starting material was consumed, water (100 mL) was added and the reaction mixture was extracted with DCM ($3 \times 100 \mathrm{~mL}$), evaporated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by silica gel column chromatography using DCM:Hexane (1:1) as the eluant and the compound was obtained as purple redish solid ($0.380 \mathrm{~g}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H})$, $5.99(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 6 \mathrm{H}), 2.10(\mathrm{dq}, J=$ $12.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,155.3,143.2,141.8$, 131.8, 130.4, 129.2, 127.2, 121.1, 115.1, 65.6, 60.2, 32.0, 14.6. ESI-HRMS (M-H ${ }^{+}$) calculated 438.24102 , found $438.241662, \Delta=6.0 \mathrm{ppm}$.

Figure 6. Synthesis of compound 3b.

Synthesis of Compound 3b: ${ }^{2}$

1 mL of DMF and 1 mL of POCl_{3} was stirred in an ice bath for 5 min under argon. Then it was warmed to room temperature and waited for 30 minutes. To this mixture compound 2b ($200 \mathrm{mg}, 0.469 \mathrm{mmol}$) was added in dichloroethane $(60 \mathrm{~mL}$). The temperature was raised to $50^{\circ} \mathrm{C}$ and stirred for 2 hours. The reaction was then cooled to room temperature and poured to an ice cold NaHCO_{3} solution (150 mL). This mixture was extracted with DCM $(3 \times 100 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated in vacuo and purified by silica gel column chromatography using DCM:MeOH (98:2) as the eluent. Product 3b was obtained as ($385 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.03(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=12.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.9,161.5,159.7,156.4,147.3,143.7,142.9,134.5$, 129.1, 126.4, 123.9, 115.4, 64.5, 41.4, 32.2, 15.1, 13.0, 11.8. MS (TOF-ESI): m/z: Calcd: 546.1621 [M-Br] ${ }^{-}$, Found: 546.16003 [M-Br] ${ }^{-}, \Delta=3.79 \mathrm{ppm}$.

3b

4b

Figure 7. Synthesis of compound 4b.

Synthesis of Compound 4b:

1 mL of DMF and 1 mL of POCl_{3} was stirred in an ice bath for 5 min under argon. Then it was warmed to room temperature and waited for 30 minutes. To this mixture compound 3b ($200 \mathrm{mg}, 0.440 \mathrm{mmol}$) was added in dichloroethane (60 mL). The temperature was raised to $50^{\circ} \mathrm{C}$ and stirred for 2 hours. The reaction was then cooled to room temperature and poured to an ice cold NaHCO_{3} solution (150 mL). This mixture was extracted with DCM $(3 \times 100 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated in vacuo and purified by silica gel column chromatography using $\mathrm{DCM}: \mathrm{MeOH}$ (98:2) as the eluent. Product $\mathbf{4 b}$ was obtained as ($174.6 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.08(\mathrm{~s}, 2 \mathrm{H}), 7.23-$ 7.19 (m, 2H), $7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.90$ (s, 6H), 2.33 (dd, $J=12.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.80(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $185.6,160.6,160.2,148.3,147.5,132.3,128.9,128.1,125.7,115.8,64.6,41.3,32.2,13.7$, 12.3.

Figure 8. Synthesis of compound 5b.

Synthesis of Compound 5b:

