Supporting Information

Morphology-Induced Defects Enhance Lipid Transfer Rates

Yan Xia ${ }^{1}$, Kamil Charubin ${ }^{1}$, Drew Marquardt ${ }^{2,3}$, Frederick A. Heberle ${ }^{4,5}$, John Katsaras ${ }^{4,5}$, Jianhui Tian ${ }^{6}$, Xiaolin Cheng ${ }^{6}$, Ying Liu ${ }^{1}$, Mu-Ping Nieh ${ }^{* 1,7,8}$
${ }^{1}$ Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
${ }^{2}$ Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz, 8010, Austria
${ }^{3}$ Department of Physics, Brock University, St. Catharines, Ontario, Canada
${ }^{4}$ Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{5}$ Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{6}$ Center for Molecular Biophysics, Oak Ridge National Laboratory, TN 37831, USA
${ }^{7}$ Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
${ }^{8}$ Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA

S1 Contrast matched solvents

Neutron scattering length densities (NSLDs) of contrast-matched (CM) solvents are calculated based on the initial equal molar mixtures of h - and d - bicelles (i.e., $\rho_{C M}=\frac{\rho_{h-B i c}+\rho_{d-B i c}}{2}$ ("Bic" refers to bicelle), where $\rho_{C M}, \rho_{h-B i c}$ and $\rho_{d-B i c}$ are the NSLDs of CM solvent bicelles containing protiated and deuterated DPPC, respectively). The molar ratios of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{D}_{2} \mathrm{O}$ are determined by the calculated $\rho_{C M}$, based on $\rho_{H_{2} O}=-5.8 \times 10^{-7} \AA^{-2}$ and $\rho_{D_{2} O}=6.38 \times 10^{-6} \AA^{-2}$. Table S1 tabulates the CM water for each case.

Table S1. Calculated values of $\rho_{C M}$ and molar ratios of $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}$

-/d-DPPC bicelle	$\rho_{\mathrm{CM}}\left(\AA^{-2}\right)$	$\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}$ at CM condition
$(\mathrm{Q}=2.5)$	1.97×10^{-6}	$0.635: 0.365$
h-/d-DPPC bicelle		
$(\mathrm{Q}=3)$	2.04×10^{-6}	$0.624: 0.376$
h-/d-DPPC bicelle	2.10×10^{-6}	$0.616: 0.384$
$(\mathrm{Q}=3.5)$	$0.643: 0.357$	
PEGlyated h-/d-DMPC	1.91×10^{-6}	
bicelle $(\mathrm{Q}=3)$	1.96×10^{-6}	$0.636: 0.364$
PEGlyated h-/d-DPPC		
bicelle $(\mathrm{Q}=3)$		

S2 Time-Resolved Small Angle Neutron Scattering

S2.1. SANS Fitting Results

SANS data of bicellar mixtures were best fit using a polydisperse radius discoidal model, where the size averaged form factor $P_{\text {disc }}(q)$ and scattering amplitude $A_{\text {disc }}(q, \alpha)$ are expressed as:

$$
\begin{gather*}
P_{\text {disc }}(q)=\frac{1}{V_{\text {disc }}} \int_{0}^{\infty} f(r) d r \int_{0}^{\pi / 2} A_{\text {disc }}^{2}(q, \alpha) \sin \alpha d \alpha, \tag{S1}\\
A_{\text {disc }}(q, \alpha)=2 V_{\text {disc }}\left(\rho_{\text {disc }}-\rho_{C M}\right) j_{0}\left(\frac{q t}{2} \cos \alpha\right) \frac{J_{1}(q r \sin \alpha)}{(q r \sin \alpha)}, \tag{S2}
\end{gather*}
$$

where $V_{\text {disc }}$ is the average disc volume, $f(r)$ is the Schulz distribution, α is the angle between the bilayer normal and the scattering vector, q, and t is the disc thickness. The polydispersity, p, of the bicelle radius, r, in the Schulz distribution function is defined as the ratio of the standard deviation, σ, of r to the average of $r,\left\langle R_{i}\right\rangle$, i.e. $p=\frac{\sigma}{\left\langle R_{i}\right\rangle}$. Then the Schultz distribution function can be expressed as:

$$
\begin{equation*}
f(r)=\frac{p^{-2 / p^{2}}}{\left\langle R_{i}>\Gamma\left(1 / p^{2}\right)\right.}\left(\frac{r}{\left\langle R_{i}\right\rangle}\right)^{\frac{\left(1-p^{2}\right)}{p^{2}}} \exp \left(-\frac{r}{\left.p^{2}<R_{i}\right\rangle}\right) \tag{S3}
\end{equation*}
$$

