(69 pages)

Supporting Information For

Regioselective Synthesis of 2,3,4-Trisubstituted Pyrroles via Pd(II)-Catalyzed Three-Component Cascade Reactions of Amines, Alkyne Esters and Alkenes

Xu Zhang,*,† Xuefeng Xu,† Gong Chen,§ and Wei Yi*,‡

Table of contents

General methods and materials	2		
Optimization of reaction conditions General catalytic procedure for the synthesis of pyrroles The experimental procedure for radical capture experiment with TEMPO	5		
		The experimental investigation for the reaction mechanism	7
		Characterization data for the products	8-24
Copies of ¹ H and ¹³ C NMR spectra of products	25-69		

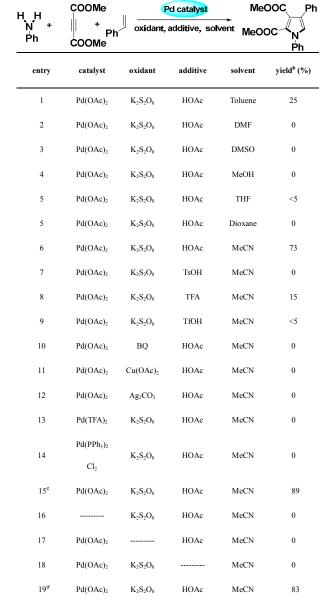
[†] College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China

[‡] VARI/SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

[§] China Gateway Pharmaceutical Development Co., Ltd, Shanghai 201417, China

^{*} e-mail: yiwei.simm@simm.ac.cn

^{*} e-mail: zhangxuedu@126.com


General Methods and Materials

Pd(OAc)₂, K₂S₂O₈ were purchased from Energy Chemical and used without further purification. Other chemicals were purchased from commercial suppliers, further dried and purified if necessary. The water used was re-distillated and ion-free.

¹H and ¹³C NMR spectra were achieved on a Bruker AVANCE 400 MHz spectrometer (¹H 400 MHz; ¹³C 100 MHz) in CDCl₃ or DMSO-*d*₆. Abbreviations for data quoted are s-singlet; brs-broad singlet; d-doublet; t-triplet; dd-doublet of doublets; m-multiplet. High-resolution mass spectra were measured on a Waters Micromass GCT facility. Thin-layer chromatographies were done on pre-coated silica gel 60F254 plates (Merck). Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography.

Optimization of reaction conditions

Table S1^a

^aUnless otherwise noted, reactions were carried out with **1a** (1.0 mmol), **2a** (1.0 mmol), **3a** (2.0 mmol), catalyst (5 mol %), oxidant (2.0 mmol), additive (2.0 mL) in 2.0 mL of solvent at 80 °C for 20 h. ^bAll yields were isolated yields. ^cReaction was carried out at at 100 °C. ^d10 mmol scale.

At the outset of this study, we chose Pd(OAc)₂ as the active Pd(II) catalyst and employed commercially available aniline (1a), dimethyl but-2-ynedioate (2a) and styrene (3a) as the model substrates for the reaction development of the three-component cascade reaction (Table 1). To our delight, the anticipated pyrrole 4a was generated in 25% yield with excellent regio-/site-selectivity under the initial conditions (Table 1, entry 1), and its structure was confirmed by ¹H and ¹³C NMR analysis and mass spectrometry. A survey of solvents revealed that MeCN was optimal (entries 1–6), affording pyrrole 3a in 73% yield. The brief screening indicated HOAc and K₂S₂O₈ to be the best choice of additives and oxidants, respectively (entries 6–12). Changing the catalyst Pd(OAc)₂ to other two well known catalysts Pd(TFA)₂ and Pd(PPh₃)₂Cl₂ obviously inhibited the process (entries 13–14). Gratifyingly, an improved yield of product 4a was obtained when the temperature was increased to 100 °C (entry 15). The control experiments indicated that no desired product was detected in the absence of the catalyst, the additive or the oxidant (entries 16–18). In summary, the optimal conditions for the three-component cascade reaction were identified as the following: 5 mol % Pd(OAc)₂, 2.0 equiv of K₂S₂O₈ and 2.0 mL of HOAc in MeCN at 100 °C for 20 h under an atmosphere of air. Finally, we were pleased to find that the reaction could be smoothly performed on a 10 mmol scale under the optimized conditions without a significant decrease in the product yield (83%, entry 19), which illustrated the remarkable robustness of this Pd(II)-catalyzed system.

General catalytic procedure for the synthesis of pyrroles

A reaction kettle (30 mL) was charged with aniline (1a, 1.0 mmol), and dimethyl acetylenedicarboxylate (2a, 1.0 mmol). The mixture was stirred at room temperature for 10 minutes, then styrene (3a, 2.0 mmol, 2.0 eq), potassium persulfate (2.0 eq, 0.54g), palladium acetate (11.2 mg), acetonitrile (2 mL), and acetic acid (2 mL) were added into the mixture, which was stirred at 100 °C for 20 hours. The obtained mixture was quenched by sat. aq. NaHCO₃, and diluted with 20 mL of dichloromethane and washed with 10 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 10 : 1) to afford pyrrole product 4a in 89% yield. All other products are synthesized in a similar manner, with the yields listed in the main text calculated from the isolated, pure products.

The experimental procedure for radical capture experiment with TEMPO

A reaction kettle (30 mL) was charged with aniline (1a, 1.0 mmol), and dimethyl acetylenedicarboxylate (2a, 1.0 mmol). The mixture was stirred at room temperature for 10 minutes, then styrene (3a, 2.0 mmol, 2.0 eq), potassium persulfate (2.0 eq, 0.54g), palladium acetate (11.2 mg), acetonitrile (2 mL), TEMPO (234 mg, 1.5 mmol), and acetic acid (2 mL) was added in the mixture. The obtained mixture was stirred at 100 °C for 20 hours, and 4a was not detected.

The experimental investigation for the Reaction Mechanism

A reaction kettle (30 mL) was charged with aniline (1a, 1.0 mmol), and dimethyl acetylenedicarboxylate (2a, 1.0 mmol) in acetonitrile (2 mL). The mixture was stirred at room temperature for 10 minutes, then evaporated in vacuo. The obtained residue was purified by flash column chromatography using a mixture of PE and EA as eluent to afford the enamine 8 in 76% yield: ¹H NMR (400 MHz, CDCl₃) δ ppm: 9.66 (s, 1H), 7.26 - 7.30 (m, 2H), 7.07 - 7.11 (t, 1H), 6.90 (d, J = 8.0 Hz, 2H), 3.74 (s, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 169.9, 164.9, 148.0, 140.3, 129.2, 124.2, 120.7, 93.6, 52.7, 51.2; HRMS (ESI-TOF) m/z calcd for C₁₂H₁₄NO₄ [M + H]⁺ 236.0917, found 236.0920.

A reaction kettle (30 mL) was charged with the enamine (8, 1.0 mmol), 4-nitrostyrene (3d, 2.0 mmol, 2.0 eq), potassium persulfate (2.0 eq, 0.54g), palladium acetate (11.2 mg), acetonitrile (2 mL), and acetic acid (2 mL) in the mixture. The mixture was stirred at 100 °C for 20 hours. The obtained mixture was quenched by sat. aq. NaHCO₃, and diluted with 20 mL of dichloromethane and washed with 10 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 10 : 1) to afford pyrrole product 7c in 65% yield.

Characterization data for products

1,4-Diphenyl-1H-pyrrole-2,3-dicarboxylic acid dimethyl

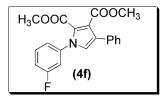
ester (4a): Obtained as a colorless oil (298.2 mg, 89% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.44 - 7.46 (m, 5H), 7.33 - 7.38 (m, 4H), 7.26 - 7.30 (t, 1H), 3.85 (s, 3H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.7, 160.4, 139.5, 133.1, 129.0, 128.63, 128.56, 127.7, 127.2, 126.14, 125.97, 124.9, 123.2, 121.8, 52.4, 52.0; **HRMS (ESI-TOF)** m/z calcd for C₂₀H₁₈NO₄ [M + H] ⁺ 336.1230, found 336.1249.

1-(2-Chloro-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxylic

acid dimethyl ester (4b): Obtained as a yellow oil (276.8 mg, 75% yield); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.51 - 7.53 (m, 1H), 7.44 - 7.46 (m, 2H), 7.35 - 7.43 (m, 5H), 7.27 - 7.31 (m, 1H), 6.95 (s, 1H), 3.87 (s, 3H), 3.70 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm: 167.0, 159.8, 137.5, 133.0, 132.1, 130.1, 130.0, 128.9, 128.7, 127.5, 127.4, 127.2, 125.8, 124.9, 122.8, 122.3, 52.6, 51.9; **HRMS (ESI-TOF)** m/z calcd for $C_{20}H_{17}NClO_4 [M + H]^+ 370.0841$, found 370.0849.

$1\hbox{-}(2\hbox{-}Bromo\hbox{-}phenyl)\hbox{-}4\hbox{-}phenyl\hbox{-}1H\hbox{-}pyrrole\hbox{-}2,}3\hbox{-}dicarboxylic$

acid dimethyl ester (4c): Obtained as a yellow oil (289.1 mg, 70% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.68 - 7.71 (m, 1H), 7.43 - 7.47 (m, 2H), 7.41 - 7.43 (m, 1H), 7.27 - 7.39 (m, 5H), 6.95 (s, 1H), 3.87 (s, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 167.0, 159.8, 139.2, 133.1, 133.0, 130.4, 129.0, 128.7, 128.0, 127.5,


127.2, 125.7, 124.9, 122.7, 122.2, 122.1, 52.6, 52.0; **HRMS (ESI-TOF)** m/z calcd for $C_{20}H_{17}NBrO_4 [M + H]^+ 414.0335$, found 414.0344.

1-(2-Iodo-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxylic

acid dimethyl ester (4d): Obtained as a yellow oil (308.9 mg, 67% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.92 - 7.94 (m, 1H), 7.44 - 7.48 (m, 3H), 7.36 - 7.40 (m, 3H), 7.28 - 7.32 (m, 1H), 6.93 (s, 1H), 3.88 (s, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 167.0, 159.7, 142.8, 139.3, 133.0, 130.4, 128.9, 128.7, 128.3, 127.5, 127.2, 125.6, 125.0, 122.4, 122.3, 97.5, 52.6, 52.0; HRMS (ESI-TOF) m/z calcd for $C_{20}H_{17}NIO_4 [M + H]^+ 462.0197$, found 462.0207.

4-Phenyl-1-o-tolyl-1H-pyrrole-2,3-dicarboxylic acid

dimethyl ester (4e): Obtained as a pale yellow oil (289.6 mg, 83% yield); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.43 - 7.46 (m, 2H), 7.35 - 7.39 (m, 3H), 7.26 - 7.32 (m, 3H), 7.21 - 7.24 (m, 1H), 6.92 (s, 1H), 3.87 (s, 3H), 3.67 (s, 3H), 2.11 (s, 3H),; ¹³**C NMR** (100 MHz, CDCl₃) δ ppm: 167.1, 150.0, 139.0, 135.4, 133.2, 130.6, 129.1, 128.7, 127.5, 127.3, 127.2, 126.5, 125.8, 124.7, 123.0, 121.6, 52.5, 51.9, 17.4; **HRMS** (**ESI-TOF**) m/z calcd for C₂₁H₂₀NO₄ [M + H] + 350.1387, found 350.1386.

1-(3-Fluoro-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxyli

c acid dimethyl ester (4f): Obtained as a pale orange viscous oil (268.3 mg, 76% yield); 1 **H NMR** (400 MHz, CDCl₃) δ ppm: 7.92 - 7.94 (m, 1H), 7.44 - 7.48 (m, 3H), 7.36 - 7.40 (m, 3H), 7.28 - 7.32 (m, 1H), 6.93 (s, 1H), 3.88 (s, 3H), 3.69 (s, 3H); 13 **C**

NMR (100 MHz, CDCl₃) δ ppm: 166.6, 150.2, 140.6, 132.9, 130.2, 130.1, 128.7, 127.7, 127.3, 125.8, 125.2, 123.0, 122.3, 122.0, 115.6, 114.0, 52.5, 52.1; **HRMS** (**ESI-TOF**) m/z calcd for C₂₀H₁₇FNO₄ [M + H]⁺ 354.1136, found 354.1173.

1-(3-Chloro-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxyli

c acid dimethyl ester (4g): Obtained as a orange viscous oil (284.1 mg, 77% yield); **¹H NMR** (400 MHz, CDCl₃) δ ppm: 7.41 - 7.45 (m, 4H), 7.36 - 7.40 (m, 4H), 7.28 - 7.33 (m, 1H), 7.00 (s, 1H), 3.86 (s, 3H), 3.74 (s, 3H); **¹S NMR** (100 MHz, CDCl₃) δ ppm: 166.6, 160.1, 140.1, 134.5, 132.8, 129.9, 128.8, 128.7, 127.6, 127.3, 126.5, 125.9, 125.2, 124.6, 122.9, 122.4, 52.5, 52.0; **HRMS** (**ESI-TOF**) m/z calcd for $C_{20}H_{17}CINO_4 [M+H]^+ 370.0841$, found 370.0461.

4-Phenyl-1-(3-trifluoromethyl-phenyl)-1H-pyrrole-2,3-

dicarboxylic acid dimethyl ester (4h): Obtained as a yellow viscous oil (290.2 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.72 (d, J = 7.6Hz, 1H), 7.56 - 7.64 (m, 3H), 7.44 - 7.46 (m, 2H), 7.37 - 7.40 (m, 2H), 7.30 - 7.34 (m, 1H), 7.03 (s, 1H), 3.88 (s, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.6, 160.1, 139.9, 132.7, 131.7, 131.4, 129.8, 129.6, 128.7, 127.6, 127.4, 125.9, 125.4, 123.4, 122.9, 122.8, 52.5, 52.0; **HRMS (ESI-TOF)** m/z calcd for C₂₁H₁₇F₃NO₄ [M + H] ⁺ 404.1104, found 404.0739.