To a 500 mL round-bottomed flask containing 250 mL argon-degassed dichloromethane, 2,4-dimethylpyrrole ($2.10 \mathrm{~mL}, 20.5 \mathrm{mmol}$), compound 4b ($200 \mathrm{mg}, 0.415 \mathrm{mmol}$) were added. Then, trifluoroacetic acid $(500 \mu \mathrm{~L})$ was added to the reaction mixture and left to stirr overnight. Then, p-chloranil ($2.72 \mathrm{~g}, 11 \mathrm{mmol}$) was added and mixed for 1 additional hour. After that, TEA (5 mL) was added and mixed for 1 additional hour and $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ (5 mL) was added and the reaction mixture was left to stir at room temperature for 1 h . When the starting material was consumed, water $(100 \mathrm{~mL})$ was added and the reaction mixture was extracted with DCM ($3 \times 100 \mathrm{~mL}$), evaporated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product $\mathbf{5 b}$ was purified by silica gel column chromatography using DCM:Hexane (1:1) as the eluent $(218 \mathrm{~g}, 56 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.03(\mathrm{~s}, 4 \mathrm{H}), 4.02(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 12 \mathrm{H}), 2.47(\mathrm{~s}$, $6 \mathrm{H}), 1.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 12 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.2, 156.0, 153.7, 143.8, 142.3, 140.7, 132.9, 132.2, 131.7, 128.9, 126.9, 125.8, 121.4, 115.6, 32.4, 31.6, 29.0, 26.6, 25.4, 14.7, 14.3, 13.0, 12.7. ESI-HRMS $\left(M-H^{+}\right)$calculated 929.48358 , found $929.4435, \Delta=43.06 \mathrm{ppm}$.

Figure 9. ORTEP drawing of compound 5a.

Figure 10. Singlet oxygen generation experiment in DCM solution. Decrease in Absorbance spectrum of trap molecule (DPBF) in the presence of $5.0 \mu \mathrm{M}$ compound 5b.

Figure 11. Singlet oxygen phosphorescence with sensitization from compound 5a.

Figure 12. ${ }^{1} \mathrm{H}$-NMR of compound 3a.

Figure 13. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{3 a}$.

Figure 14. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{4 a}$.

Figure 15. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{4 a}$.

Figure 16. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{5 a}$.

Figure 17. ${ }^{13} \mathrm{C}$-NMR of compound 5a.

Figure 18. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{2 b}$.

Figure 19. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{2 b}$.

Figure 20. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 b}$.

Figure 21. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $\mathbf{3 b}$.

Figure 22. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{4 b}$.

Figure 23. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{4 b}$.

Figure 24. ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{5 b}$.

Figure 25. ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{5 b}$.

Figure 26. Mass spectrum of compound 2a.

Figure 27. Mass spectrum of compound 3a.

Figure28. Mass spectrum of compound 4a.

Figure 29. Mass spectrum of compound 5a.

Figure 30. Mass spectrum of compound $\mathbf{5 b}$.

X-ray Diffraction Structure Analysis:

The $\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{~B}_{3} \mathrm{~F}_{6} \mathrm{~N}_{6}$ crystallizes in the orthorhombic structure, space group Pbnm with $\mathrm{a}=$ 8.6510(2) $\AA, \mathrm{b}=18.3861(5) \AA, \mathrm{c}=29.434(5) \AA, \mathrm{V}=4681.7(8) \AA^{3}$, and $\mathrm{Z}=4$.

Single crsyatal data were collected with RIGAKU R-Axis Rapid II DW with Dual Wavelenght Micro Max 007DW XG and VariMax DW optics Single Crystal X-Ray Diffractometer System with Curved Imaging Plate Detector. Program used to data collection, cell refinement and data reduction: CrystalClear-SM Expert 2.0 r16 (Rigaku, 2014). The crystal structure of the title compound was solved by direct methods and refined by the fullmatrix least-squares refinement on F^{2} using the programs SHELXS-2014/7 ${ }^{3}$ and SHELXL$2014 / 7^{4}$ (Sheldrick, 2014), respectively, in the WinGX package ${ }^{5}$. All non-hydrogen atoms were successfully refined using anisotropic displacement parameters. Hydrogen atoms bound to methyl and phenyl carbons were placed at their idealised positions with bond lengths and isotropic thermal displacement parameters for aromatic groups are $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{U}_{\text {iso }}$ $(H)=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$, for methyl groups are $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. Hydrogen atoms on the C 12 and C 27 atoms taken from a difference Fourier map and fixed all parameters.

