Supporting Information

Self-Assembled Peptide Hydrogel as a Smart Biointerface for Enzyme-Based Electrochemical Biosensing and Cell Monitoring

Meiling Lian, ^a Xu Chen, * Yanluo Lu and Wensheng Yang *

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

*Corresponding author. Tel.: +86 10 64435271; fax: +86 10 64425385.

E-mail address: chenxu@mail.buct.edu.cn. (X. Chen)

yangws@mail.buct.edu.cn. (W. Yang)

Figure S1. CVs of the Fmoc-FF hydrogel/GCE with (a) 0, (b) 30 μ M H₂O₂ in 0.1 M PBS (pH 7.0) at a scan rate of 0.1 V s⁻¹.

Figure S2. CVs obtained at the HRP/Fmoc-FF hydrogel/GCE in 0.1 M PBS (pH 7.0) before (black line) and after (red line) continuous scanned for 100 cycles. Scan rate: $0.1~V~s^{-1}$.

Figure S3. Effect of solution pH on the electrocatalytic responses of the HRP/Fmoc-FF hydrogel/GCE with 10 μ M H₂O₂ in 0.1 M PBS at -0.35 V vs. Ag/AgCl.

Figure S4. Stability test for the HRP/Fmoc-FF hydrogel/GCE at -0.35 V vs. Ag/AgCl in 0.1 M PBS (pH 7.0) over 2 weeks.

Figure S5. (A) Hela cells cultured above the surface of the Fmoc-FF peptide hydrogel, scale bar represents 200 μ m. (B) Cell proliferation based on an MTT assay within the Fmoc-FF hydrogel (red), and the tissue culture plastic control (blue).

Figure S6. (A) Amperometric responses of the HRP/Fmoc-FF hydrogel/GCE with HeLa cells (3×10^4 cells) on the surface of the modified electrode induced by (a) 0.08, (b) 0.25, (c) 0.35 and (d) 1 µg mL⁻¹ PMA in 0.1 M PBS (pH 7.0) at -0.35 V vs. Ag/AgCl. (B) The increase of the peak current obtained at the HRP/Fmoc-FF hydrogel/GCE with HeLa cells (3×10^4 cells) on the surface of the modified electrode induced by different concentration of PMA.

Figure S7. Amperometric responses of the HRP/Fmoc-FF hydrogel/GCE induced by PMA (1 μ g mL⁻¹) in 0.1 M PBS (pH 7.0) at -0.35 V vs. Ag/AgCl, in the presence (a) and absence (b) of Hela cells (2×10⁶ cells) in measured solutions.

Table S1. Comparison of the proposed H_2O_2 biosensor with other HRP-based direct electrochemical biosensors.

Different modified electrodes	Linear range	Detection limit	Reference
	(μΜ)	(μM)	
HRP/Fmoc-FF hydrogel/GCE	0.1-60.2	0.018	this work
HRP-agarose/EPG	4.2-60.4		(1)
HRP-PNM hydrogel/GCE	0.19–1.35	0.0475	(2)
HRP/chitosan/sol-gel/CNT/GCE	4.8–5000	1.4	(3)
HRP-loaded PHC hydrogel/ITO	1–1000	0.5	(4)
HRP/Ni-Al-LDHNS/GCE	0.6–192	0.4	(5)
HRP/TiO ₂ -48/Nafion/GCE	0.4–140	0.05	(6)
HRP/Ag@C/ITO	0.5–140	0.2	(7)
HRP/C-Dots/LDHs/GCE	0.1–23.1	0.04	(8)

PNM, poly (N-isopropylacyamide-co-3-methacryloxypropyltrimethoxy silane); CNT, carbon nanotubes; PHC, polyhydroxyl cellulose; LDHNS, layered double hydroxide nanosheets.

The number of extracellular H_2O_2 molecule released per cell (*No*) can be calculated according to: $No = \{[\Delta R \div (k \times A) \times V] \times NA\} \div \{\epsilon \times A\}$, where ΔR is current response, k is sensitivity of the sensing platform, A is electrode surface area, V is volume of electrolyte, N_A is the Avogadro constant (6.02×10²³/mole), and ϵ is cell density. With known current response of 109.7 nA (curve a of Figure 5B), a sensitivity of 0.29 μ A μ M⁻¹ cm⁻², electrode surface area of 7.07 mm², and cell density of 4243 mm⁻², as well as the volume of the electrolyte (1 mL), N_0 is calculated to be around 10^{11} .

References:

- (1) Liu, H. H., Tian, Z. Q., Lu, Z. X., Zhang, Z. L., Zhang, M., Pang, D. W. Direct Electrochemistry and Electrocatalysis of Heme-Proteins Entrapped in Agarose Hydrogel Films. *Biosens. Bioelectron.* **2004**, *20*, 294–304.
- (2) Sun, Y. X., Zhang, J. T., Huang, S. W., Wang, S. F. Hydrogen Peroxide Biosensor Based on the Bioelectrocatalysis of Horseradish Peroxidase Incorporated in A New Hydrogel Film. *Sens. Actuators B: Chem.* **2007**, *124*, 494–500.
- (3) Kang, X., Wang, J., Tang, Z., Wu, H., Lin, Y. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in Hybrid Organic–Inorganic Film of Chitosan/Sol–Gel/Carbon Nanotubes. *Talanta* **2009**, 78, 120–125.
- (4) Feng, L., Wang, L., Hu, Z., Tian, Y., Xian, Y., Jin, L. Encapsulation of Horseradish Peroxidase into Hydrogel, and Its Bioelectrochemistry. Microchim.

- Acta **2009**, *164*, 49–54.
- (5) Chen, X., Fu, C., Wang, Y., Yang, W., Evans, D. G. Direct Electrochemistry and Electrocatalysis Based on A Film of Horseradish Peroxidase Intercalated into Ni– Al Layered Double Hydroxide Nanosheets. Biosens. Bioelectron. 2008, 24, 356–361.
- (6) Xie, Q., Zhao, Y., Chen, X., Liu, H., Evans, D. G., Yang, W. Nanosheet-Based Titania Microspheres with Hollow Core-Shell Structure Encapsulating Horseradish Peroxidase for A Mediator-Free Biosensor. *Biomaterials* 2011, 32, 6588–6594.
- (7) Mao, S., Long, Y., Li, W., Tu, Y., Deng, A. Core–shell Structured Ag@ C for Direct Electrochemistry and Hydrogen Peroxide Biosensor Applications. *Biosens*. *Bioelectron*. **2013**, *48*, 258–262.
- (8) Wang, Y., Wang, Z., Rui, Y., Li, M. Horseradish Peroxidase Immobilization on Carbon Nanodots/CoFe Layered Double Hydroxides: Direct Electrochemistry and Hydrogen Peroxide Sensing. *Biosens. Bioelectron.* **2015**, *64*, 57–62.