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Experimental Details 

Electrochemical measurements 

The potentiostat used for linear scan voltammetry was a home-build potentiostat equipped with positive 

feedback for ohmic drop compensation.1 The working electrode was polished and cleaned glassy carbon 

surface of a rotating disk electrode (5 mm diameter, Pine Research Intrumentation). The counter–electrode 

was a platinum wire and the reference electrode an aqueous calomel electrode. All experiments were 

carried out under argon at 20 °C. The electrolyte solutions were prepared from KNO3 (Sigma-Aldrich, ≥ 99 

%) or HNO3 (Prolabo) with deionized water (0.06 µS at room temperature). 

Electrode preparation 

From a mixture of carbon Vulcan XC72R (Cabot), Nafion (250 μL, perfluorosulfonic acid-PTFE 

copolymer, 5% w/w solution, Alfa Aesar) and water (250 μL, deionized water, 0.06 µS at room 

temperature) sonicated for 10 minutes, 8.8 μL of this suspension were deposited on the electrode surface, 

which was then dried in air for 15 min and left for 30 min at 100 °C in an oven to form a homogeneous thin 

film. 

Microscopy 

SEM images were obtained with a Zeiss Supra 40 scanning electron microscope. The images were taken 

at different magnifications using an In lens detector at a low voltage (5 kV) and in a small working 

distance (5 mm). After the electrochemical measurements the electrode was rinsed twice in deionized water 
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to remove residual acid traces and plunged into a three-electrode cell using Pt as counter electrode, SCE as 

reference electrode and a 0.1 M solution of KNO3 as electrolyte. A positive feedback iR overcompensation 

was applied to generate a few hydrogen bubbles on the electrode surface and detach the catalytic film. The 

thin film was included in an epoxy resin (Spurr) and then aged at 60 °C for 2 days. The resin was then cut 

with a microtome (Reichert Jung) with a diamond knive and the SEM images have been obtained directly 

on the surface of the cut resin after metallation (3 nm of platinum using cathodic arc deposition). 

 

 

Fig 1S. SEM image of the thin film embedded in the epoxy resin. 

Correction of experimental data 

A linear drift of the plateau capacitive current is observed on each measurement (this linear drift is also 

observed on the freshly polihed glassy carbon electrode without deposited film and it is observed whatever 

the range of potential accessible without contribution of a significant faradaic current). Therefore, 

experimental data have been corrected by substration of an affine contribution as shown on figure 2S as an 

example so as to obtain an horizontal plateau. 
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Fig 2S. Linear sweep voltammograms of a 5 mg Vulcan®+Nafion® film on a 5 mm diameter glassy 

carbon electrode from -0.2 to 0.2 V vs. SCE in presence of 0.1 M KNO3. v = 20 V/s. blue: raw data. red: 

corrected data.  

Determination of L using a dummy cell 

L is a self-inductance related to the instrument bandpass characteristics. 1S It has been evaluated using a 

dummy cell (Autolab Dummy Cell 2) corresponding to a RC circuit with C = 1 µF and R = 100 . 

Charging currents are recorded with the home-build potentiostat using the same gain as the one used for 

the experiments. Ohmic drop compensation was achieved with the positive feedback device of the 

potentiostat up to observation of damped oscillations (figure 3S). This situation corresponds to 98% 

compensation. The oscillations frequency, 
2

T


  , was measured leading to the self-inductance : 

2

1
L

C
 = 1.66 10-5 H. 

 

Fig. 3S. Linear scan voltammetry on a dummy cell (C = 1 µF and R = 100 .) at 2000 V/s with 98% 

ohmic drop compensation. 

-0.2 -0.1 0.0 0.1 0.2

0

100

200

300

400

500
i/v (µF)

 

 

E (V vs. SCE )

0.0 0.1 0.2 0.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
i (mA)

 

 

t (ms)



 S4 

 

Derivations and Relationships  

Glossary of symbols 

c: distributed capacitance per unit of surface area of the electrode and unit of thickness of the film, i.e., a 

capacitance per unit of volume of the film. 

df: thickness of the film. 

catk : first-order catalytic rate constant. 

,  B Pr r : distributed resistances of the bulk of the film and pores per unit of thickness of the film and for 

unit of surface area of the electrode, respectively. 

( , ,  with 1B B B P P P B Pr r         ) 

 2
f f B Pt d r r c  : film time constant. 

x: distance from the (planar) base electrode.  

f fC Scd : film capacitance. 

0E : standard potential of the catalyst couple. 