Information concerning crystallographic data collection and structure refinement details is summarised in Table S1. Tables S2 and S3 summarise the most relevant geometrical parameters of molecule. Table S4 lists the most structurally relevant molecular contacts present in the crystal structure of the title crystal. Structural drawings have been created using the ORTEP III 6 and MERCURY ${ }^{7}$ in WinGX software package.

Table S1. Crystal data and experimental details of the title compound. 5a.

Structural formula	$\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{~B}_{3} \mathrm{~F}_{6} \mathrm{~N}_{6}$
Formula weight	872.43
Crystal system	orthorhombic
Space group	Pbnm
Crystal shape /color	platelet /orange
Lattice parameters	
a (\AA)	$8.6510(2)$
$\mathrm{b}(\AA)$	$18.3861(5)$
$\mathrm{c}(\AA)$	$29.434(5)$
Volume $\left(\AA^{3}\right)$	$4681.7(8)$
Z	4
$\mathrm{D}_{\text {calc }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.238
Absorbtion coefficient $\left(\mathrm{mm}^{-1}\right)$	0.089
$\mathrm{~F}(000)$	1832
h, k, l ranges	$-11 \rightarrow 11,-23 \rightarrow 23,-38 \rightarrow 38$
Reflections collected/unique	$107891 / 5443\left[\mathrm{R}_{\text {int }}=0.063\right]$
Parameters	323
Goodness of fit on F^{2}	1.107
R [all	0.085
wR [I>2 $\sigma(\mathrm{I})]$	0.2036
Extinction coefficient	$0.0053(11)$
Largest difference peak and hole $\left(\mathrm{e} / \AA^{3}\right)$	0.219 and -0.261

Crystallographic data (including structure factors) for the crystal structure of $\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{~B}_{3} \mathrm{~F}_{6} \mathrm{~N}_{6}$ have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-5a.

Table S2: Atomic coordinates and equivalent isotropic displacement parameters for non-hydrogen atoms of $\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{~B}_{3} \mathrm{~F}_{6} \mathrm{~N}_{6}$ compound. $U_{e q}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j}$

Atom	x	Y	z	$\mathrm{U}_{\text {eq }}\left(\AA^{2}\right)$
B1	-0.8942(4)	0.9914(2)	0.25	0.0618(9)
B2	-0.8394(3)	0.91473(13)	0.51525(7)	0.0525(5)
F1	-0.8571(3)	1.06524(11)	0.25	0.0906(7)
F2	-1.0519(2)	0.98385(14)	0.25	0.0935(7)
F3	-0.73685(15)	0.87937(8)	0.54404(4)	0.0771(4)
F4	-0.95786(14)	0.94361(8)	0.54131(4)	0.0726(4)
N1	-0.8231(2)	0.95484(9)	0.29204(5)	0.0581(5)
N2	-0.90440(19)	0.86124(9)	0.48007(5)	0.0562(4)
N3	-0.75605(17)	0.97496(9)	0.48864(5)	0.0495(4)
C1	-0.6997(2)	0.90534(11)	0.29151(6)	0.0543(5)
C2	-0.6385(3)	0.88171(15)	0.25	0.0507(6)
C3	-0.5072(3)	0.82885(15)	0.25	0.0495(6)
C4	-0.3549(3)	0.85093(16)	0.25	0.0572(7)
C5	-0.2352(3)	0.80015(16)	0.25	0.0578(7)
C6	-0.2643(3)	0.72624(15)	0.25	0.0512(6)
C7	-0.4182(3)	0.70489(16)	0.25	0.0604(7)
C8	-0.5373(3)	0.75421(16)	0.25	0.0600(7)
C9	-0.1376(3)	0.66735(16)	0.25	0.0587(7)
C10	-0.1550(3)	0.61933(14)	0.29203(9)	0.0839(8)
C11	0.0252(3)	0.6995(2)	0.25	0.0760(9)
C12	-0.6675(2)	0.88600(11)	0.33760(6)	0.0558(5)
C13	-0.5476(3)	0.83462(13)	$0.35561(7)$	0.0733(7)
C14	-0.7713(2)	0.92452(11)	0.36419(6)	0.0552(5)
C15	-0.8655(2)	0.96659(12)	0.33545(6)	0.0599(5)