where $\Gamma(x)$ is the Gamma function. The functions $J_{1}(x)$ and $j_{0}(x)$ are the first order Bessel and first spherical Bessel functions $\left(\frac{\sin (x)}{x}\right)$, respectively. Eqn (S1) includes the average overall possible orientations and different size of discs. The average volume for the disc can be approximated as $V_{\text {disc }}=\pi r^{2} t\left(\frac{z+2}{z+1}\right)$, based on r following the Schulz distribution, and z is related to the polydispersity, $\mathrm{p}\left(z=\frac{1}{p^{2}}-1\right)$. The radius and thickness of the bicelles used in the model were chosen based on the values obtained from the best fit to the data from the highest-contrast sample (i.e., the initial condition). The value of $\rho_{C M}$ was also calculated based on the $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ composition. Therefore, the only variable parameter as a function of time is the NSLD of the
bicelles, $\rho_{\text {disc }}$. Tables S 2 to S 4 summarize the best fit data of $\rho_{\text {disc }}$ from the time-resolved SANS data of DPPC bicelles at different temperatures. The NSLD contrast $(\Delta \rho)$ between CM solvent $\left(\rho_{s}\right)$ and bicelles were then calculated at different times. The lipid transfer kinetics in bicelle can be characterized using a single exponential decay ${ }^{1}$

$$
\begin{equation*}
\left|\rho(t)-\rho_{s}\right|=\Delta \rho_{0} e^{-k t} \tag{S4}
\end{equation*}
$$

where $\Delta \rho_{0}$ is the SLD difference between the CM solvent and the bicelles at $t=0$, and k is the apparent spontaneous lipid transfer rate constant.

Table S2. Best fit values of $\rho_{\text {disc }}$ from time-resolved SANS data of $Q=3 \mathrm{~h}$-/d- DPPC bicellar mixtures at $20^{\circ} \mathrm{C}$, with a radius and thickness of $64-67 \AA$ and $34.6-36.7 \AA$, respectively, and a fixed ρ_{S} of $2.04 \times 10^{-6} \AA^{-2}$.

	0.6 hrs	52 hrs	77 hrs	101 hrs	150 hrs
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	4.94×10^{-6} or	4.75×10^{-6}	4.64×10^{-6} or	4.58×10^{-6} or	4.44×10^{-6} or
	-8.6×10^{-7}	or -6.7×10^{-7}	-5.6×10^{-7}	-5.0×10^{-7}	-3.6×10^{-7}
	$2.90 \times 10^{-6} \pm$	$2.71 \times 10^{-6} \pm$	$2.60 \times 10^{-6} \pm$	$2.54 \times 10^{-6} \pm$	$2.4 \times 10^{-6} \pm$
$\Delta \rho\left(\AA^{-2}\right)$	9×10^{-9}	6.2×10^{-8}	5.1×10^{-8}	6.2×10^{-8}	1.04×10^{-7}

Table S3. Best fit values of $\rho_{\text {disc }}$ from time-resolved SANS data of $Q=3 h$-/d- DPPC bicellar mixtures at $25^{\circ} \mathrm{C}$, with a radius and thickness of $65-69 \AA$ and $31-36 \AA$, respectively, and a fixed ρ_{S} of $2.04 \times 10^{-6} \AA^{-2}$.