4-Phenyl-1-m-tolyl-1H-pyrrole-2,3-dicarboxylic acid

dimethyl ester (4i): Obtained as a pale yellow viscous oil (286.2 mg, 82% yield); 1 H **NMR** (400 MHz, CDCl₃) δ ppm: 7.43 - 7.46 (m, 2H), 7.30 - 7.39 (m, 4H), 7.14 - 7.19 (m, 3H), 6.99 (s, 1H), 3.84 (s, 3H), 3.72 (s, 3H), 2.41 (s, 3H); 13 C **NMR** (100 MHz, CDCl₃) δ ppm: 166.8, 160.5, 139.4, 139.0, 133.2, 129.3, 128.71, 128.69, 128.59, 128.17, 127.7, 127.1, 126.6, 125.9, 123.2, 110.5, 52.4, 52.0, 21.3; **HRMS** (**ESI-TOF**) m/z calcd for $C_{21}H_{20}NO_4$ [M + H] ${}^{+}$ 350.1387, found 350.1376.

1-(4-Fluoro-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxy

lic acid dimethyl ester (4j): Obtained as a yellow viscous oil (275.3 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.42 - 7.45 (m, 2H), 7.30 - 7.39 (m, 5H), 7.11 - 7.17 (m, 2H), 6.98 (s, 1H), 3.85 (s, 3H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.7, 160.2, 135.5, 133.0, 128.7, 128.1, 128.0, 127.6, 127.3, 126.2, 124.9, 123.0, 122.2, 115.8, 52.5, 52.0; HRMS (ESI-TOF) m/z calcd for C₂₀H₁₇FNO₄ [M + H]⁺ 354.1136, found 354.1178.

1-(4-Chloro-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarbox

ylic acid dimethyl ester (4k): Obtained as a yellow viscous oil (287.8 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.42 - 7.45 (m, 4H), 7.36 - 7.41 (m, 2H), 7.27 - 7.32 (m, 3H), 6.98 (s, 1H), 3.86 (s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.7, 160.2, 137.9, 134.5, 132.9, 129.2, 128.7, 127.60, 127.55, 127.3,

126.0, 124.4, 122.4, 110.0, 52.5, 52.0; **HRMS** (**ESI-TOF**) m/z calcd for $C_{20}H_{17}CINO_4 [M + H]^+ 370.0841$, found 370.0838.

1-(4-Bromo-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarbox

ylic acid dimethyl ester (4l): Obtained as a yellow viscous oil (313.9 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.57 - 7.61 (m, 2H), 7.36 - 7.44 (m, 4H), 7.29 - 7.33 (m, 1H), 7.22 - 7.26 (m, 2H), 6.98 (s, 1H), 3.86 (s, 3H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.6, 160.2, 138.4, 132.8, 132.1, 128.7, 127.9, 127.6, 127.3, 125.9, 125.1, 124.8, 122.5, 122.4, 52.5, 52.1; HRMS (ESI-TOF) m/z calcd for $C_{20}H_{17}BrNO_4 [M + H]^+ 414.0335$, found 414.0313.

4-Phenyl-1-p-tolyl-1H-pyrrole-2,3-dicarboxylic acid

dimethyl ester (4m): Obtained as a yellow viscous oil (328.1 mg, 94% yield); 1 H **NMR** (400 MHz, CDCl₃) δ ppm: 7.43 - 7.45 (m, 2H), 7.35 - 7.39 (m, 2H), 7.29 - 7.31 (m, 1H), 7.22 - 7.27 (m, 4H), 6.98 (s, 1H), 3.84 (s, 3H), 3.72 (s, 3H), 2.41 (s, 3H); 13 C **NMR** (100 MHz, CDCl₃) δ ppm: 166.8, 160.5, 138.5, 136.9, 133.2, 129.6, 128.6, 127.7, 127.1, 126.0, 125.9, 124.7, 123.3, 121.6, 52.4, 51.9, 21.2; **HRMS** (**ESI-TOF**) m/z calcd for $C_{21}H_{20}NO_4$ [M + H] ${}^{+}$ 350.1387, found 350.1419.

1-(4-Methoxy-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarb

oxylic acid dimethyl ester (4n): Obtained as a yellow viscous oil (332.2 mg, 91%

yield); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.43 - 7.45 (m, 2H), 7.35 - 7.39 (m, 2H), 7.26 - 7.31 (m, 3H), 6.95 - 6.97 (m, 2H), 6.94 (s, 1H), 3.85 (s, 6H), 3.72 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm: 166.8, 160.4, 159.5, 133.2, 132.3, 128.6, 127.7, 127.3, 127.1, 126.3, 124.6, 123.3, 121.5, 114.0, 55.5, 52.4, 51.9; **HRMS** (**ESI-TOF**) m/z calcd for C₂₁H₂₀NO₅ [M + H] ⁺ 366.1336, found 366.1343.

4-Phenyl-1-(4-trifluoromethyl-phenyl)-1H-pyrrole-2,3-

dicarboxylic acid dimethyl ester (4o): Obtained as a yellow viscous oil (298.2 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.74 (d, J = 8.4 Hz, 2H), 7.43 - 7.49 (m, 4H), 7.36 - 7.40 (t, 2H), 7.29 - 7.33 (m, 1H), 7.02 (s, 1H), 3.86 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.5, 160.1, 142.3, 132.7, 130.6, 128.7, 127.6, 127.4, 126.7, 126.2, 125.8, 125.4, 122.9, 117.0, 55.6, 52.1; HRMS (ESI-TOF) m/z calcd for $C_{21}H_{17}FNO_4$ [M + H] ⁺ 404.1104, found 404.1103.

1-(4-Methylsulfanyl-phenyl)-4-phenyl-1H-pyrrole-2,3-dic

arboxylic acid dimethyl ester (4p): Obtained as a yellow viscous oil (346.7 mg, 91% yield); ${}^{1}\mathbf{H}$ **NMR** (400 MHz, CDCl₃) δ ppm: 7.43 - 7.45 (m, 2H), 7.36 - 7.40 (m, 2H), 7.28 - 7.32 (m, 5H), 6.98 (s, 1H), 3.85 (s, 3H), 3.73 (s, 3H), 2.53 (s, 3H); ${}^{13}\mathbf{C}$ **NMR** (100 MHz, CDCl₃) δ ppm: 166.7, 160.4, 139.6, 136.3, 133.1, 128.6, 127.7, 127.2, 126.5, 126.4, 126.0, 124.7, 123.0, 121.9, 52.4, 52.0, 15.6; **HRMS (ESI-TOF)** m/z calcd for $\mathbf{C}_{21}\mathbf{H}_{20}\mathbf{SNO}_{4}$ [M + H] ${}^{+}$ 382.1108, found 382.1153.

1-(2,6-Dimethyl-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarb

oxylic acid dimethyl ester (4q): Obtained as a yellow viscous oil (265.1 mg, 73% yield); 1 H NMR (400 MHz, CDCl₃) δ ppm: 7.46 (d, J = 7.6 Hz, 2H), 7.36 - 7.39 (m, 2H), 7.23 - 7.31 (m, 2H), 7.14 (d, J = 7.6 Hz, 2H), 6.85 (s, 1H), 3.86 (s, 3H), 3.67 (s, 3H), 2.05 (s, 6H); 13 C NMR (100 MHz, CDCl₃) δ ppm: 166.7, 160.4, 138.3, 135.6, 133.3, 128.8, 128.7, 128.0, 127.5, 127.1, 125.2, 124.7, 122.6, 121.3, 52.4, 51.9, 17.5; HRMS (ESI-TOF) m/z calcd for C₂₂H₂₂NO₄ [M + H] ${}^{+}$ 364.1543, found 364.1547.

1-(2,4-Dimethyl-phenyl)-4-phenyl-1H-pyrrole-2,3-dicarb

oxylic acid dimethyl ester (4r): Obtained as a yellow viscous oil (297.7 mg, 82% yield); 1 H NMR (400 MHz, CDCl₃) δ ppm: 7.44 - 7.46 (t, 2H), 7.36 - 7.39 (m, 2H), 7.27 - 7.33 (m, 1H), 7.01 - 7.12 (m, 3H), 6.91 (s, 1H), 3.87 (s, 3H), 3.69 (s, 3H), 2.38 (s, 3H), 2.07 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ ppm: 167.1, 160.0, 138.9, 136.4, 135.0, 133.3, 131.2, 128.7, 127.5, 127.1, 127.0, 125.9, 124.5, 123.0.6, 121.4, 52.5, 51.8, 21.2, 17.3; HRMS (ESI-TOF) m/z calcd for C₂₂H₂₂NO₄ [M + H] ${}^{+}$ 364.1543, found 364.1589.

1-(3-Chloro-4-methoxy-phenyl)-4-phenyl-1H-pyrrole-2,3-

dicarboxylic acid dimethyl ester (4s): Obtained as a yellow viscous oil (327.2 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.34 - 7.43 (m, 5H), 7.29 (d, J = 7.2 Hz, 1H), 7.23 (d, J = 8.8 Hz, 1H), 6.96 (s, 1H), 3.93 (s, 3H), 3.84 (s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.7, 160.2, 132.9, 132.5, 128.6, 128.5, 128.2, 127.7, 127.6, 127.2, 126.2, 125.8, 124.8, 122.4, 122.0, 111.5, 56.3, 52.4, 52.0; **HRMS**

(ESI-TOF) m/z calcd for $C_{21}H_{19}CINO_5 [M + H]^+ 400.0946$, found 400.0962.

l 1-Furan-2-ylmethyl-4-phenyl-1H-pyrrole-2,3-dicarboxyli

c acid dimethyl ester (4t): Obtained as a yellow viscous oil (294.9 mg, 87% yield); **¹H NMR** (400 MHz, CDCl₃) δ ppm: 7.31 - 7.38 (m, 5H), 7.23 - 7.27 (m, 1H), 6.99 (s, 1H), 6.37 (d, J = 3.2 Hz), 6.31 (q, 1H), 5.50 (s, 2H), 3.84 (s, 3H), 3.81 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ ppm: 167.3, 160.7, 149.7, 142.9, 132.3, 128.6, 127.3, 127.0, 125.5, 123.9 122.4, 120.5, 110.6, 109.4, 52.4, 51.9, 45.0; **HRMS** (**ESI-TOF**) m/z calcd for C₁₉H₁₈NO₅ [M + H] ⁺ 340.1180, found 340.1183.

4-Phenyl-1-(1-phenyl-ethyl)-1H-pyrrole-2,3-dicarboxylic

acid dimethyl ester (4u): Obtained as a pale yellow viscous oil (304.9 mg, 84% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.31 - 7.38 (m, 6H), 7.21 - 7.28 (m, 4H), 7.02 (s, 1H), 6.48 (q, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 1.83 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 167.4, 160.9, 141.7, 133.6, 128.8, 128.6, 127.8, 127.5, 127.0, 126.5, 124.1, 122.4, 122.0, 121.5, 56.0, 52.4, 51.9, 22.0; HRMS (ESI-TOF) m/z calcd for C₂₂H₂₂NO₄ [M + H] ⁺ 364.1543, found 364.1552.

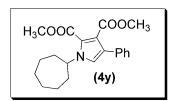
1-Cyclopropyl-4-phenyl-1H-pyrrole-2,3-dicarboxylic

acid dimethyl ester (4v): Obtained as a orange viscous oil (203.3 mg, 68% yield); 1 **H NMR** (400 MHz, CDCl₃) δ ppm: 7.31 - 7.37 (m, 4H), 7.24 - 7.27 (m, 1H), 6.93 (s, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.68 - 3.74 (m, IH), 1.04 - 1.09 (m, IH), 0.96 - 1.02

(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.9, 160.6, 133.5, 128.5, 127.5, 126.9, 124.1, 123.5, 123.3, 121.6, 52.3, 51.8, 31.5, 7.5; **HRMS (ESI-TOF)** m/z calcd for C₁₇H₁₈NO₄ [M + H]⁺ 300.1230, found 300.1236.

1-Cyclopentyl-4-phenyl-1H-pyrrole-2,3-dicarboxylic

acid dimethyl ester (4w): Obtained as a orange viscous oil (271.4 mg, 83% yield); **1H NMR** (400 MHz, CDCl₃) δ ppm: 7.32 - 7.40 (m, 4H), 7.23 - 7.27 (m, 1H), 7.04 (s, 1H), 5.36 - 5.41 (m, *I*H), 3.83 (s, 3H), 3.80 (s, 3H), 2.18 - 2.22 (m, *2*H), 1.72 - 1.84 (m, *6*H); **13C NMR** (100 MHz, CDCl₃) δ ppm: 167.3, 161.0, 133.7, 128.5, 127.5, 126.8, 123.9, 121.9, 121.4, 121.3, 58.8, 52.2, 51.8, 33.8, 24.0; **HRMS** (**ESI-TOF**) m/z calcd for C₁₉H₂₂NO₄ [M + H] + 328.1543, found 328.1528.


H₃COOC COOCH₃

N Ph

(4x)

1-Cyclohexyl-4-phenyl-1H-pyrrole-2,3-dicarboxylic acid

dimethyl ester (4x): Obtained as a orange viscous oil (296.7 mg, 87% yield); 1 H **NMR** (400 MHz, CDCl₃) δ ppm: 7.32 - 7.40 (m, 4H), 7.24 - 7.27 (m, 1H), 7.08 (s, 1H), 4.87 - 4.92 (m, IH), 3.84 (s, 3H), 3.81 (s, 3H), 2.14 (d, J = 11.2 Hz, 2H), 1.90 (d, J = 12.8 Hz, 2H), 1.43 - 1.64 (m, IH), 1.17 - 1.26 (m, IH); IH (100 MHz, CDCl₃) δ ppm: 167.5, 160.9, 133.7, 128.6, 127.4, 126.8, 123.8, 121.40, 121.38, 120.9, 57.0, 52.3, 51.8, 34.7, 25.8, 25.5; **HRMS (ESI-TOF)** m/z calcd for C₂₀H₂₄NO₄ [M + H] + 342.1700, found 342.1700.