C16	$-0.9921(3)$	$1.01678(15)$	$0.34883(7)$	$0.0836(8)$
C17	$-0.7924(2)$	$0.92156(11)$	$0.41440(6)$	$0.0517(5)$
C18	$-0.8823(2)$	$0.86549(11)$	$0.43302(6)$	$0.0551(5)$
C19	$-0.9689(3)$	$0.80912(13)$	$0.41255(8)$	$0.0732(6)$
C20	$-0.9901(4)$	$0.79149(18)$	$0.36363(10)$	$0.1119(11)$
C21	$-1.0398(4)$	$0.77157(14)$	$0.44719(10)$	$0.0836(8)$
C22	$-0.9998(3)$	$0.80354(13)$	$0.48852(9)$	$0.0725(6)$
C23	$-1.0464(4)$	$0.78224(17)$	$0.53510(10)$	$0.0979(9)$
C24	$-0.7303(2)$	$0.97564(11)$	$0.44163(6)$	$0.0501(5)$
C25	$-0.6472(2)$	$1.04125(12)$	$0.43120(7)$	$0.0623(5)$
C26	$-0.5887(3)$	$1.06700(16)$	$0.38619(9)$	$0.0906(8)$
C27	$-0.6290(3)$	$1.07727(14)$	$0.47162(9)$	$0.0690(6)$
C28	$-0.6962(2)$	$1.03635(11)$	$0.50627(7)$	$0.0583(5)$
C29	$-0.7072(3)$	$1.05534(15)$	$0.55524(8)$	$0.0802(7)$

Figure 31. The molecular figure of the title compound with the atomic numbering scheme.
(Symmetry code i: x, y, 1/2-z)

Table S3. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$.

B1 -	F1	1.395(4)	B2 -	F4 - F3	108.29(16)
B1 -		1.371(4)	B2 -	F4-N2	110.35(17)
B2 -		1.388(2)	B2 -	F3-N2	110.24(17)
B2 -		1.386(2)	B2 -	F4-N3	110.68(17)
B1 -		1.537(2)	B2 -	F3 - N3	110.44(16)
B2 -	N2	1.535(3)	B2 -	N2 -N3	106.85(15)
B2 -	N3	1.536(3)	B1 -	F2-F1	109.1(3)
N1 -		1.402(2)	B1 -	$\mathrm{F} 2-\mathrm{N} 1^{\text {i }}$	110.7(2)
N1 -		1.347(2)	B1 -	F1 - N1	109.5(2)
N2 -		1.400(2)	B1 -	$N 1-N 1^{i}$	107.2(2)
N2 -		1.367(3)	N2 -	C22-B2	126.57(17)
N3 -		1.401(2)	N2 -	C18-B2	125.55(16)
N3 -		1.346(3)	N1 -	C15-B1	125.77(18)
			N1 -	C1-B1	125.43(16)
			N3 -	C28-B2	126.06(17)
			N3 -	C24-B2	125.75(16)

Symmetry code i: 1, y, 1/2-z

Table S4. Structural parameters of hydrogen bonds between donor (D), acceptor (A) and hydrogen (H).