F: Faraday. 

IB, IP, and I: current densities (currents per working electrode unit surface area) in solid parts of the film, 

pores and solution, respectively. 

0 0
0 expcat
F

f

F k E
I F

d RT

  
  

 
 

: catalytic current density at E = 0. 

L: instrument equivalent self-inductance. 

R: perfect gas constant 

  /f f B PR d S   : film resistance 

max
uR : maximal absolute value of the positive feedback compensable resistance.  
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Ru: resistance between the working and reference electrodes that remains uncompensated by the positive 

feedback compensation device. 

RS: solution resistance. 

S: surface area of the base electrode.  

T: absolute temperature. 

v: scan rate  

B  and P : fractions of the base electrode surface that are covered by the bulk of the film and the pores, 

respectively ( 1B P   ). 

,  P B  : resistivities of the pores and the bulk, respectively.  

0 : total surface concentration of catalyst.  

WE, RE, B and P: potential at the working electrode, the reference electrode, in the bulk solid parts of the film 

and in the pores, respectively. 

Definition of the dimensionless variables and parameters  

f

x
y

d
   

 
u

u
f B P

SR

d


 



 , 

 

max
max u
u

f B P

SR

d r r
 


 

    0/ f P B FF RT d r r I    

 
23

f B P

SL

d r r c
 


 

f

t

t
   

   2 2
,B P

B P

f B P f B Pd cv r r d cv r r

 
  

 
 

, ,P B
P B B P

f f f

I I I

cvd cvd cvd
          
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1. Predicted cyclic voltammetric behavior in the absence of faradaic reactions 

1.1 Recalling the model 

 

Fig. 4S. Schematic representation of the mesoporous films. The pores and the solution are in blue and the 

solid parts are in green. In red: potentials (WE, RE, B and P: potential at the working electrode, the reference 

electrode, in the bulk solid parts of the film and in the pores, respectively) and current densities (currents 

per working electrode unit surface area), IB, IP, and I in solid parts of the film, pores and solution, 

respectively. In black, the resistance and capacitance parameters of the equivalent transmission line: rB and P: 

distributed resistances of the bulk of the film and pores per unit of thickness of the film and for unit of 

surface area of the electrode, respectively. c: distributed capacitance per unit of surface area of the 

electrode and unit of thickness of the film, i.e. a capacitance per unit of volume of the film. RS is the 

solution resistance between the working and reference electrodes. L is a self-inductance related to the 

instrument bandpass characteristics.  

 

1.2. Governing equations 

We are looking for the time-dependence of the current density when the potential difference between the 

working and reference electrode is varied linearly, recalling that the potential across the film 

Working

Electrode

B(x)

c dx

P (x) rPdx

B (x-dx)
rBdx B (x+dx)

c dx

P (x+dx)
rPdxrPdx

P (x-dx)

c dx

Reference

Electrode

RE

WE

RS L

xdf0

I

IB

IP

rBdx rBdx
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   0, ,B P ft d t   is related to the potential difference between working electrode and reference 

electrode, WE RE   according to: 

 0,B WEt   and    
 

,P f RE u

dI t
x d t SR I t SL

dt
      

The definition of uR  deserves a particular attention. With no attempt to compensate ohmic drop effect 

by means of positive feedback, u SR R . When positive feedback is activated, part or total of SR  may be 

compensated at the risk of perturbing oscillations depending of the band pass performances of the 

instrument (represented by the self-inductance L). uR  may even become negative depending on the dual-

phase ohmic drop situation in the film. 

The potential differences and the current densities obey the following set of partial derivative equation 

accompanied by a series of initial and boundary conditions, at the two boundaries of the film, i.e., at the 

electrode (x = 0) and at the film solution interface ( fx d ). 

Ohmic drop in the solid parts of the film: 0B
B Br I

x


 


                                                 (1S) 

Ohmic drop in the pores: 0P
P Pr I

x


 


                                                                            (2S) 

Capacitance charging at the pores' walls 
 B PP BI I

c
x x t

   
  

  
                              (3S) 

Conservation of fluxes throughout the system: ( , ) ( , ) ( )P BI x t I x t I t                                (4S) 

Initial conditions:  

0t  :  , 0P REx  ,  ,0B WEx  ,    , , 0B PI x t I x t I    ( WE RE iE   ) 

Boundary conditions:  

0x  :   0,B WEt  ,  0, 0P t
x





,  0, 0PI t  ,  0,BI t I  

fx d :      ,P f RE u u
di dI

d t R i L SR I SL
dt dt

       ,  , 0B
fd t

x





,  , 0B fI d t  ,  ,P fI d t I  
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(S is the electrode surface area).  