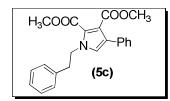
1-Cycloheptyl-4-phenyl-1H-pyrrole-2,3-dicarboxylic

acid dimethyl ester (4y): Obtained as a orange viscous oil (269.8 mg, 76% yield); ¹H

NMR (400 MHz, DMSO-d₆) δ ppm: 7.60 (s, 1H), 7.34 - 7.41 (m, 4H), 7.23 - 7.27 (m, 1H), 4.87 - 4.92 (m, *I*H), 3.77 (s, 3H), 3.75 (s, 3H), 1.90 - 2.02 (m, 4H), 1.73 - 1.78 (m, 2H), 1.45 - 1.66 (m, 6H); ¹³C **NMR** (100 MHz, DMSO-d₆) δ ppm: 167.2, 160.8, 133.8, 129.0, 127.2, 127.0, 123.3, 123.0, 120.9, 120.7, 59.1, 52.5, 52.3, 36.2, 27.3, 24.6; **HRMS** (**ESI-TOF**) m/z calcd for C₂₁H₂₆NO₄ [M + H] ⁺ 356.1856, found 356.1834.

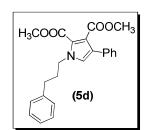
H₃COOC COOCH₃
N Ph
(4z)

1-Cyclooctyl-4-phenyl-1H-pyrrole-2,3-dicarboxylic acid dimethyl ester (4z): Obtained as a orange viscous oil (262.0 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.32 - 7.40 (m, 4H), 7.24 - 7.27 (m, 1H), 7.05 (s, 1H), 5.26 - 5.33 (m, *I*H), 3.84 (s, 3H), 3.81 (s, 3H), 1.91 - 2.07 (m, *4*H), 1.52 - 1.79 (m, *10*H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 167.6, 161.0, 133.8, 128.6, 127.4, 126.8, 124.0, 123.4, 122.0, 121.1, 120.6, 57.3, 52.3, 51.2, 34.8, 26.6, 26.2, 24.6; HRMS (ESI-TOF) m/z calcd for C₂₂H₂₈NO₄ [M + H] ⁺ 370.2013, found 370.2012.


H₃COOC COOCH₃

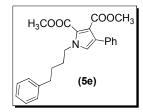
1-Hexyl-4-phenyl-1H-pyrrole-2,3-dicarboxylic acid

dimethyl ester (5a): Obtained as a yellow viscous oil (266.5 mg, 81% yield); 1 H NMR (400 MHz, CDCl₃) δ ppm: 7.32 - 7.39 (m, 4H), 7.25 - 7.27 (t, 1H), 6.91 (s, 1H), 4.25 - 4.29 (t, 2H), 3.83 (s, 3H), 3.81 (s, 3H), 1.76 - 1.80 (m, 2H), 1.24 - 1.36 (m, 6H), 0.87 - 0.90 (t, 3H); 13 C NMR (100 MHz, CDCl₃) δ ppm: 167.4, 160.7, 133.5, 128.6, 127.3, 126.8, 125.5, 123.5, 122.0, 120.6, 52.3, 51.7, 49.7, 31.5, 31.4, 26.3, 22.5, 14.0; HRMS (ESI-TOF) m/z calcd for $C_{20}H_{26}NO_4$ [M + H] ${}^{+}$ 344.1856, found 344.1858.


1-Benzyl-4-phenyl-1H-pyrrole-2,3-dicarboxylic acid

dimethyl ester (5b): Obtained as a colorless oil (307.1 mg, 88% yield); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.31 - 7.39 (m, 7H), 7.23 - 7.29 (m, 3H), 7.16 - 7.18 (m, 2H), 6.94 (s, 1H), 5.52 (s, 2H), 3.82 (s, 3H), 3.78 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm: 167.3, 160.7, 137.1, 133.3, 128.9, 128.7, 127.9, 127.4, 127.2, 127.0, 125.8, 124.0, 122.3, 121.2, 52.5, 51.9; **HRMS (ESI-TOF)** m/z calcd for C₂₁H₂₀NO₄ [M + H] ⁺ 350.1387, found 350.1396.

1-Phenethyl-4-phenyl-1H-pyrrole-2,3-dicarboxylic acid


dimethyl ester (5c): Obtained as a pale orange viscous oil (290.4 mg, 80% yield); ${}^{1}\mathbf{H}$ **NMR** (400 MHz, CDCl₃) δ ppm: 7.23 - 7.34 (m, 8H), 7.15 - 7.17 (m, 2H), 6.69 (s, 1H), 4.47 - 4.51 (t, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 3.05 - 3.09 (t, 2H); ${}^{13}\mathbf{C}$ **NMR** (100 MHz, CDCl₃) δ ppm: 167.4, 160.7, 137.9, 133.4, 128.9, 128.7, 128.6, 127.3, 126.9, 126.8, 125.8, 123.4, 122.4, 120.3, 52.4, 51.8, 51.3, 38.2; **HRMS** (**ESI-TOF**) m/z calcd for $\mathbf{C}_{22}\mathbf{H}_{22}\mathbf{NO}_{4}$ [M + H] ${}^{+}$ 364.1543, found 364.1545.

4-Phenyl-1-(3-phenyl-propyl)-1H-pyrrole-2,3-dicarboxylic

acid dimethyl ester (5d): Obtained as a pale orange viscous oil (309.1 mg, 82% yield); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.33 - 7.38 (m, 4H), 7.24 - 7.31 (m, 3H), 7.16 - 7.21 (m, 3H), 6.86 (s, 1H), 4.26 - 4.29 (t, 2H), 3.81 (s, 2H), 3.80 (s, 3H), 2.63 -

2.67 (t, 2H), 2.08 - 2.16 (q, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ ppm: 167.5, 160.6, 140.9, 133.5, 128.7, 128.6, 128.4, 127.3, 127.0, 126.2, 125.6, 123.6, 122.3, 120.7, 52.4, 51.8, 49.1, 32.80, 32.77; **HRMS (ESI-TOF)** m/z calcd for C₂₃H₂₄NO₄ [M + H]⁺ 378.1700, found 378.1714.

4-Phenyl-1-(4-phenyl-butyl)-1H-pyrrole-2,3-dicarboxylic

acid dimethyl ester (5e): Obtained as a yellow viscous oil (316.7 mg, 81% yield); ${}^{1}\mathbf{H}$ **NMR** (400 MHz, CDCl₃) δ ppm: 7.32 - 7.38 (m, 4H), 7.24 - 7.29 (m, 3H), 7.15 - 7.20 (m, 3H), 6.88 (s, 1H), 4.27 - 4.31 (t, 2H), 3.82 (s, 6H), 2.62 - 2.65 (t, 2H), 1.79 - 1.87 (m, 2H), 1.62 - 1.69 (m, 2H); ${}^{13}\mathbf{C}$ **NMR** (100 MHz, CDCl₃) δ ppm: 167.5, 160.6, 141.9, 133.5, 128.7, 128.5, 128.4, 127.3, 126.9, 126.0, 125.6, 123.5, 122.1, 120.6, 52.4, 51.8, 49.5, 35.5, 31.1, 28.5; **HRMS (ESI-TOF)** m/z calcd for $\mathbf{C}_{24}\mathbf{H}_{26}\mathbf{NO}_{4}$ [M + H] ${}^{+}$ 392.1856, found 392.1914.

COOCH₃
(6a)

2-Methyl-1,4-diphenyl-1H-pyrrole-3-carboxylic acid methyl ester (6a): Obtained as a yellow viscous oil (224.1 mg, 77% yield); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.47 - 7.51 (m, 2H), 7.39 - 7.43 (m, 3H), 7.32 - 7.37 (m, 4H), 7.25 - 7.29 (m, 1H), 6.72 (s, 1H), 3.70 (s, 3H), 2.46 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm: 166.3, 139.0, 136.8, 135.5, 129.4, 129.2, 128.7, 128.2, 127.7, 126.8, 126.6, 126.4, 121.0, 50.7, 12.8; **HRMS (ESI-TOF)** m/z calcd for C₁₉H₁₈NO₂ [M + H] ⁺ 292.1332, found 292.1367.

COOEt N (6b)

2-Methyl-1,4-diphenyl-1H-pyrrole-3-carboxylic acid ethyl ester (6b): Obtained as a yellow viscous oil (219.6 mg, 72% yield); ¹**H NMR** (400 MHz, CDCl₃) δ ppm: 7.47 - 7.51 (m, 2H), 7.42 - 7.44 (m, 3H), 7.32 - 7.38 (m, 4H), 7.25 - 7.29 (m, 1H), 6.72 (s, 1H), 4.16 - 4.21 (m, 2H), 2.46 (s, 3H), 1.13 - 1.16 (t, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ ppm: 165.9, 139.0, 136.6, 135.6, 129.4, 129.3, 129.1, 128.1, 127.6, 126.4, 126.3, 120.9, 111.8, 59.5, 14.1, 12.7; **HRMS (ESI-TOF)** m/z calcd for C₂₀H₂₀NO₂ [M + H] + 306.1489, found 306.1530.

n-C₆H₁₃ COOCH₃

2-Hexyl-1,4-diphenyl-1H-pyrrole-3-carboxylic acid methyl

ester (6c): Obtained as a yellow viscous oil (227.4 mg, 63% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.40 - 7.48 (m, 5H), 7.30 - 7.35 (m, 4H), 7.23 - 7.26 (m, 1H), 6.65 (s, 1H), 3.68 (s, 3H), 2.81 - 2.85 (t, 2H), 1.45 - 1.50 (m, 2H), 1.17 - 1.22 (m, 6H), 0.79 - 0.83 (t, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.2, 142.0, 139.1, 135.7, 129.3, 129.1, 128.4, 127.7, 126.9, 126.5, 126.3, 122.4, 110.6, 50.7, 31.3, 30.1, 29.2, 25.8, 22.6, 14.1; HRMS (ESI-TOF) m/z calcd for C₂₄H₂₈NO₂ [M + H] ⁺ 362.2115, found 362.2113.

EtOOC COOEt

(6d)

1,4-Diphenyl-1H-pyrrole-2,3-dicarboxylic acid diethyl ester

(6d): Obtained as a yellow viscous oil (323.1 mg, 89% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.43 - 7.47 (m, 4H), 7.34 - 7.38 (m, 4H), 7.25 - 7.30 (m, 2H), 6.99 (s, 1H), 4.29 - 4.35 (m, 2H), 4.13 - 4.19 (m, 2H), 1.27 - 1.30 (t, 3H), 1.13 - 1.67 (t, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.3, 159.9, 139.6, 133.3, 128.9, 128.52,

128.48, 127.8, 127.1, 126.3, 1253.7, 124.8, 122.7, 120.1, 61.4, 60.8, 14.1, 13.9; **HRMS (ESI-TOF)** m/z calcd for $C_{22}H_{22}NO_4$ [M + H]⁺ 364.1543, found 364.1517.

Ph COOCH₃

1,2,4-Triphenyl-1H-pyrrole-3-carboxylic acid methyl ester

(6e): Obtained as a pale orange solid (335.4 mg, 95% yield), mp 98 - 100 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.50 (d, J = 7.2Hz, 2H), 7.35 - 7.41 (m, 3H), 7.22 - 7.32 (m, 9H), 7.09 (d, J = 6.8Hz, 1H), 6.96 (s, 1H), 3.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 165.3, 138.6, 137.2, 134.4, 130.7, 130.4, 128.4, 128.2, 127.4, 127.3, 127.0, 126.7, 126.2, 126.0, 125.4, 121.5, 112.8, 50.3; HRMS (ESI-TOF) m/z calcd for C₂₄H₂₀NO₂ [M + H] + 354.1489, found 354.1488.

COOCH₃

1,4-Diphenyl-1H-pyrrole-3-carboxylic acid methyl ester (6f):

Obtained as a yellow viscous oil (188.4 mg, 68% yield); ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.77 (d, J = 2.8Hz, 1H), 7.54 (d, J = 7.6Hz, 2H), 7.43 - 7.49 (m, 4H), 7.28 - 7.40 (m, 4H), 7.07 (d, J = 6.4Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 164.9, 139.6, 134.3, 129.9, 129.3, 128.5, 127.9, 120, 126.9, 126.1, 120.8, 119.8, 115.1, 51.1; HRMS (ESI-TOF) m/z calcd for $C_{18}H_{16}NO_2$ [M + H] ⁺ 278.1176, found 278.1177.

H₃COOC COOCH₃
(7a)

1-Phenyl-4-p-tolyl-1H-pyrrole-2,3-dicarboxylic acid

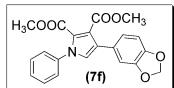
dimethyl ester (7a): Obtained as a yellow viscous oil (321.1 mg, 92% yield); ¹H

NMR (400 MHz, CDCl₃) δ ppm: 7.43 - 7.47 (m, 4H), 7.33 - 7.36 (m, 4H), 7.17 - 7.19 (m, 2H), 6.99 (s, 1H), 3.85 (s, 3H), 3.71 (s, 3H), 2.36 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ ppm: 166.8, 160.4, 139.5, 136.9, 130.2, 129.4, 128.5, 127.6, 126.2, 125.8, 124.9, 122.9, 121.8, 52.4, 51.9, 21.2; **HRMS** (**ESI-TOF**) m/z calcd for C₂₁H₂₀NO₄ [M + H]⁺ 350.1387, found 350.1385.

4-(4-Fluoro-phenyl)-1-phenyl-1H-pyrrole-2,3-dicarbox

ylic acid dimethyl ester (7b): Obtained as a yellow solid (268.3 mg, 76% yield), mp 74 - 76 °C; ¹H NMR (400 MHz, dmso-d₆) δ ppm: 7.57 (s, 1H), 7.46 - 7.52 (m, 6H), 7.34 - 7.37 (m, 1H), 7.21 - 7.26 (m, 3H), 3.77 (s, 3H), 3.65 (s, 3H); ¹³C NMR (100 MHz, dmso-d₆) δ ppm: 166.1, 160.4, 139.2, 132.8, 129.8, 129.5, 129.2, 128.8, 128.7, 126.9, 126.1, 123.0, 121.0, 52.7, 52.5; HRMS (ESI-TOF) m/z calcd for $C_{20}H_{17}FNO_4$ [M + H] ⁺ 354.1136, found 354.1144.