Compound	$\mathbf{D}-\mathbf{H} \cdots \mathbf{A}$	$\mathbf{D}-\mathbf{H}(\boldsymbol{\AA})$	$\mathbf{A} \cdots \mathbf{H}(\boldsymbol{\AA})$	$\mathbf{D} \cdots \mathbf{A}(\boldsymbol{\AA})$	$\mathbf{D}-\mathbf{H} \cdots \mathbf{H}\left({ }^{\circ}\right)$
$\mathbf{1}$	$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~F} 1^{\mathrm{a}}$	0.93	2.41	$3.221(4)$	146
$\mathbf{2}$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{~F} 4^{\mathrm{b}}$	0.96	2.40	$3.343(2)$	166
$\mathbf{3}$	$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{~F} 3^{\mathrm{c}}$	$0.98(3)$	$2.35(3)$	$3.267(3)$	$154(3)$
$\mathbf{4}$	$\mathrm{C} 23-\mathrm{H} 23 \mathrm{C} \cdots \mathrm{F} 4$	0.96	2.54	$3.070(4)$	115

Symmetry codes [a: $1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z} ; \mathrm{b}: 1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z} ; \mathrm{c}: 1 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-\mathrm{z}]$

Plane-A: B1, C2, C3, C4, C5, C6, C7, C8, C9
Plane-B: B1, N1, C1, C2, C12, C13, C14, C15, C16, C1 ${ }^{i}, \mathrm{C}^{i}{ }^{i}, \mathrm{C} 12^{i}, \mathrm{Cl}^{\mathrm{i}}, \mathrm{C}_{14}{ }^{\mathrm{i}}, \mathrm{C} 15^{\mathrm{i}}, \mathrm{C} 16^{\mathrm{i}}$
Plane-C: B2, N2, N3, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29
Plane-D: $\mathrm{B} 2^{\mathrm{i}}, \mathrm{N} 2^{\mathrm{i}}, \mathrm{N} 3^{\mathrm{i}}, \mathrm{C} 17^{\mathrm{i}}, \mathrm{C} 18^{\mathrm{i}}, \mathrm{C} 19^{\mathrm{i}}, \mathrm{C} 20^{\mathrm{i}}, \mathrm{C} 21^{i}, \mathrm{C} 22^{\mathrm{i}}, \mathrm{C} 23^{\mathrm{i}}, \mathrm{C} 24^{\mathrm{i}}, \mathrm{C} 25^{\mathrm{i}}, \mathrm{C} 26^{\mathrm{i}}, \mathrm{C} 27^{\mathrm{i}}, \mathrm{C} 28^{\mathrm{i}}, \mathrm{C} 29^{\mathrm{i}}$

(a)
(b)

(c)

Figure 32. Molecule diagram of the title compound 5a view along the (a) plane-A and (b) plane-B, (c) plane C and D.

Table S5. Dihedral angle between the planes

Plane 1	Plane 2	Angle (${ }^{\circ}$)
A	B	90.00
A	C	84.11
A	D	84.11
B	C	81.86
B	D	81.86
C	D	11.79

View along a-axis

View along b -axis

View along c-axis

Figure 33. Molecular packing diagrams of compound 5a.

References:

(1) Ozdemir, T.; Atilgan. S.; Kutuk, I.; T. Yildirim, L.; Tulek, A.; Bayindir, M.; Akkaya, E. U. Org. Lett., 2009, 11,2105-2107.
(2) Jiao, L.; Yu, C.; Li, J.; Wang, Z.; Wu, M.; Hao E. J. Org. Chem., 2009, 74, 75257528.
(3) Sheldrick, G. M. SHELXS-2014, Program for Crystal Structure Solution, University of Göttingen, 2014; (b) G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.
(4) Sheldrick, G. M. SHELXL, Version 2014/3, Program for Crystal Structure Refinement, University of Göttingen, 2014.
(5) Farrugia, L. J. WinGX. Program for Crystallography Package. J. Appl. Cryst. 1999, 32, 837-838.
(6) Farrugia, L. J. ORTEP-3 for windows. J. Appl. Cryst. 2012, 45, 849-854.
(7) MERCURY: Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.