	0.45 hrs	11 hrs	16 hrs	26 hrs	42 hrs
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	$\begin{aligned} & 4.95 \times 10^{-6} \text { or } \\ & -8.7 \times 10^{-7} \end{aligned}$	$\begin{aligned} & 4.86 \times 10^{-6} \text { or } \\ & -7.8 \times 10^{-7} \end{aligned}$	$\begin{gathered} 4.82 \times 10^{-6} \text { or } \\ -7.4 \times 10^{-7} \end{gathered}$	$\begin{gathered} 4.75 \times 10^{-6} \text { or } \\ -6.7 \times 10^{-7} \end{gathered}$	$\begin{gathered} 4.61 \times 10^{-6} \text { or } \\ -5.3 \times 10^{-7} \end{gathered}$
$\Delta \rho\left(\AA^{-2}\right)$	$\begin{gathered} 2.91 \times 10^{-6} \pm \\ 3.65 \times 10^{-9} \end{gathered}$	$\begin{gathered} 2.82 \times 10^{-6} \pm \\ 3.32 \times 10^{-9} \end{gathered}$	$\begin{gathered} 2.78 \times 10^{-6} \pm \\ 4.21 \times 10^{-9} \end{gathered}$	$\begin{aligned} & 2.71 \times 10^{-6} \pm \\ & 3.46 \times 10^{-8} \end{aligned}$	$\begin{gathered} 2.57 \times 10^{-6} \pm \\ 5.17 \times 10^{-9} \end{gathered}$
	50 hrs	56 hrs	82 hrs	108 hrs	159 hrs
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	$\begin{aligned} & 4.56 \times 10^{-6} \text { or } \\ & -4.8 \times 10^{-7} \end{aligned}$	$\begin{aligned} & 4.49 \times 10^{-6} \text { or } \\ & -4.1 \times 10^{-7} \end{aligned}$	$\begin{gathered} 4.35 \times 10^{-6} \text { or } \\ -2.7 \times 10^{-7} \end{gathered}$	$\begin{gathered} 4.17 \times 10^{-6} \text { or } \\ -9 \times 10^{-8} \end{gathered}$	$\begin{gathered} 3.98 \times 10^{-6} \text { or } \\ 1.0 \times 10^{-7} \end{gathered}$
$\Delta \rho\left(\AA^{-2}\right)$	$\begin{aligned} & 2.52 \times 10^{-6} \pm \\ & 3.69 \times 10^{-9} \end{aligned}$	$\begin{gathered} 2.45 \times 10^{-6} \pm \\ 3.76 \times 10^{-9} \end{gathered}$	$\begin{gathered} 2.31 \times 10^{-6} \pm \\ 3.77 \times 10^{-9} \end{gathered}$	$\begin{gathered} 2.13 \times 10^{-6} \pm \\ 2.71 \times 10^{-9} \end{gathered}$	$\begin{aligned} & 1.94 \times 10^{-6} \pm \\ & 3.18 \times 10^{-9} \end{aligned}$
	184 hrs	233 hrs	259 hrs	356 hrs	407 hrs
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	$\begin{gathered} 3.78 \times 10^{-6} \text { or } \\ 3.0 \times 10^{-7} \end{gathered}$	$\begin{aligned} & 3.71 \times 10^{-6} \text { or } \\ & 3.7 \times 10^{-7} \end{aligned}$	$\begin{gathered} 3.62 \times 10^{-6} \text { or } \\ 4.6 \times 10^{-7} \end{gathered}$	$\begin{gathered} 3.39 \times 10^{-6} \text { or } \\ 6.9 \times 10^{-7} \end{gathered}$	$\begin{gathered} 3.20 \times 10^{-6} \text { or } \\ -8.8 \times 10^{-7} \end{gathered}$
$\Delta \rho\left(\AA^{-2}\right)$	$\begin{gathered} 1.74 \times 10^{-6} \pm \\ 3.40 \times 10^{-9} \end{gathered}$	$\begin{aligned} & 1.67 \times 10^{-6} \pm \\ & 3.58 \times 10^{-9} \end{aligned}$	$\begin{aligned} & 1.58 \times 10^{-6} \pm \\ & 4.28 \times 10^{-9} \end{aligned}$	$\begin{gathered} 1.35 \times 10^{-6} \pm \\ 5.01 \times 10^{-9} \end{gathered}$	$\begin{gathered} 1.16 \times 10^{-6} \pm \\ 1.21 \times 10^{-9} \end{gathered}$

Table S4. Best fit values of $\rho_{\text {disc }}$ from time-resolved SANS data of $Q=3 \mathrm{~h}-/ \mathrm{d}-$ DPPC bicellar mixtures at $30^{\circ} \mathrm{C}$, with a radius and thickness of $66-70 \AA$ and $32-36 \AA$, respectively, and a fixed ρ_{S} of $2.04 \times 10^{-6} \AA^{-2}$.