4-(4-Nitro-phenyl)-1-phenyl-1H-pyrrole-2,3-dicarboxy


lic acid dimethyl ester (7c): Obtained as a yellow solid (243.2 mg, 64% yield), mp 82 - 84 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.66 (d, J = 8.0Hz, 2H), 7.66 (d, J = 8.4Hz, 2H), 7.47 - 7.50 (m, 3H), 7.34 - 7.36 (m, 3H), 7.07 (s, 1H), 3.86 (s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 166.0, 160.4, 139.0, 138.0, 132.4, 129.1, 128.9, 128.3, 126.0, 125.9, 123.2, 120.8, 118.9, 110.6, 52.5, 52.2; HRMS (ESI-TOF) m/z calcd for C₂₀H₁₇N₂O₆ [M + H] + 381.1081, found 381.1085.

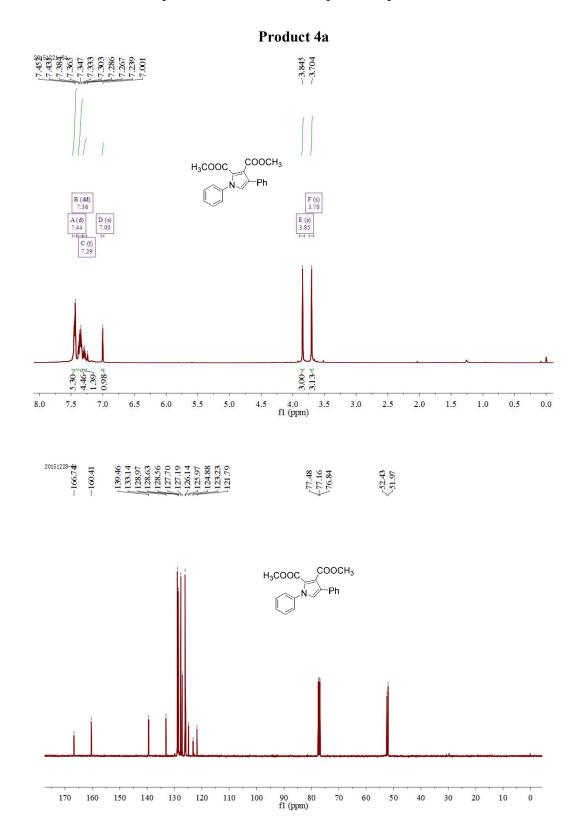
4-(3-Chloro-phenyl)-1-phenyl-1H-pyrrole-2,3-dicarboxy

lic acid dimethyl ester: Obtained as a yellow viscous oil (273.1 mg, 74% yield); 1 **H NMR** (400 MHz, CDCl₃) δ ppm: 7.42 - 7.45 (m, 4H), 7.36 - 7.41 (m, 2H), 7.27 - 7.32 (m, 3H), 6.98 (s, 1H), 3.86 (s, 3H), 3.73 (s, 3H); 13 **C NMR** (100 MHz, CDCl₃) δ ppm: 166.7, 160.2, 137.9, 134.5, 132.9, 129.2, 128.7, 127.60, 127.55, 127.3, 126.0, 124.4, 122.4, 110.0, 52.5, 52.0; **HRMS (ESI-TOF)** m/z calcd for C₂₀H₁₇ClNO₄ [M + H] ${}^{+}$ 370.0841, found 370.0838.

4-(3,4-Dichloro-phenyl)-1-phenyl-1H-pyrrole-2,3-dicar

boxylic acid dimethyl ester (7e): Obtained as a yellow viscous oil (274.1 mg, 68% yield); ${}^{1}\mathbf{H}$ NMR (400 MHz, CDCl₃) δ ppm: 7.54 (d, J = 2.0Hz, 2H), 7.45 - 7.49 (m, 3H), 7.43 (s, 1H), 7.33 - 7.36 (m, 2H), 7.29 - 7.31 (m, 1H), 7.00 (s, 1H), 3.86 (s, 3H), 3.72 (s, 3H); ${}^{13}\mathbf{C}$ NMR (100 MHz, CDCl₃) δ ppm: 166.0, 160.4, 139.1, 133.3, 132.5, 131.2, 130.4, 129.7, 129.1, 128.8, 127.2, 125.9, 125.7, 123.3, 122.8, 120.8, 52.5, 52.2; **HRMS (ESI-TOF)** m/z calcd for $C_{20}H_{16}Cl_{2}NO_{4}$ [M + H] ${}^{+}$ 404.0451, found 404.0497.

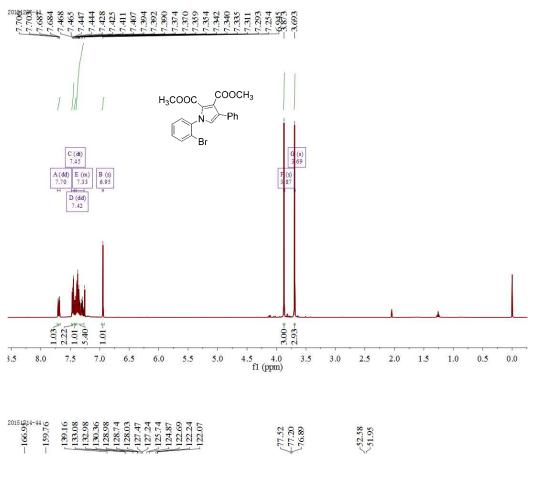
4-Benzo[1,3]dioxol-5-yl-1-phenyl-1H-pyrrole-2,3-dicar

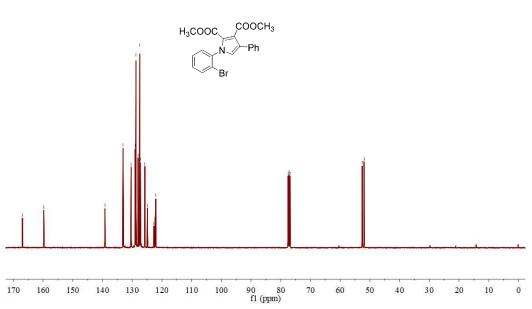

boxylic acid dimethyl ester (7f): Obtained as a yellow solid (337.3 mg, 89% yield), mp 58 - 60 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.43 - 7.49 (m, 3H), 7.38 - 7.40 (m, 2H), 7.24 - 7.28 (m, 4H), 7.03 - 7.08 (m, 1H), 6.96 (s, 1H), 3.76 (s, 3H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 164.2, 161.7, 139.0, 135.4, 129.3, 129.1, 128.6, 126.8, 126.1, 125.4, 125.10, 125.06, 119.6, 115.7, 114.0, 113.7, 52.4, 51.8;

HRMS (ESI-TOF) m/z calcd for $C_{21}H_{18}NO_6$ [M + H] $^+$ 380.1129, found 380.1131. 7.

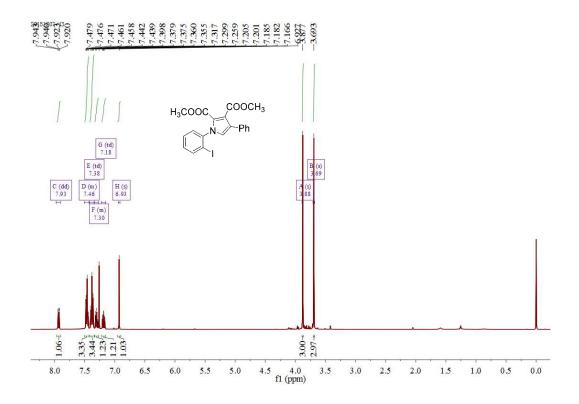

4-(2-Methoxy-phenyl)-1-phenyl-1H-pyrrole-2,3-dicar

boxylic acid dimethyl ester (7g): Obtained as a yellow viscous oil (295.7 mg, 81% yield); 1 H NMR (400 MHz, CDCl₃) δ ppm: 7.41 - 7.46 (m, 3H), 7.32 - 7.36 (m, 3H), 7.26 - 7.30 (m, 1H), 7.02 (s, 1H), 6.91 - 6.99 (m, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 3.70 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ ppm: 166.3, 160.7, 156.4, 139.7, 130.1, 128.9, 128.6, 128.3, 127.0, 126.0, 123.3, 122.6, 122.2, 121.3, 120.7, 110.7, 55.2, 51.93, 51.88; HRMS (ESI-TOF) m/z calcd for C₂₁H₂₀NO₅ [M + H] ${}^{+}$ 366.1336, found 366.1339.