The potential difference WE RE   is imposed by the instrument. In case of, e.g., an oxidation the linear 

potential scanning,: WE RE iE E vt     , iE  being the starting potential and v the scan rate, leads to:  

           0, ,B p f WE RE u i u
dI dI

t d t SR I SL E vt SR I SL
dt dt

             

and therefore: 

   
   

 2

2

0, ,B p f WE RE
u

t d t dI I
SR SL v

t t dtt

        
   

  
           (5S) 

1.3. Dimensionless formulation 

The advantage of a dimensionless formulation of the problem is that it minimizes the number of 

effective parameters from which the system depends, as these effective parameters are each a combination 

of several experimental parameters. 

Space:
f

x
y

d
 , time: 

f

t

t
   where  2

f f B Pt d r r c   is the time constant of the film. 

Potentials: 
   2 2

,B P
B P

f B P f B Pd cv r r d cv r r

 
  

 
 

Currents densities: 

 , ,P B
P B B P

f f f

I I I

cvd cvd cvd
          

Uncompensated solution resistance:
 

u
u

f B P

SR

d r r
 


  

Instrument bandpass characteristic: 

 
23

f B P

SL

d r r c
 


 

Thus, in dimensionless terms:  

 

 

/
0

1 /

B PB
B

B P

r r

y r r





 

 
                         (1’S)  

 

 

/
0

1 /

P BP
P

P B

r r

y r r





 

 
                         (2’S) 
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 B PP B

y y

  



  
  

  
                        (3’S)   

( , ) ( , ) ( )B Py y                                   (4’S) 

Initial conditions:  

0  :  ,0P REy  ,  ,0B WEy  ,    ,0 ,0 (0) 0B Py y      

Boundary conditions:  

y=0:  0,B WE   ,  0, 0P

y








,  0, 0P   ,  0,B    

1y  :  1, 0B

y








,  1, 0B   ,  1,P    

Potential scanning (from (5S)): 
    2

2

0, 1,
1

B p
u

t

     
 

 

     
  

  
 

It follows that, in dimensionless terms, the system depends on only three dimensionless parameters, viz.  

/B Pr r , u  and. 

1.4. Finite difference resolution 

The dimensionless film thickness is divided into l intervals: 1 l y   and thus y m y   with 

0,1,....,m l . The dimensionless time is divided into n intervals: f n    and thus j    with 

0,1,....,j n . Equations (1S’) to (4S’) then become: 

, 1, ,1

1 /

m j m j m j
B B B

P B

y
r r

   


 


                                           (1S”) 

, 1, ,1

1 /

m j m j m j
P P P

B P

y
r r

   


 


                                           (2S”) 

   , 1, , , , 1 , 1
0

m j m j m j m j m j m j
B B B P B P

y
     



        
  

       (3S”) 

 , 1, , 1,m j m j m j m j
B B P P   

 
                                                  (4S”) 

 

At each j, 4l+4 variables: for m = 0 to l, ,m j
B , ,m j

P , 
,m j

B , 
,m j

P  and the previous values (at j-1)are 

related 4l+4 equations thus leading to the following matrix equation  
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1 0 ................................................................0   

0 0 0 1  .........................................................0

........

1
0..............-1 0 0 0 1 0  0............0

1 /P B

y
r r




1
0..............0 -1 0 0 0 1 0  ...........0

1 /

0..............0 0 -1 0  -  1 0  ....................0

0..............0 0 0 -1 -   0 1   ...................0

........

0................

B P

y
r r

y y

y y



 

 

 

 



0,

0,

0,

0,

,
.......................................0 0  0

0.......................................................0 1 0 -

j
B

j
P

j
B

j
P

l j
B

u



















  
  
  
  
 


 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

  
  

,

,

,

,

,

,

,

,

                  

  
0

0

0

             

 2 lines (lin

    

es # 1 and 2)

( =1 to -1)

 

k j
B

k j
P

k j
B

k j
P

l j
B

l j
P

l j
B

l j
P

k l



















 
 
 
 
 
 

     
 

 
 
 
 

 
 
 
 
 
 
 
 
  


 


 


 
 

 

 

, 1 , 1

, 1 , 1

, 1

 

4  lines ( =1 to l)

(lines # 3 

to 4 2)

2 lines 
  

(lines # 4 +3 an )
 

d 4 4

0

m j m j
B P

m j m j
B P

l j
P

l m

l

l l

y

y


 




 








 

 



 
 
 
 
 
  
  
  
  
  
  
     
 
  
   
   








 

Inversion of the square matrix provides the values of  we are looking for. 