	0.4 hrs	7 hrs	12 hrs	14 hrs	23 hrs
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	$\begin{gathered} 4.98 \times 10^{-6} \text { or } \\ -9.0 \times 10^{-7} \end{gathered}$	$\begin{gathered} 4.83 \times 10^{-6} \text { or } \\ -7.5 \times 10^{-7} \end{gathered}$	$\begin{gathered} 4.74 \times 10^{-6} \text { or } \\ -6.6 \times 10^{-7} \end{gathered}$	$\begin{aligned} & 4.73 \times 10^{-6} \text { or } \\ & -6.5 \times 10^{-7} \end{aligned}$	$\begin{aligned} & 4.56 \times 10^{-6} \text { or } \\ & -4.8 \times 10^{-7} \end{aligned}$
$\Delta \rho\left(\AA^{-2}\right)$	$\begin{gathered} 2.94 \times 10^{-6} \pm \\ 3.73 \times 10^{-9} \end{gathered}$	$\begin{gathered} 2.79 \times 10^{-6} \pm \\ 3.61 \times 10^{-9} \end{gathered}$	$\begin{gathered} 2.70 \times 10^{-6} \pm \\ 3.51 \times 10^{-9} \end{gathered}$	$\begin{gathered} 2.69 \times 10^{-6} \pm \\ 3.84 \times 10^{-9} \end{gathered}$	$\begin{gathered} 2.52 \times 10^{-6} \pm \\ 4.95 \times 10^{-9} \end{gathered}$
	34 hrs	60 hrs	85 hrs	109 hrs	146 hrs
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	$\begin{aligned} & 4.34 \times 10^{-6} \text { or } \\ & -2.6 \times 10^{-7} \end{aligned}$	$\begin{gathered} 3.79 \times 10^{-6} \text { or } \\ 2.9 \times 10^{-7} \end{gathered}$	$\begin{gathered} 3.53 \times 10^{-6} \text { or } \\ -5.5 \times 10^{-7} \end{gathered}$	$\begin{gathered} 3.4 \times 10^{-6} \text { or } \\ 6.8 \times 10^{-7} \end{gathered}$	$\begin{gathered} 3.37 \times 10^{-6} \text { or } \\ 7.1 \times 10^{-7} \end{gathered}$
$\Delta \rho\left(\AA^{-2}\right)$	$\begin{gathered} 2.30 \times 10^{-6} \pm \\ 7.62 \times 10^{-9} \end{gathered}$	$\begin{gathered} 1.75 \times 10^{-6} \pm \\ 3.81 \times 10^{-9} \end{gathered}$	$\begin{gathered} 1.49 \times 10^{-6} \pm \\ 3.85 \times 10^{-9} \end{gathered}$	$\begin{gathered} 1.36 \times 10^{-6} \pm \\ 7.27 \times 10^{-9} \end{gathered}$	$\begin{gathered} 1.33 \times 10^{-6} \pm \\ 4.45 \times 10^{-9} \end{gathered}$
	184 hrs	233 hrs	283 hrs		
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	$\begin{aligned} & 3.11 \times 10^{-6} \text { or } \\ & 9.7 \times 10^{-7} \end{aligned}$	$\begin{gathered} 3.07 \times 10^{-6} \text { or } \\ 1.01 \times 10^{-6} \end{gathered}$	$\begin{gathered} 2.99 \times 10^{-6} \text { or } \\ 1.09 \times 10^{-7} \end{gathered}$		
$\Delta \rho\left(\AA^{-2}\right)$	$\begin{gathered} 1.07 \times 10^{-6} \pm \\ 2.06 \times 10^{-8} \end{gathered}$	$\begin{aligned} & 1.03 \times 10^{-6} \pm \\ & 7.15 \times 10^{-9} \end{aligned}$	$\begin{gathered} 9.52 \times 10^{-7} \pm \\ 2.87 \times 10^{-8} \end{gathered}$		

S3 Time-Resolved Differential Scanning Calorimetry

S3.1. TR-DSC data

Figure S1 TR-DSC data of lipid transfer between bicelles of different Q values.
Figure S 1 shows the TR-DSC data collected for lipid transfer experiments of different Q. The two distinct peaks are clearly visible in each DSC endotherm at early mixing periods,
corresponding to the melting transition of d - bicelles (lower T_{M}) and h - bicelles (higher T_{M}). As the lipid transfer between h - and d - bicelles takes place, these peaks move toward each other. the DSC endotherm contains other minor peaks, possibly due to the presence of d - and h - vesicles with increasing $T .^{2}$ The difference in T_{M} between bicelles and vesicles of the same molecular make up is presumably due to their distinct cooperative units. ${ }^{3,4}$ All the $T_{M} \mathrm{~S}$, including those of d - and h - bicelles and vesicles, were identified using a sum of four independent Gaussian curves. ΔT_{M} between h-rich and d-rich bicelles can then be calculated at each t using the lipid transfer rate equation (S5)

$$
\begin{equation*}
T_{M, h}-T_{M, d}=\Delta T_{M, o} e^{-k t} \tag{S5}
\end{equation*}
$$

where $T_{M, h}$ and $T_{M, d}$ is the T_{M} of h-rich and d-rich bicelles, respectively. $\Delta T_{M, o}$ is the initial ΔT_{M} $\left(T_{M, h}-T_{M, d}\right)$ at $t=0$.