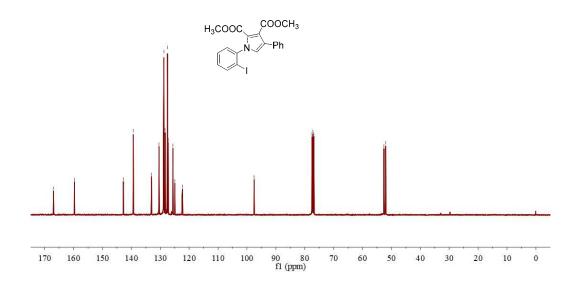

Copies of ¹H and ¹³C NMR spectra of products

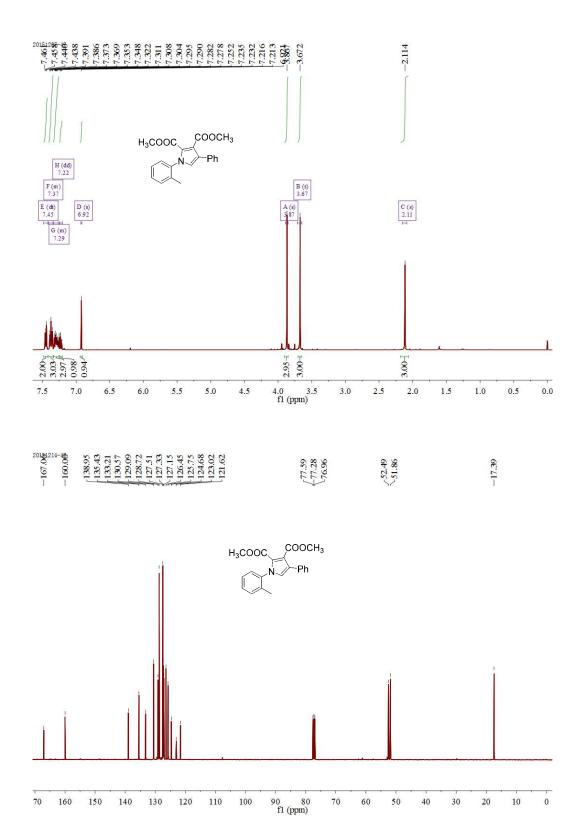


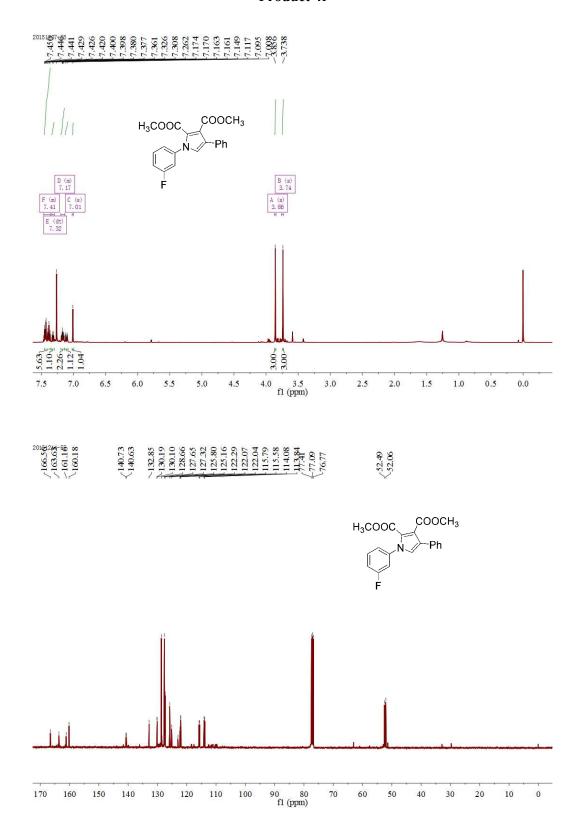
Product 4b

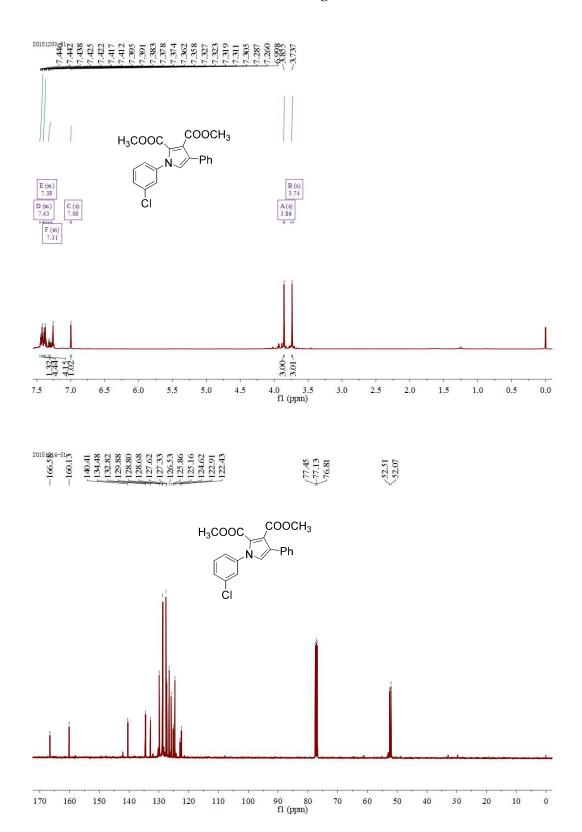


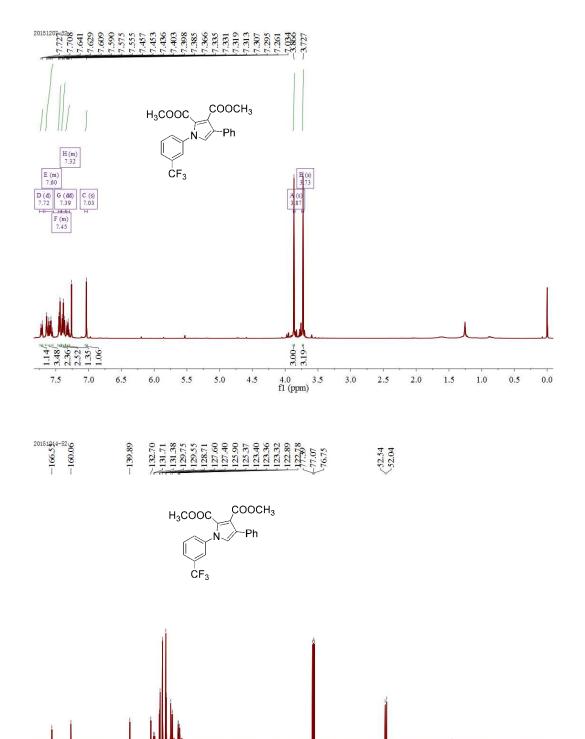
Product 4c



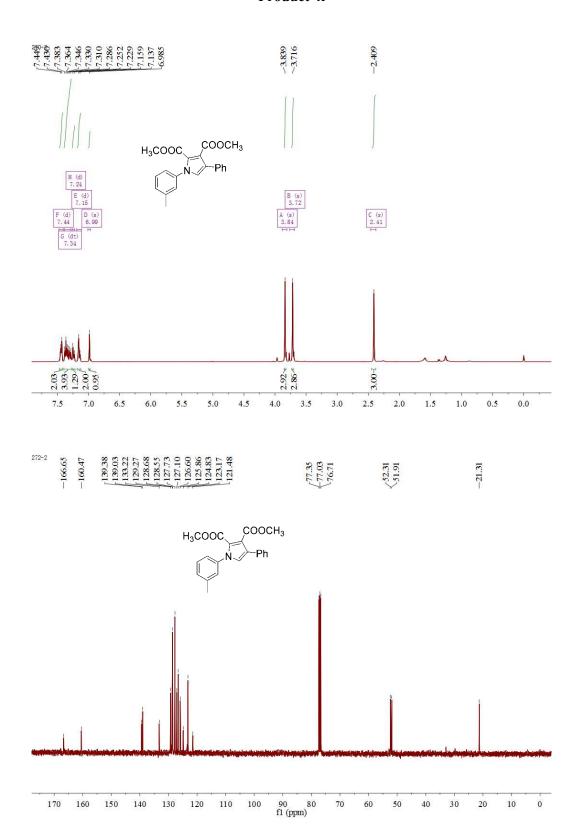

Product 4d



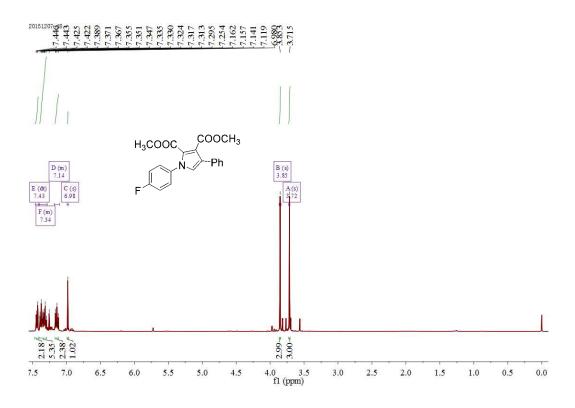

Product 4e


Product 4f

Product 4g

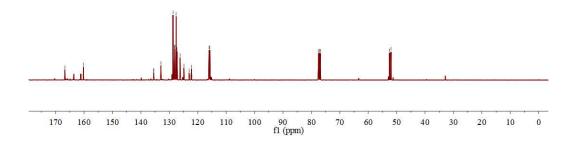


Product 4h

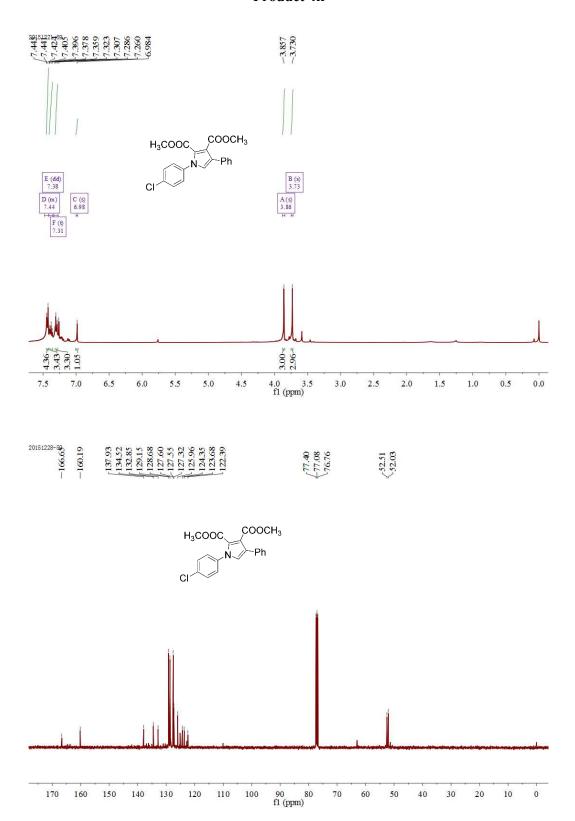


90 80 f1 (ppm)

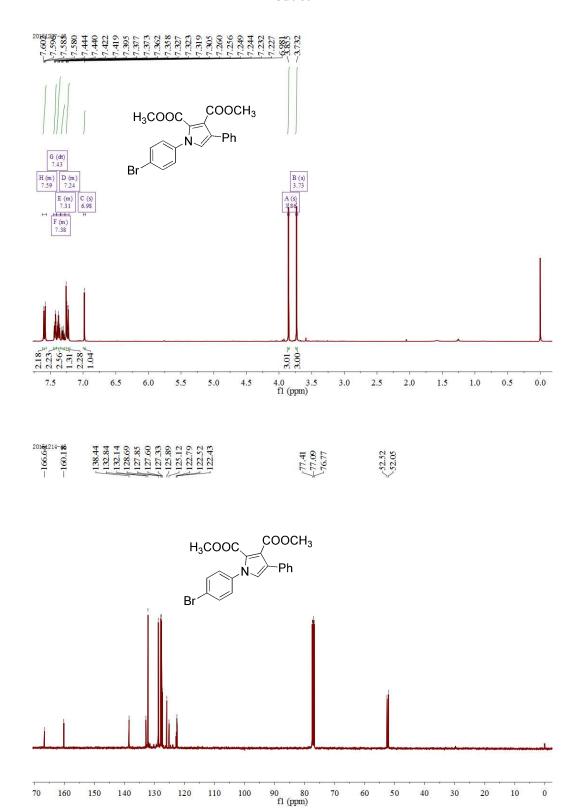
Product 4i

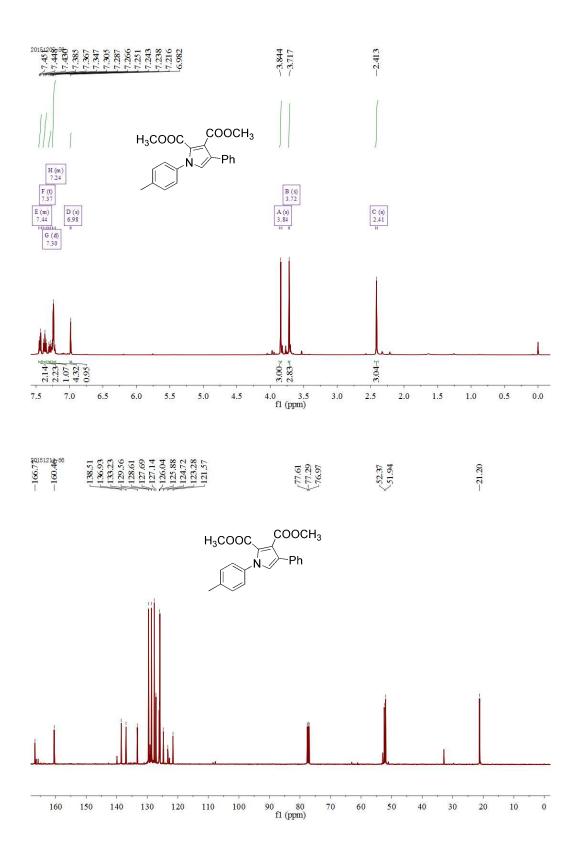


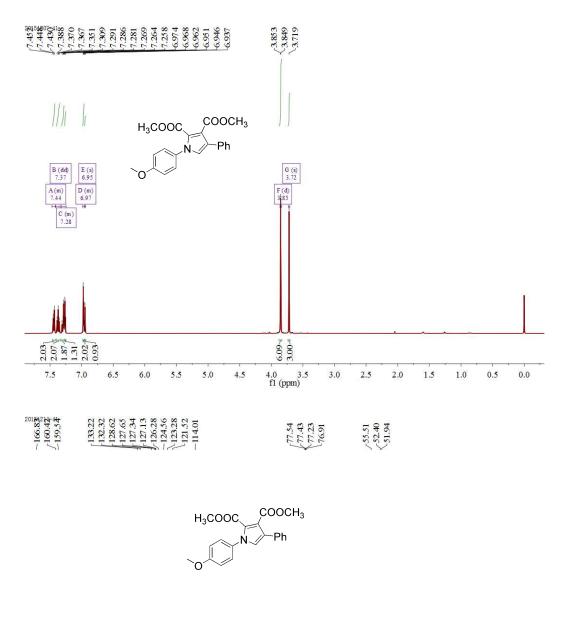
Product 4j

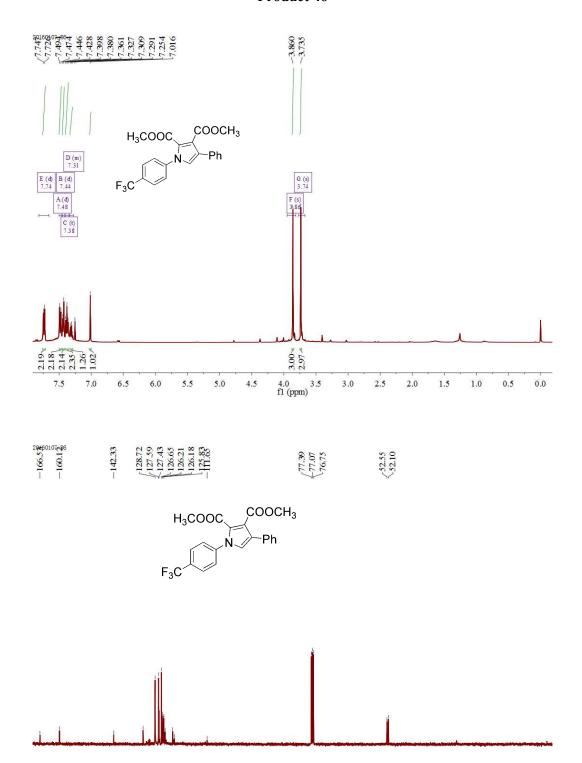


-166.74 ** -166.74 ** -166.74 ** -166.21 -160.21 -135.48 -133.45 -138.68 -128.68 -128.68 -127.59 -127.59 -123.00 -122.17 -123.00 -122.17 -115.98 -115.75 -115.98 -115.75 -115.