1.5. Laplace Transform approach 

Derivation of limiting behaviors of interest is greatly eased by the passage into the Laplace transform 

space as it is the case for all problems relative to electrical circuit and electronic devices. Any function f() 

is thus replaced by its Laplace transform: 

 

0

( ) ( ) expf s f s d  



  , where s is the Laplace variable corresponding to the dimensionless time 

variable . The main interest of Laplace transformation is that differentiation and integration are replaced 

by multiplication and division by the Laplace variable, s, respectively. The set of the (1S') – (4S') equations 

thus become (1S"') – (4S"') in the Laplace space.  

 
0

1 /

B B

P By r r

 
 

 
                                (1S"')  

 
 

 

/
0

1 /

P B PP

P B

r r

y r r


 

 
                              (2S"') 
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 B P
B Ps

y y

 
 

 
   

 
                        (3S"') 

( , ) ( , ) ( )B Py s y s s                                   (4S"') 

Differentiation of equations (1S"') and (2S"') leads to: 

 

2

2

1
0,

1 /

B B

P Br r yy

  
 

 
 and from (3S"'): 

 
 

2

2

1
0

1 /

B
B P

P B

s
r ry


 


  


 

 

2

2

/
0

1 /

P P B P

P B

r r

r r yy

  
 

 
, and from (2S"'): 

 
 

2

2

/
0

1 /

P P B
B P

P B

r r
s

r ry


 


  


 

leading by subtraction to: 

 
 

2

2
0

B P
B Ps

y

 
 

 
  


                       (5S"') 

Integration of equation (5S"') leads to: 

   exp expB P A y s B y s                   (6S"') 

and thus, in particular, to:  

  0,B P s A B    , i.e.,     0, 0,B Ps s A B                                                                (7S"') 

       1, exp expB P s A s B s     , i.e.        1, 1, exp expB Ps s A s B s        (8S"') 

We are looking for the dimensionless current-time response: 

    2

2

0, 1,
1

B p
u

t

     
 

 

     
  

  
    (9S"') 

In the Laplace space: 

    2 1
0,s 0,sB P us s s

s
           

  2

1

( ) us s z s s


 


 
        (10S"') 

after introduction of the Laplace dimensionless impedance of the film 
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   0,s 0,s
( )

B P
z s

 




         (11S"') 

This is not a Laplace transform, of any function of , unlike the  s and the  s. It is simply a function 

of s. The expression of z(s) as a function of the various parameters is derived in the Appendix.  

 

 

 

   
 

 

 
 

2

2 2 2

cosh/ 2 / 1 /1 1
( )

sinh sinh1 / 1 / 1 /

P B P B P B

P B P B P B

sr r r r r r
z s

ss s sr r r r r r


  

             

 

or:   

       

 
 

2 2

2 2 2

cosh2 1 1
( )

sinh sinh

B P B P B P

B P B P B P

sr r r r r r
z s

ss s sr r r r r r


  

  
, 

showing that the dimensionless Laplace impedance and the ensuing dimensionless current response, are

       

 
 

2 2
2

2 2 2

1

cosh2 1 1

sinh sinh

B P B P B P
u

B P B P B P

sr r r r r r
s s s

ss s sr r r r r r



 


  

      
      

  

perfectly symmetrical toward Br  and Pr .  

The following limiting situations of interest are reached when:  

a) 0s  , corresponding to asymptotic behavior at large values of . Then: 

since,   0
sinh

s
s s


  and 

 
 

0
cosh 1

sinh

s
s

ss


 : 

0 1
( )

s
z s

s


 , and therefore: 

0 1s

s



  

i.e., in the original space: 

1





  

i.e., a plateau of unity height is asymptotically reached at long times.  

b) s  , 0   in the original space, embodies the limiting behavior prevailing at the initial stages of  
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the current-time responses 

Then: 

     

2 2

2 2 2

21
( )

s sB P B P B P

B P B P B P

r r r r r r
z s

sr r r r r r

 
  

  
  

The Laplace dimensionless current then becomes: 

  
   

2 2 2
2

2 2

1 1

( ) 1

s

u B P B P
u

B P B P

s s z s s r r r r
s s s

sr r r r


 

 


 

     
    
     

 

The intrinsic properties of the film may be obtained from a situation where the resistance of the solution 

outside the film would be totally compensated by means of a hypothetically perfect positive feedback 

resistance compensation. Then, in the Laplace plane, this characteristic dimensionless current-time 

response is: 

   

0, 0 2 2

2 2

1

u

s

B P B P

B P B P

r r r r
s s s

r r r r

 




 


   
  
     

 

It is itself comprised between two limiting cases. One in which / 0B Pr r   or vice-versa / 0P Br r   

and the other in which / 1B P   . 