S3.2. Gaussian Fitting Results

DSC scans were fit using four Gaussians (d - an h - DPPC associated with bicelles and vesicles are shown in Tables S5-S13).

Table S5. DSC peak positions obtained by Gaussian fits of $Q=2.5$ DPPC bicelles at $20^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0.4 hr	37.44 ± 0.18	40.32 ± 0.35	41.74 ± 0.08	44.45 ± 0.03	4.13 ± 0.38
24 hrs	37.50 ± 0.05	40.71 ± 0.16	41.81 ± 0.08	44.55 ± 0.05	3.84 ± 0.20
47 hrs	37.84 ± 0.18	40.62 ± 0.39	41.88 ± 0.10	44.41 ± 0.03	3.79 ± 0.42
104 hrs	37.81 ± 0.11	40.61 ± 0.37	41.66 ± 0.06	44.08 ± 0.06	3.47 ± 0.43
148 hrs	37.76 ± 0.06	40.70 ± 0.33	41.60 ± 0.06	44.07 ± 0.06	3.37 ± 0.38
193 hrs	38.04 ± 0.18	40.64 ± 1.18	41.54 ± 0.26	43.84 ± 0.06	3.21 ± 1.24
338 hrs	38.08 ± 0.08	41.08 ± 0.10	40.75 ± 0.03	43.45 ± 0.03	2.70 ± 0.06

Table S6. DSC peak positions obtained by Gaussian fits of $Q=2.5$ DPPC bicelles at $25^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0 hr	37.95 ± 0.19	40.78 ± 0.13	42.15 ± 0.07	44.61 ± 0.04	3.832 ± 0.17
26.5 hrs	38.35 ± 0.19	40.88 ± 0.07	42.16 ± 0.07	44.11 ± 0.05	3.23 ± 0.12
48 hrs	38.30 ± 0.15	40.79 ± 0.03	42.17 ± 0.05	43.80 ± 0.04	3.01 ± 0.07
72.8 hrs	38.57 ± 0.18	40.89 ± 0.06	42.22 ± 0.06	43.72 ± 0.04	2.83 ± 0.09

Table S7. DSC peak positions obtained by Gaussian fits of $Q=2.5$ DPPC bicelles at $30^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0.3 hr	38.25 ± 0.29	40.92 ± 0.19	42.44 ± 0.14	44.98 ± 0.27	4.06 ± 0.22
6.3 hrs	38.17 ± 0.40	40.75 ± 0.56	42.11 ± 0.29	44.59 ± 0.35	3.84 ± 0.59
18.9 hrs	38.61 ± 0.37	40.99 ± 0.87	42.07 ± 0.38	44.24 ± 0.05	3.25 ± 0.92
27.1 hrs	38.80 ± 0.30	41.01 ± 0.41	42.09 ± 0.32	43.95 ± 0.04	2.94 ± 0.45
46.3 hrs	37.94 ± 0.02	41.52 ± 0.02	42.88 ± 0.03	44.23 ± 0.02	2.71 ± 0.04

Table S8. DSC peak positions obtained by Gaussian fits of $Q=3.0$ DPPC bicelles at $20^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0 hr	37.99 ± 0.16	40.90 ± 0.31	42.42 ± 0.12	45.13 ± 0.03	4.23 ± 0.34
27.5 hrs	38.99 ± 0.16	41.00 ± 0.42	42.33 ± 0.13	44.98 ± 0.04	3.98 ± 0.46
48.4 hrs	38.13 ± 0.16	41.06 ± 0.36	42.41 ± 0.15	44.96 ± 0.03	3.90 ± 0.39
96.5 hrs	38.17 ± 0.15	41.10 ± 0.34	42.34 ± 0.16	44.70 ± 0.04	3.61 ± 0.38
174 hrs	38.45 ± 0.06	41.20 ± 0.40	42.36 ± 0.22	44.61 ± 0.04	3.41 ± 0.44
263 hrs	38.66 ± 0.15	41.26 ± 0.22	42.51 ± 0.21	44.48 ± 0.03	3.21 ± 0.25