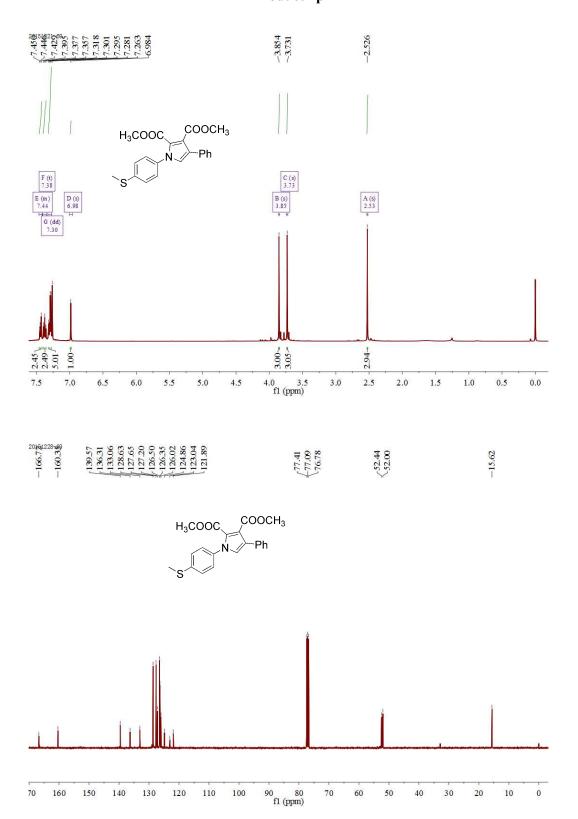

\$\int 77.18\$ \$76.86\$ \$2.49\$ \$1.97\$


Product 4k

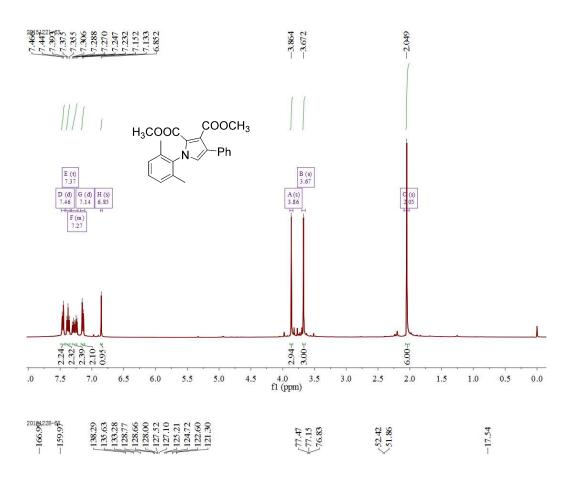

Product 41

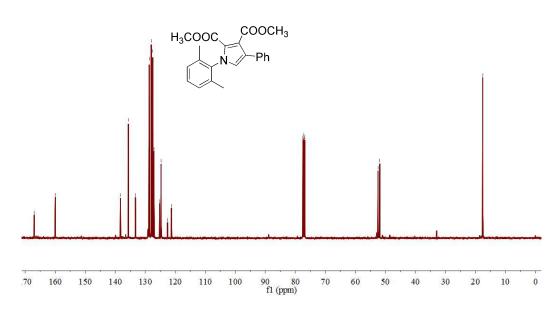

Product 4m

Product 4n

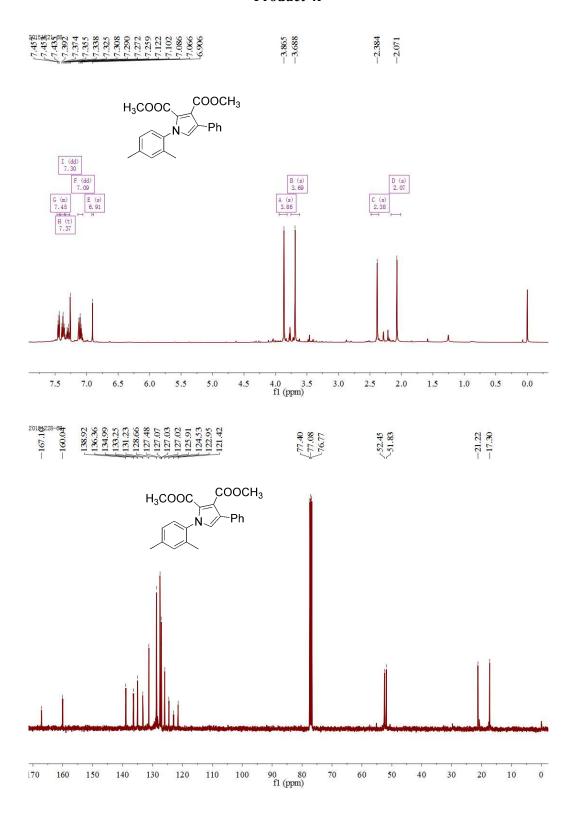


Product 4o

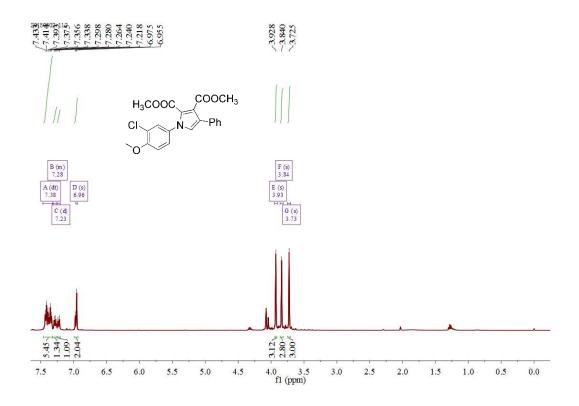


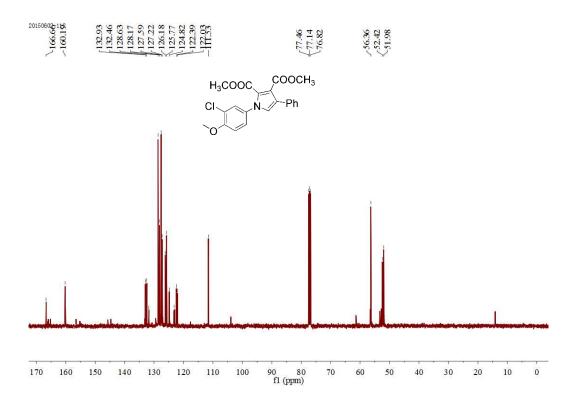

90 80 f1 (ppm)

