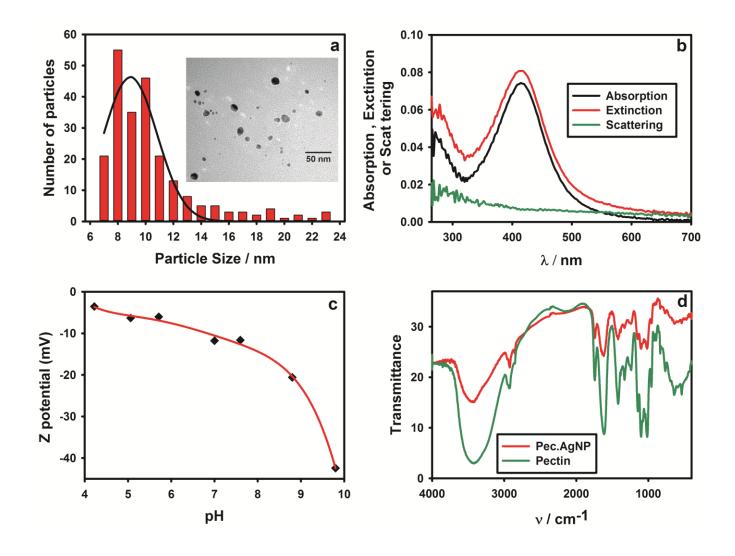
Effect of Silver Nanoparticles on the Photophysics of Riboflavin: Consequences on the ROS

Generation.


María Belén Rivas Aiello, Juan José Romero, Sonia G. Bertolotti, Mónica C. Gonzalez, and Daniel O. Mártire*

Number of pages: 6

Number of Figures: 2

Contents:

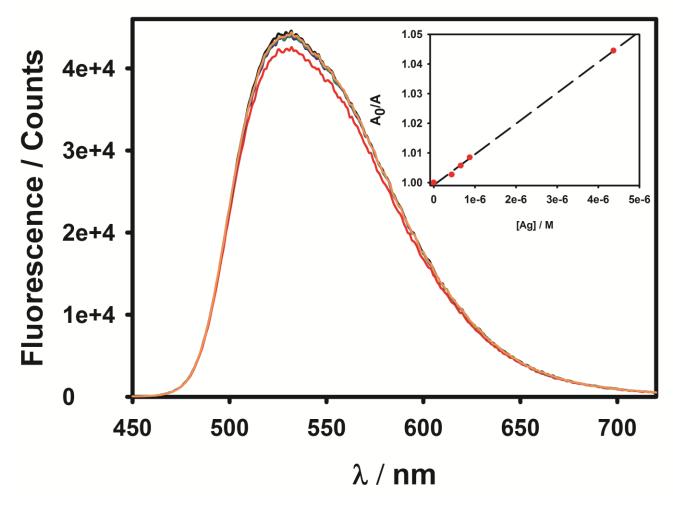

Characterization of Pec.AgNP (Figure S1)	S2
Fluorescence lifetimes of Rf in the absence and presence of Pec.AgNP (Table S1)	S3
Emission spectra of Rf in the absence and presence of Pec.AgNP (Figure S2)	S4
Calculation of the diffusion-controlled rate constant with the Smoluchowski equation	S5

Figure S1: a) Size distribution histogram of Pec.AgNP. Inset: TEM image of Pec.AgNP. b) UV-vis absorption, extinction, and scattering spectra of a 11.7 M suspension of Pec.AgNP. c) Zeta potential measurements of Pec.AgNP as a function of pH. d) FTIR spectra of pectin and Pec.AgNP.

[Ag] / M	Lifetime / ns
0	4.73
4.55E-08	4.75
6.83E-08	4.75
7.88E-08	4.73
9.11E-08	4.75
1.18E-07	4.72
1.58E-07	4.72
4.55E-07	4.70
4.55E-07	4.75
6.83E-07	4.68
7.88E-07	4.72
9.11E-07	4.69
4.55E-06	4.73

Table S1: Fluorescence lifetimes of Rf in the absence and presence of Pec.Ag NP (λ^{exc} = 388 nm).

Figure S2: Fluorescence emission spectra (λ^{exc} = 420nm) of Rf (16 µM) in the absence (black) and presence of various amounts of Pec.AgNP. The Ag concentrations are: 4.37 µM (red), 0.87 µM (blue), 0.65 µM (green), 0.44 µM (orange). Inset: Plot of (A₀/A) vs. [Ag]. A₀ and A are the emission areas without and with nanoparticles, respectively.

Calculation of the diffusion-controlled rate constant with the Smoluchowski equation

Rates of reaction at an interface, with one reactant immobilized at a spherical surface, as derived from the Smoluchowski equation are given by equation (S1)¹

$$k_{q,P} = \frac{4\pi N_{AV} R_{P+Rf} D_{P+Rf}}{1000 n_{q/P}} e^{(-E_a/kt)}$$
(S1)

Where N_{AV} is the Avogadro constant, R_{P+Rf} is the encounter radius, D_{P+Rf} is the mutual diffusion coefficient given by the sum of D_P and D_{Rf} , $n_{q,P}$ is the average number of surface Ag atoms per particle. The pre-exponential factor represents the diffusion-controlled rate constant, and E_a is the activation energy of the reaction.

The average number of Ag atoms per particle calculated from the density of silver and the diameter of the particles is 2.2×10^4 . Considering that the amount of surface Ag atoms for particles of 9 nm diameter is about 15%,² the average value of $n_{q,P}$ yields 3.35×10^3 . Taking $R_{P+Rf} \sim R_P = 4.5 \times 10^{-7}$ cm, $D_{P+Rf} \sim D_{Rf} = 2.6 \times 10^{-5}$ cm²s⁻¹,³ and $n_{q,P} = 3.3 \times 10^3$, the calculated diffusion-controlled rate constant between silver atoms and any species in solution is 2.7×10^7 M⁻¹s⁻¹.

References

(1) Shield, S. R.; Harris, J. M. Reaction Kinetics at Dispersed-Colloid/Solution Interfaces: Benzophenone Triplet-State Quenching by Methylated Silica Particles. *J. Phys. Chem. B.* **2000**, *104*, 8527-8535.

(2) Molleman, B.; Hiemstra, T. Surface Structure of Silver Nanoparticles as a Model for Understanding the Oxidative Dissolution of Silver Ion. Langmuir. **2015**, *31*, 13361-13372.

(3) Zhang, H.; Zhao, J.; Liu, H.; Wang, H.; Liu, R.; Jifeng Liu. Application of Poly (3-methylthiophene) Modified Glassy Carbon Electrode as Riboflavin Sensor. *Int. J. Electrochem. Sci.* **2010**, *5*, 295 – 301.