Table S9. DSC peak positions obtained by Gaussian fits of $Q=3.0$ DPPC bicelles at $25^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0 hr	37.50 ± 0.15	40.66 ± 0.65	41.94 ± 0.20	44.80 ± 0.06	4.14 ± 0.71
7 hrs	37.52 ± 0.21	40.53 ± 0.68	41.83 ± 0.31	44.57 ± 0.04	4.05 ± 0.72
27 hrs	37.75 ± 0.11	40.78 ± 0.12	42.10 ± 0.08	44.36 ± 0.04	3.59 ± 0.16
50.5 hrs	37.98 ± 0.12	40.84 ± 0.08	42.21 ± 0.08	44.20 ± 0.03	3.36 ± 0.11
96 hrs	37.68 ± 0.12	41.29 ± 0.06	42.61 ± 0.08	44.24 ± 0.03	3.10 ± 0.11

Table S10. DSC peak positions obtained by Gaussian fits of $Q=3.0$ DPPC bicelles at $30^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0 hr	38.41 ± 0.25	41.23 ± 0.31	42.77 ± 0.15	45.47 ± 0.02	4.24 ± 0.33
6.5 hrs	37.64 ± 0.06	39.11 ± 0.20	41.46 ± 0.03	45.14 ± 0.04	3.67 ± 0.24
26.7 hrs	38.68 ± 0.12	41.33 ± 0.03	$\mathrm{~N} / \mathrm{A}$	44.36 ± 0.03	3.03 ± 0.06

Table S11. DSC peak positions obtained by Gaussian fits of $\mathrm{Q}=3.5$ DPPC bicelles at $20^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0.4 hr	37.11 ± 0.04	40.28 ± 0.16	41.67 ± 0.02	44.43 ± 0.04	4.15 ± 0.21
24.5 hrs	37.25 ± 0.05	40.32 ± 0.21	41.72 ± 0.02	44.44 ± 0.04	4.12 ± 0.25
74 hrs	37.29 ± 0.07	40.18 ± 0.32	41.57 ± 0.04	44.20 ± 0.05	4.02 ± 0.36
141.6 hrs	37.62 ± 0.09	40.30 ± 0.29	41.69 ± 0.05	44.21 ± 0.02	3.91 ± 0.32
214.3 hrs	37.60 ± 0.05	40.27 ± 0.07	41.52 ± 0.02	43.96 ± 0.05	3.70 ± 0.12

Table S12. DSC peak positions obtained by Gaussian fits of $\mathrm{Q}=3.5$ DPPC bicelles at $25^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0 hr	37.54 ± 0.08	40.66 ± 0.32	42.12 ± 0.09	44.92 ± 0.04	4.26 ± 0.36
19.8 hrs	37.64 ± 0.10	40.67 ± 0.47	42.07 ± 0.13	44.76 ± 0.04	4.09 ± 0.51
46.3 hrs	37.84 ± 0.11	40.74 ± 0.62	42.09 ± 0.17	44.62 ± 0.04	3.88 ± 0.66
69.5 hrs	37.73 ± 0.13	40.65 ± 1.34	41.81 ± 0.33	44.32 ± 0.07	3.68 ± 1.41
136.5 hrs	37.91 ± 0.01	41.40 ± 0.02	42.97 ± 0.08	44.38 ± 0.02	2.98 ± 0.04
210.5 hrs	38.20 ± 0.05	40.85 ± 0.02	42.43 ± 0.06	43.66 ± 0.03	2.81 ± 0.05

Table S13. DSC peak positions obtained by Gaussian fits of $\mathrm{Q}=3.5$ DPPC bicelles at $30^{\circ} \mathrm{C}$ and as a function of time

	d-vesicle	d-bicelle	h-vesicle	h-bicelle	$\Delta T_{\text {bicelle }}$
0.3 hr	37.13 ± 0.07	40.26 ± 0.89	41.53 ± 0.12	44.64 ± 0.06	4.38 ± 0.94
6.0 hrs	37.55 ± 0.10	40.57 ± 0.84	41.78 ± 0.15	44.65 ± 0.06	4.08 ± 0.90
23.9 hrs	37.52 ± 0.17	40.45 ± 2.17	41.52 ± 0.69	44.12 ± 0.02	3.67 ± 2.19
50.0 hrs	37.80 ± 0.05	40.71 ± 0.02	42.14 ± 0.05	43.67 ± 0.03	2.95 ± 0.05
70.4 hrs	37.76 ± 0.03	40.65 ± 0.02	42.12 ± 0.03	43.49 ± 0.01	2.84 ± 0.02
94.3 hrs	38.10 ± 0.07	40.51 ± 0.03	42.15 ± 0.05	43.29 ± 0.03	2.78 ± 0.06