Product 4p

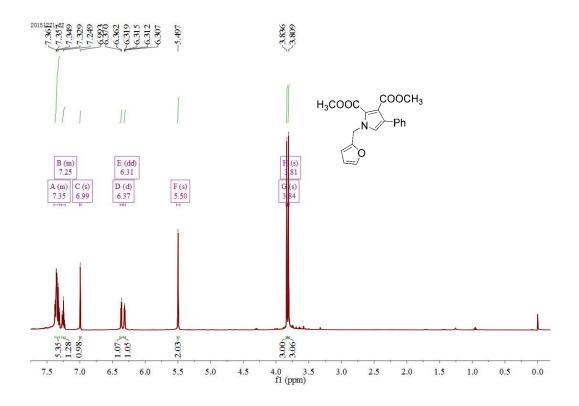


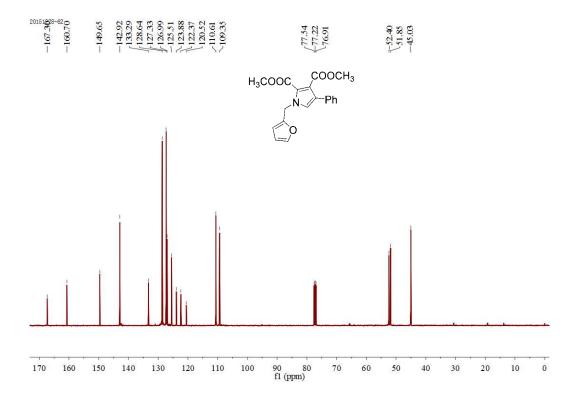
Product 4q

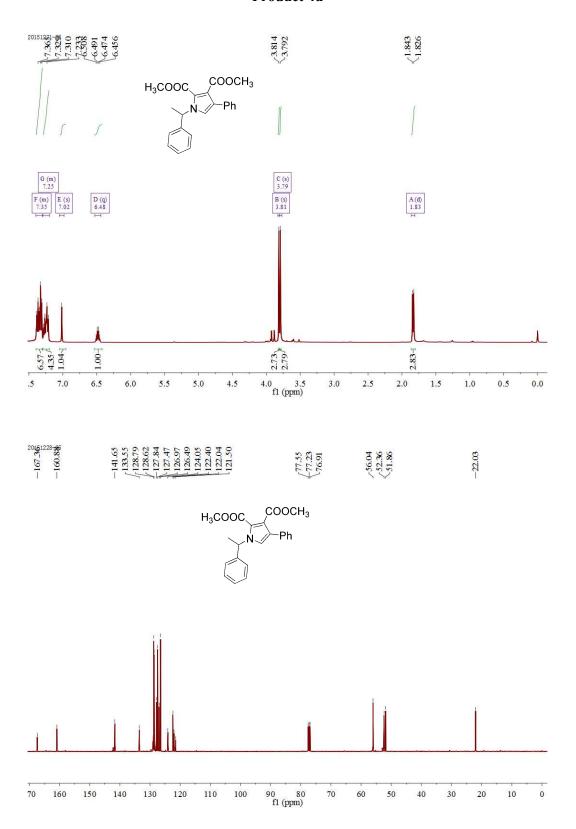




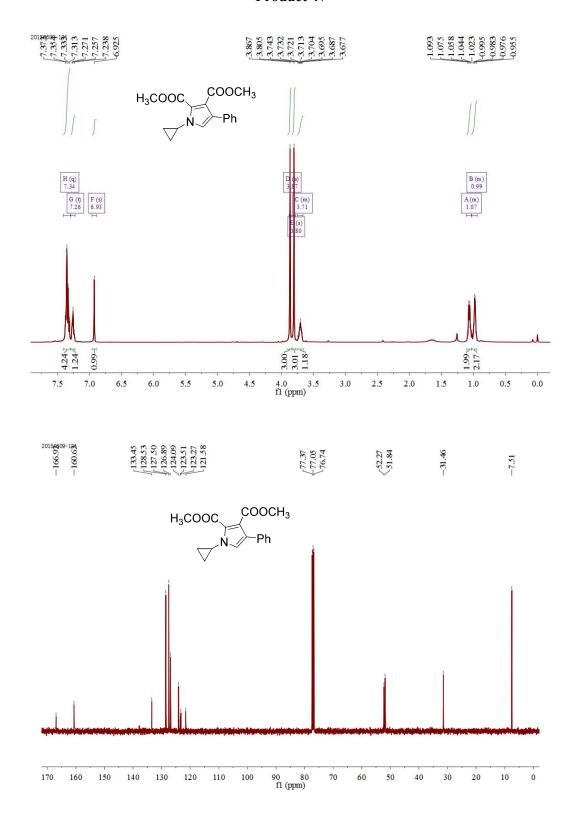
Product 4r

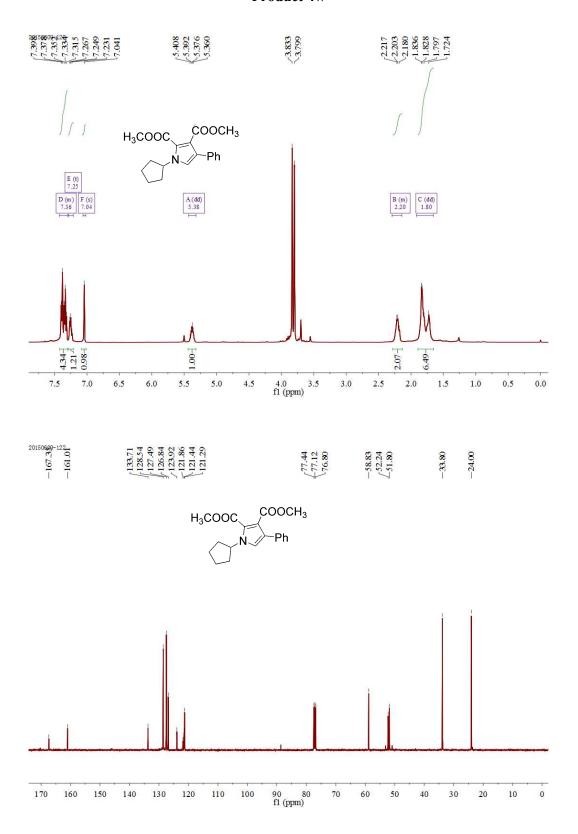


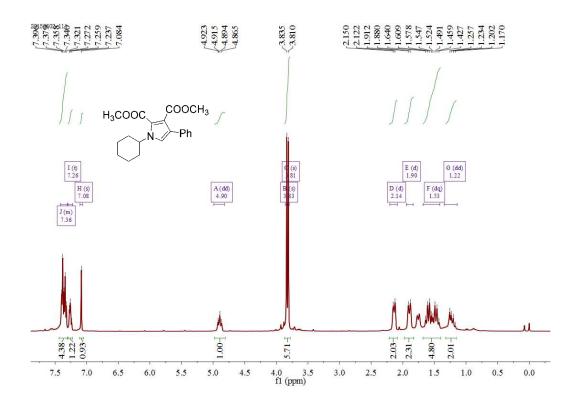

Product 4s

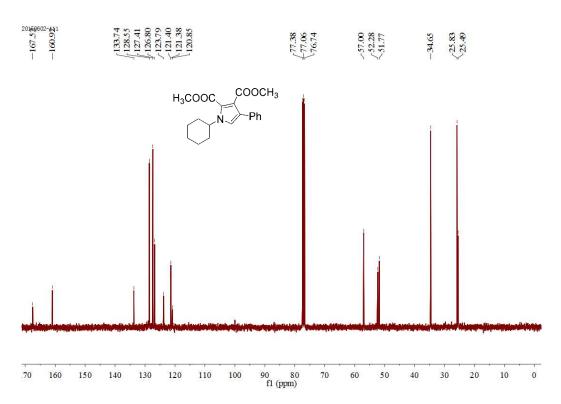


Product 4t

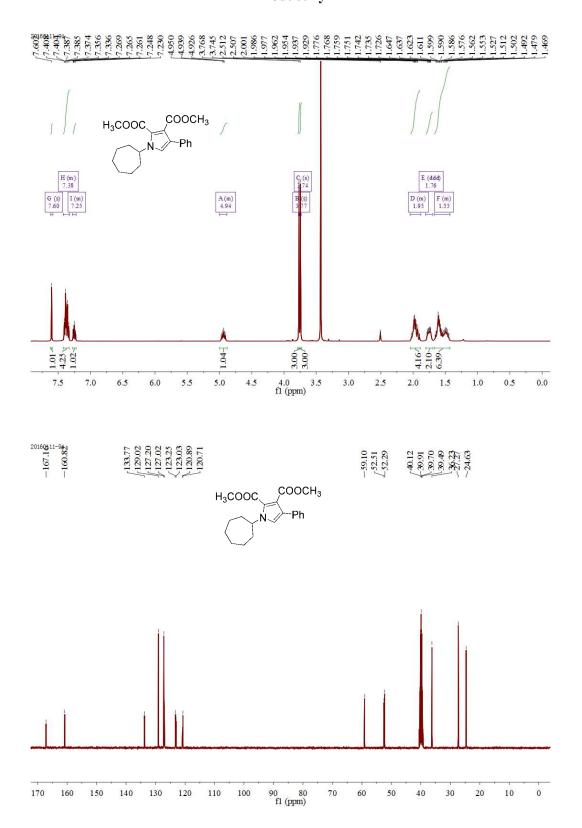



Product 4u

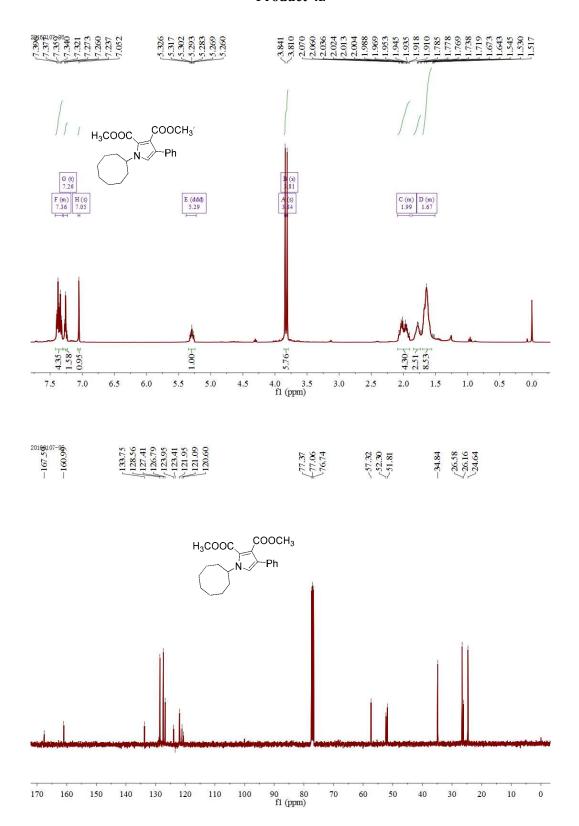

Product 4v

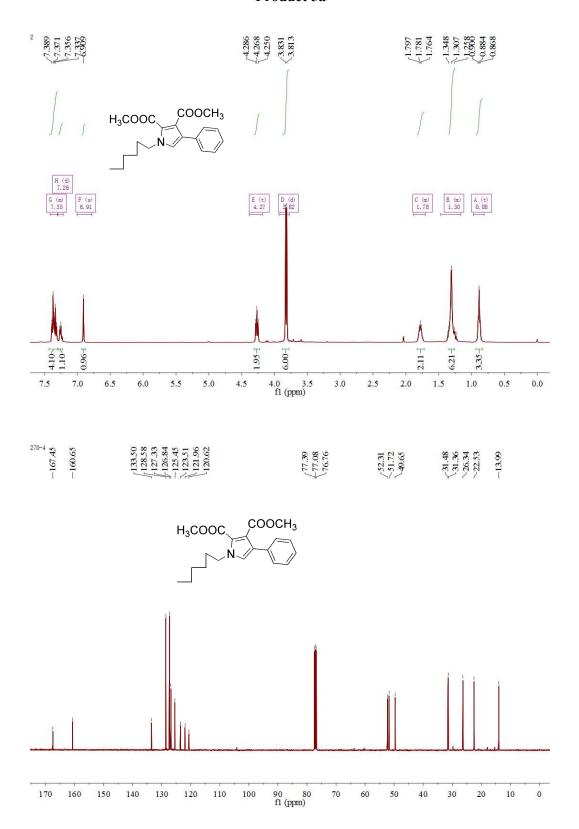


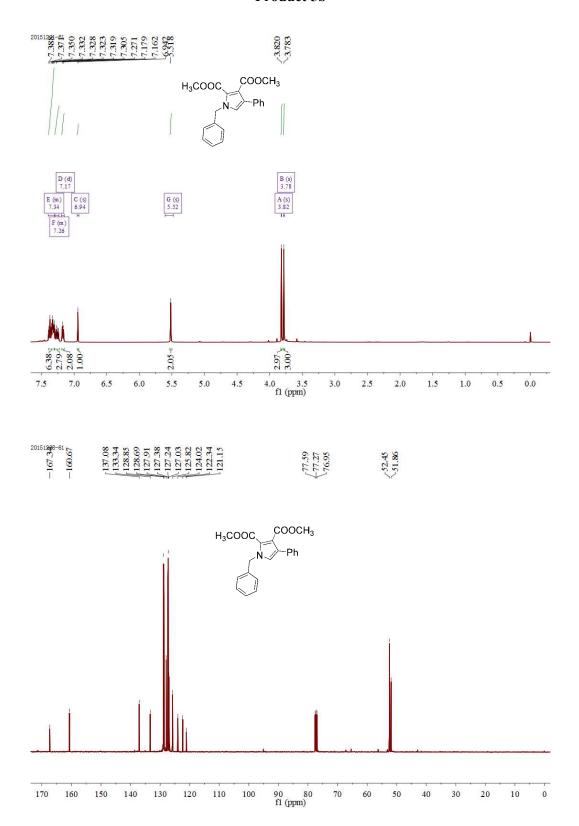
Product 4w

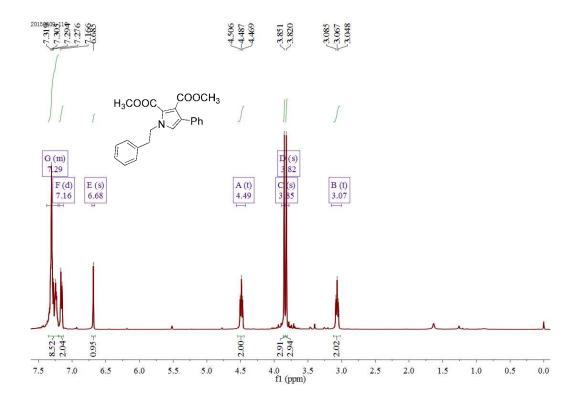


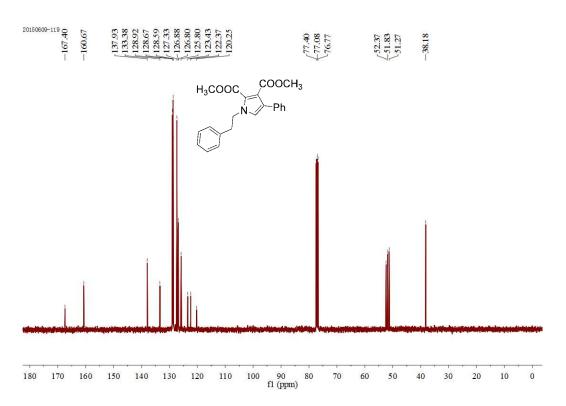
Product 4x



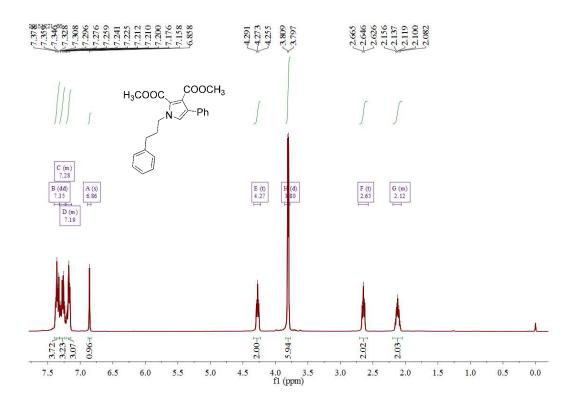

Product 4y

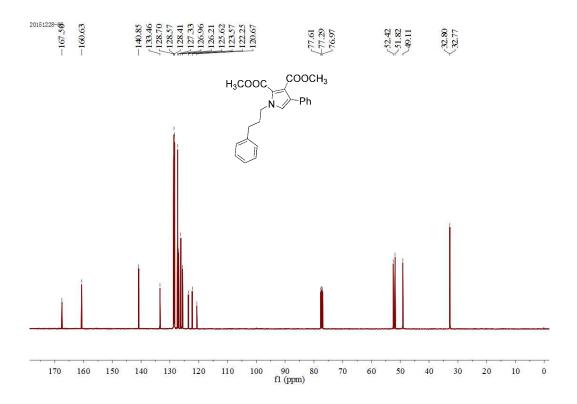

Product 4z

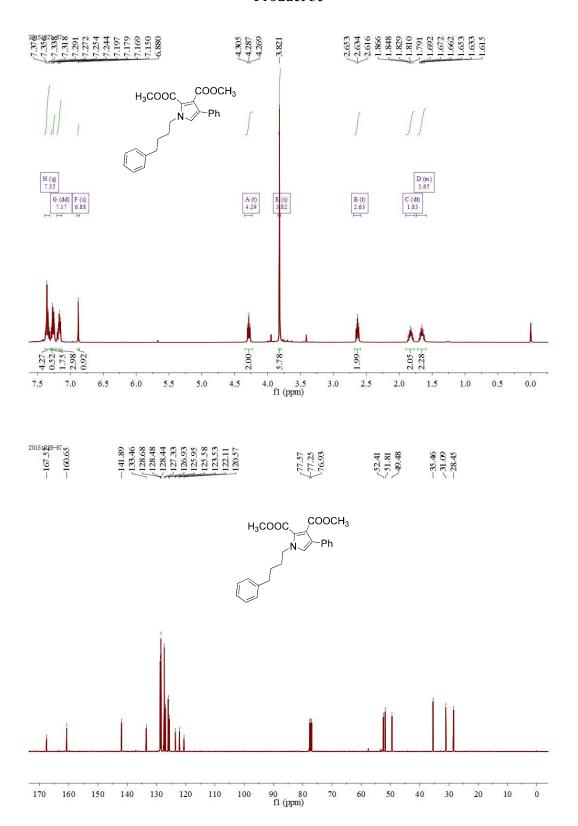

Product 5a



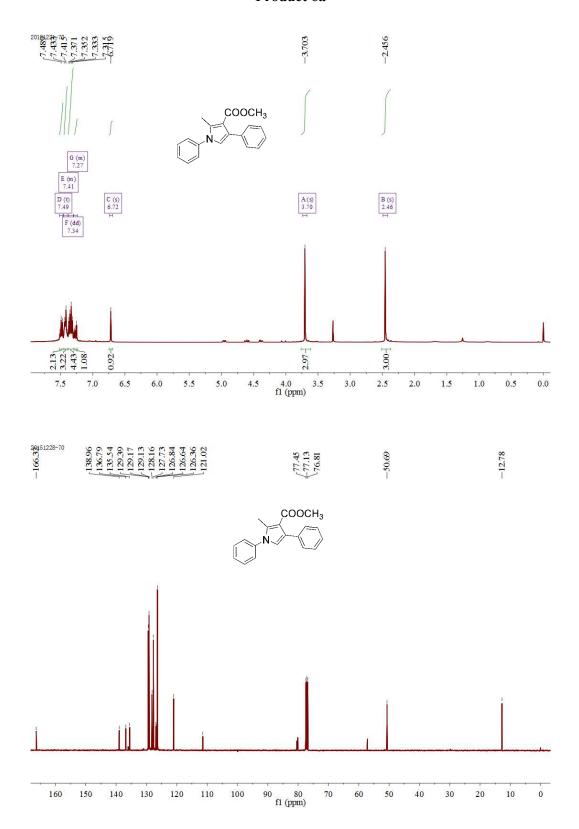
Product 5b

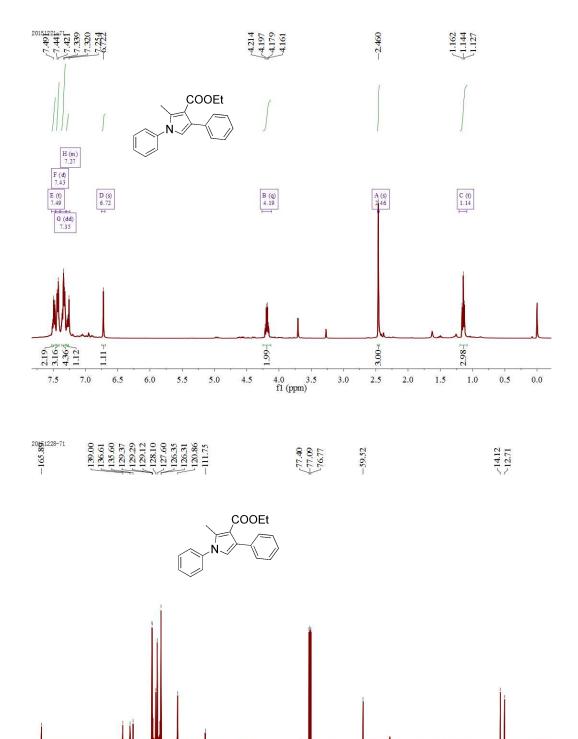



Product 5c

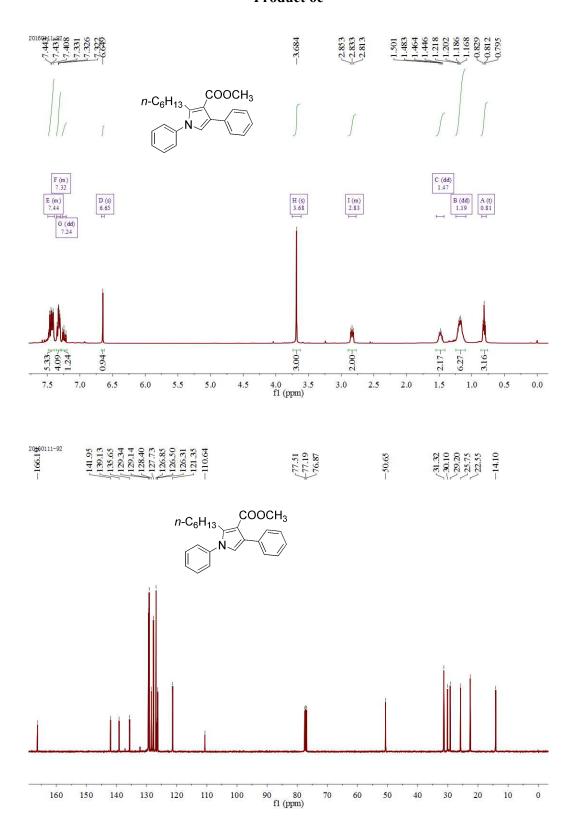