S4 Determination of the Morphology of Different-Q Bicelles Using SANS

Figure S2. SANS data of initial DPPC/DPPG/DHPC bicelles with different Q values and constant charged lipid ratio $R=0.05$ at $10^{\circ} \mathrm{C}$ at initial stage of lipid transfer.
SANS measurements were conducted at NCNR to determine the bicelle size at different Q s. Fig. S2 shows examples of SANS data of different Q (2.5, 3.0 and 3.5) DPPC bicelles. The solid lines are the best fits to the data using a discoidal model, as described in S2. Although there is a strong charge effect, the structure factor did not appear in the SANS curves because of the contrast-matched condition. We were therefore able to fit the data using only the discoidal form factor. Table S14 lists the best fit parameters, indicating that bicelle radii decrease with increased amounts of DHPC (i.e., increased fraction of interface in a bicelle). This is the most likely explanation for the observed enhanced lipid transfer rate constants observed as a function of increased amounts of DHPC.

TABLE S14. Best fit parameters from SANS data of DPPC bicelles

	Radius (\AA)	Thickness (\AA)
$\mathrm{Q}=2.5$	73.2 ± 0.8	38.0 ± 0.4
$\mathrm{Q}=3.0$	81.7 ± 0.7	38.8 ± 0.4
$\mathrm{Q}=3.5$	95.0 ± 0.6	38.3 ± 0.4

S5 DSC Endotherms of h-, d- and h-/d- Bicelles

Figure S3. DSC data of $Q=2.5$ (a), 3 (b) and 3.5 (c) h-, h / d - and d - DPPC bicelles.

S5.1. DSC data of pure h-, d - and intimate mixed equal molar h-/d- DPPC bicelles

Fig S2 shows DSC scans of h-, h / d - and d-DPPC bicelles, where h / d-DPPC bicelles were prepared through mixing equal molar deuterated and protiated DPPC lipids. Each curve has a major peak and a shoulder, most likely corresponding to the T_{M} of DPPC associated with vesicles, whose T_{M} is known to be lower than that of bicelles. Table S 14 shows that the T_{M} difference $\left(\Delta T_{M}\right)$ between h-bicelles and d-bicelles is $\sim 4^{\circ} \mathrm{C}$, providing sufficient separation to differentiate between peaks. The T_{M} for h / d bicelles is similar to the average of $T_{M, h}$ and $T_{M, d .}$

Table S15. T_{M} summary of DPPC bicelles

	$Q=2.5$	$Q=3$	$Q=3.5$
$T_{M, h}$	45.66	45.42	44.99
$T_{M, d}$	41.03	41.13	40.98
$T_{M, h / d}$	43.02	43.03	43.07
ΔT_{M}	4.63	4.19	4.01

S5.2. Phase Transition Enthalpy

In order to compare phase transition enthalpies at different Q values, we integrated each phase transition peak to obtain the phase transition enthalpy $\left(\Delta H_{f_{u}}\right)$, summarized in Table S 16 . It should be noted that the transition enthalpy was normalized based on the amounts of DPPC and DPPG, and not DHPC, since DHPC does not undergo a phase transition over the temperature range studied. It was found that ΔH is smallest for $Q=2.5$. The decrease in ΔH is most likely the result of increased DPPC/DHPC fraction at the interfacial region between domains, allowing DPPC to melt from the gel to the liquid crystalline phase at lower energy cost. This interface between domains is thought to enhance the transfer rate of DPPC.

Table S16. Phase transition enthalpies of DPPC bicelles $\left(\Delta H_{f u}, \Delta H_{f u, d}\right.$ and $\Delta H_{f u, h / d}$ are the enthalpies for $h-, d$ - and h / d - bicelles, respectively.)

	$Q=2.5$	$Q=3$	$Q=3.5$
$\Delta H_{f u, h}$	16.18	18.54	19.54
$\Delta H_{f u, d}$	14.84	19.87	18.64
$\Delta H_{f u, h / d}$	15.3	19.2	18.51

S6 Lipid Exchange between PEGylated Bicelles

Figure S4. TR-SANS data of the lipid transfer on the PEGylated bicelles at $10{ }^{\circ} \mathrm{C}$. (a) DMPC/DMPG/DHPC/DSPE-PEG2000, $Q=3, R=0.05$, and DSPE-PEG2000 ratio of 5.0 $\mathrm{mol} . \%$ (b) DPPC/DPPG/DHPC/DSPE-PEG2000, $Q=3, R=0.05$, and DSPE-PEG2000 ratio of $5.0 \mathrm{~mol} . \%$. The solid lines are the best fits using a disk model with polydispersed radii to generate the neutron scattering length density (NSLD) of bicelle.

Tables S17 and S18 tabulate the best fit parameters for DMPC and DPPC bicelles containing DSPE-PEG2000.

Table S17. Best fit results from SANS data of DMPC/DMPG/DHPC/PEG2000-DSPE bicelles at $10^{\circ} \mathrm{C}$ with a radius of $\sim 58 \AA$, a thickness of $\sim 29 \AA$, and a fixed ρ_{s} of 1.91 $\times 10^{-6} \AA^{-2}$.

	0.32 hrs	2.32 hrs	5.80 hrs	9.48 hrs
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	2.69×10^{-6} or	2.48×10^{-6} or	2.29×10^{-6} or	2.20×10^{-6} or
	1.13×10^{-6}	1.34×10^{-6}	1.53×10^{-7}	1.62×10^{-7}
	$7.79 \times 10^{-7} \pm$	$5.70 \times 10^{-7} \pm$	$3.77 \times 10^{-6} \pm$	$2.86 \times 10^{-7} \pm$
$\Delta \rho\left(\AA^{-2}\right)$	4.28×10^{-9}	5.93×10^{-10}	7.31×10^{-10}	9.16×10^{-10}

TABLE S18. Best fit results from SANS data of DPPC/DPPG/DHPC/PEG2000DSPE bicelles at $10^{\circ} \mathrm{C}$ with a radius of $\sim 57 \AA$, a thickness of $\sim 33 \AA$, and a fixed ρ_{s} of $1.96 \times 10^{-6} \AA^{-2}$.

	0.27 hrs	1.54 hrs	784 hrs	2197 hrs
$\rho_{\text {disc }}\left(\AA^{-2}\right)$	4.54×10^{-6} or	4.41×10^{-6} or	4.25×10^{-6} or	4.16×10^{-6} or
	-6.2×10^{-7}	-4.9×10^{-7}	-3.3×10^{-7}	5.2×10^{-7}
	$2.58 \times 10^{-6} \pm$	$2.45 \times 10^{-6} \pm$	$1.88 \times 10^{-6} \pm$	$1.44 \times 10^{-6} \pm$
$\Delta \rho\left(\AA^{-2}\right)$	8.58×10^{-9}	8.20×10^{-9}	7.32×10^{-9}	2.67×10^{-9}

Figure. S5. The time evolution NSLD contrast, $\Delta \rho$ of (a) DMPC/DMPG/DHPC and (b) DPPC/DPPG/DHPC bicelles in the absence and presence of DSPE-PEG2000. The solid lines are the best fits using eq (S4). The non-PEGlyated bicelle data were obtained from previous report. ${ }^{1}$

The derived values for $k_{\text {inter }}$ are $(4.13 \pm 0.15) \times 10^{-4}$ and $0.233 \pm 0.003 \mathrm{hr}^{-1}$ for $10^{\circ} \mathrm{C}$ DSPE-PEG2000-associated DPPC and DMPC bicelles, respectively.

References

1. Xia, Y.; Li, M.; Charubin, K.; Liu, Y.; Heberle, F. A.; Katsaras, J.; Jing, B.; Zhu, Y.; Nieh, M. P. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates. Langmuir 2015, 31 (47), 12920-8.
2. Denisov, I. G.; McLean, M. A.; Shaw, A. W.; Grinkova, Y. V.; Sligar, S. G. Thermotropic phase transition in soluble nanoscale lipid bilayers. J Phys Chem B 2005, 109 (32), 15580-8.
3. Marsh, D.; Watts, A.; Knowles, P. F. Cooperativity of the phase transition in single- and multibilayer lipid vesicles. Biochim Biophys Acta 1977, 465 (3), 500-14.
4. Shaw, A. W.; McLean, M. A.; Sligar, S. G. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett 2004, 556 (1-3), 260-4.