Product 5d

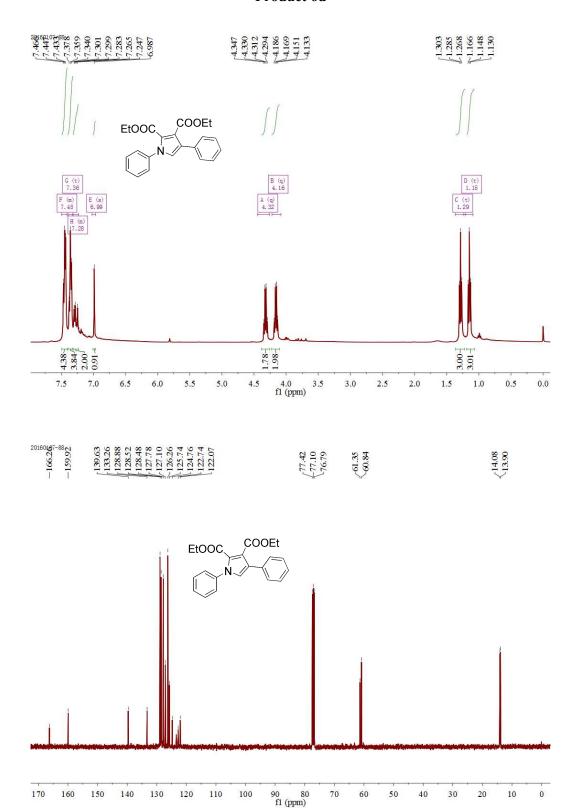



Product 5e

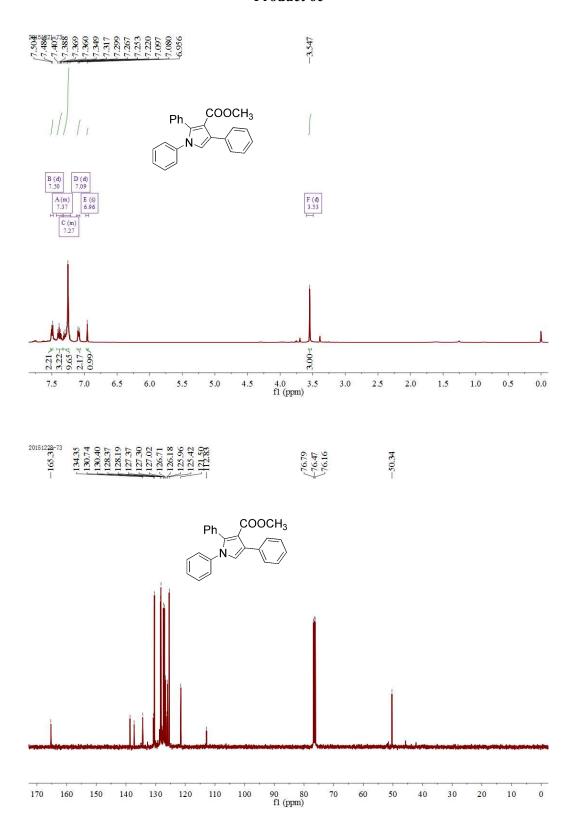
Product 6a

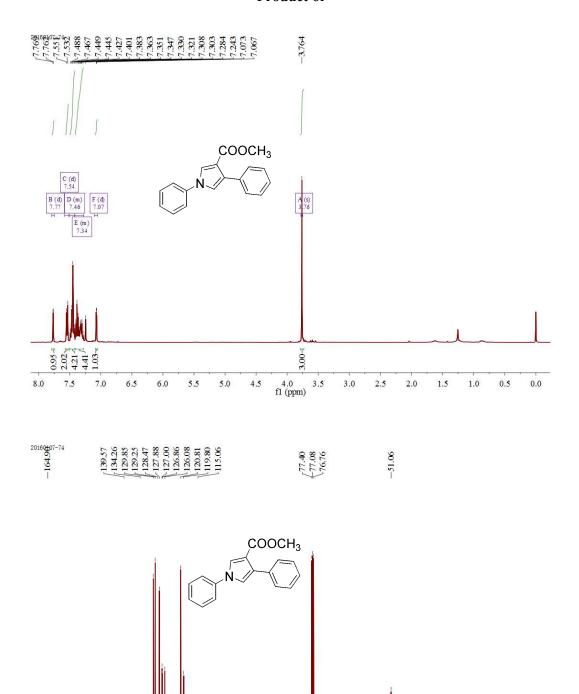


Product 6b

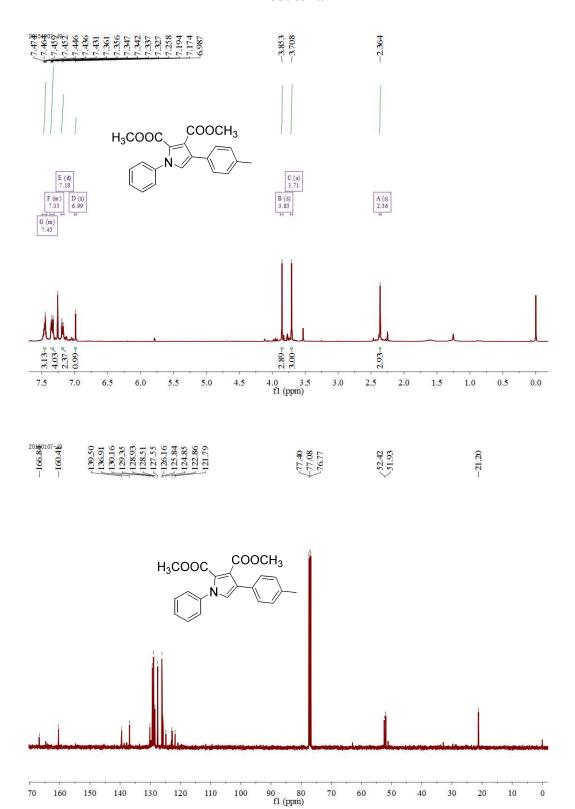


90 80 fl (ppm)

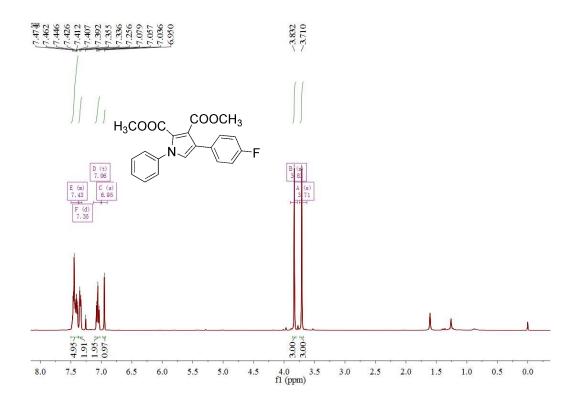

Product 6c

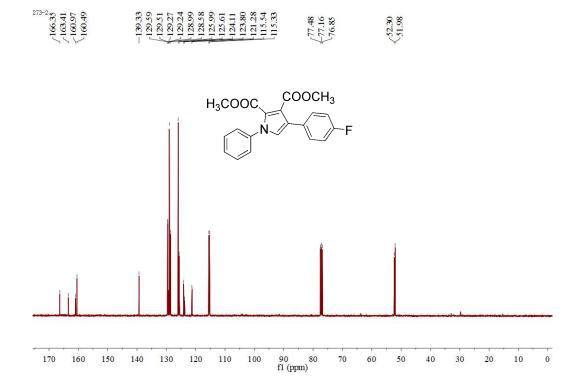

Product 6d

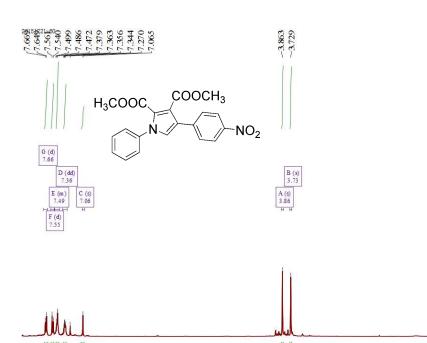
Product 6e



Product 6f

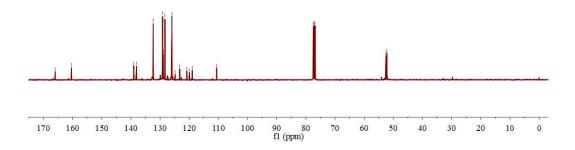



90 80 fl (ppm)



Product 7b

Product 7c



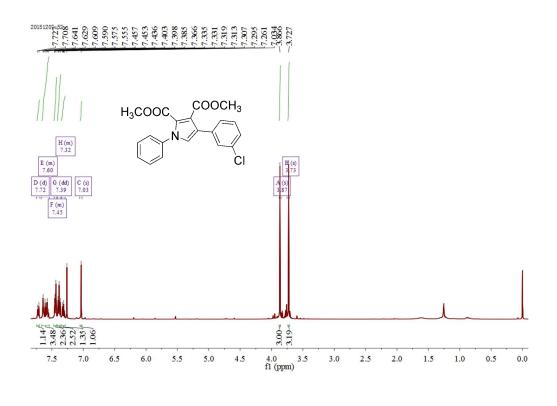
5.0

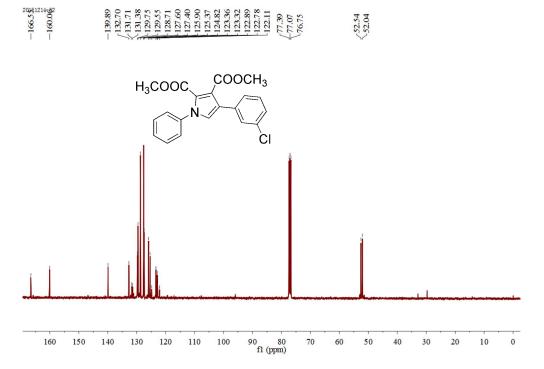
6.0

5.5

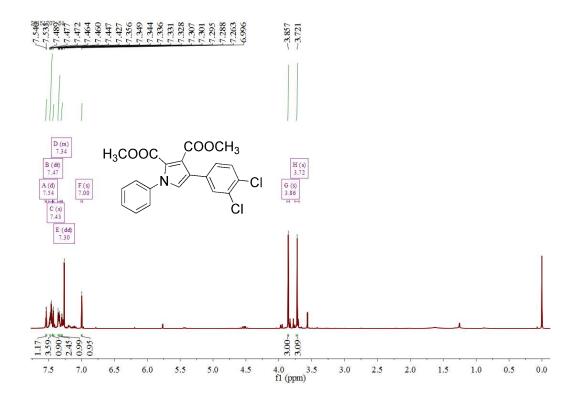
4.0 3.5 f1 (ppm) 2.5

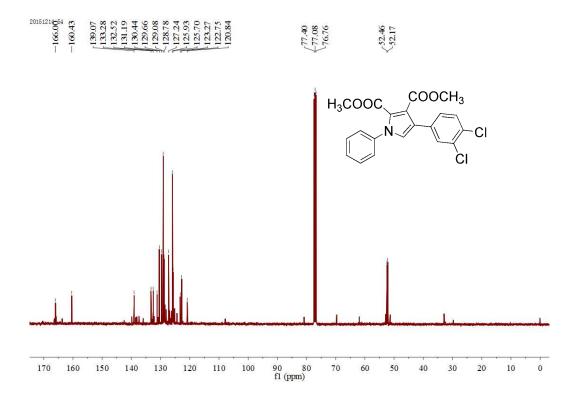
2.0

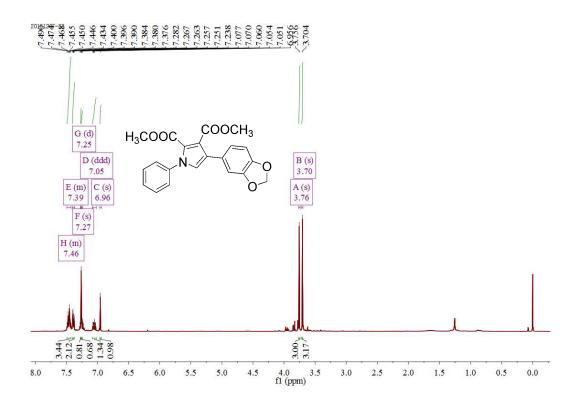

1.5

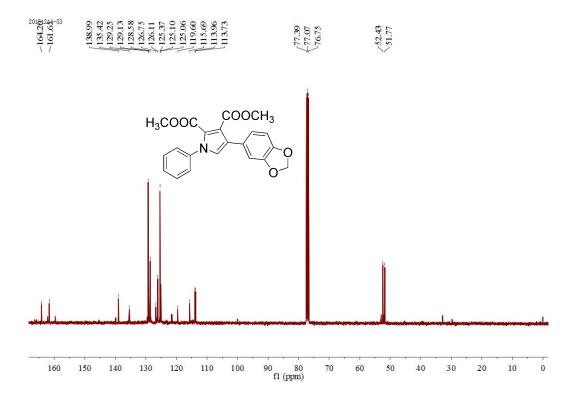

1.0

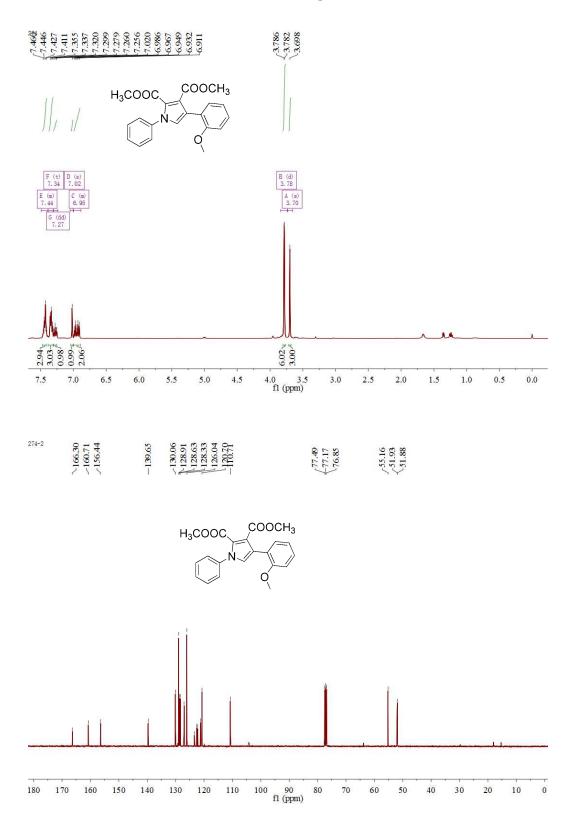
0.5


0.0

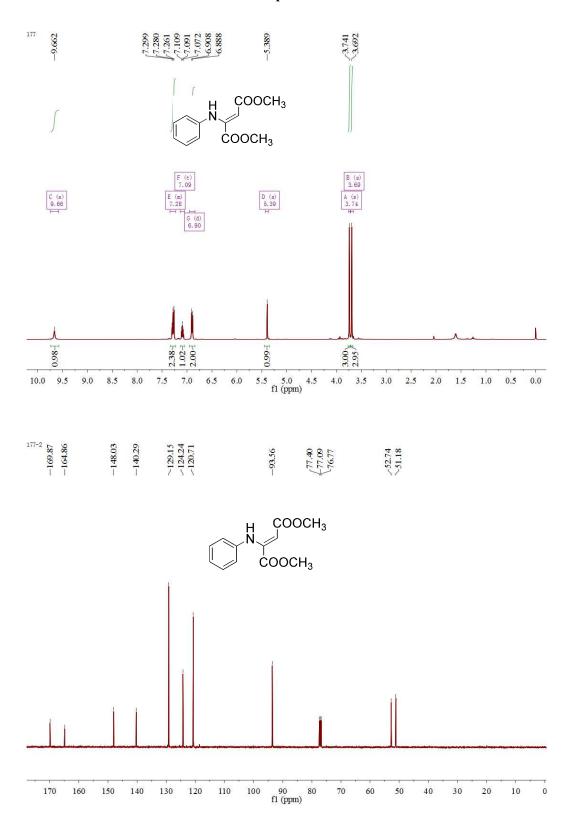

Product 7d




Product 7e



Product 7f



Compound 8