In the / 0B Pr r   or / 0P Br r   case: 

0, 0
/r  or / 0 

1

u

B P P B

s

r r r
s s 




 


 , i.e., in the original place 
0, 0

/r  or / 0 

2

u

B P P B

s

r r r
 

 




 


  

In the / 1B Pr r   case: 

 0, 0
/r  or / 0 

1

0.25 0.5u

B P P B

s

r r r
s s s 




 





.  

It follows that, in the original place, the tangent at the origin of the    is 4   . 
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1.6. Appendix 

Determination of A and B as a function of ( )s  from equations (1S"') and (2S"'): 

 

 

 

/
0, 0,

1 / r 1 / r

P B PB B P

P B P B

r r

y r y r

   
   

   
 

 

 

 

 

/
0

1 / r 1 / r

B P P B PB

P B P B

r r

y r r

   
  

  
 

We already know from equation (5S"') that: 

   
 

 

 

 

exp exp

/
0

1 / 1 /

B P

B P P B PB

P B P B

A y s B y s

r r

y r r r r

 

  

   

 
  

  

 

It follows that: 

    
 

 

 

/
exp exp 0

1 / 1 /

P B PB

P B P B

r r
s A y s B y s

r r r r


    

 
 

This equation is applied at each film boundaries: 

 
 

    
 

 

0 : 0,
1 /

/
1: exp exp 0

1 /

P B

P B

P B

y s A B
r r

r r
y s A s B s

r r





   


    


 

from which: 

 

 

 
 

   

exp/

1 / 1 /

exp exp

P B

P B P B

sr r

r r r r
A

s s s






 
 

 
, 

 

 

 
 

   

exp/

1 / 1 /

exp exp

P B

P B P B

sr r

r r r r
B

s s s




 
 

 
      (13S"') 

The next step consists in the derivation of    0,s 0,sB P   as a function of A and B so to obtain ( )z s  

according to equation (11S"').  

From (3S"') and (6S"'): 

:      exp expB
B Ps s A y s B y s

y


 

        
 
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     

         

         

   

exp exp

1 exp exp 0, exp exp

exp exp exp exp

0,
1 / 1 /

B

B

B

B B B B

P B P B

y s A y s B y s C

s A s B s C C s A s B s

y s A y s B y s s A s B s

y r r y r r







   

     
 

           
   

         
   

 
   

   

 

 
        exp exp exp exp

1 /

B

P B

s
A y s B y s A s B s

y



 

         
    

   (14S"') 

Integration of equation (14S"') leads to: 

 
 

   
 

     
11 1

0 00

1
exp exp exp exp

1 / 1 /
B

P B P B

s
A y s B y s A s B s y

r r r r
          

    
, i.e.: 

   
 

          1
1, 0, exp exp exp exp

1 /
B B

P B

s s A s B y s A B s A s B s
r r

             
   

Similarly from:  

   

     

     

        
 

 

 

 

 

 
      

 
1

0

exp exp

exp exp ',

0 ' 0, '

exp exp

/ /
0,

1 / 1 /

/
exp exp

1 /

/

P

P

P

P

P B P P B PP P

P B P B

P B PP

P B

P
P

s A y s B y s
y

y s A y s B y s C

s A B C C s A B

y s A y s B y s A B

r r r r

y r r y r r

r r
s A y s B y s s A B

y r r

r r









  





    
 

    
 

      

     
 

 
   

   

       
  

 
 

 
       

1 1

00
exp exp

1 /

B P

P B

A y s B y s s A B y
r r

           

 

   
 

 
        

/
1,s 0, exp exp

1 /

P B
P P

P B

r r
s A s B s A B s A B

r r
           

 
 

We are looking now for an expression of the potential difference    0, 1,B Ps s   in the dimensionless 

Laplace space that is going to serve in the expression of the dimensionless Laplace impedance of equation 

(8S"'). There are two ways of expressing:    0, 1,B Ps s  : 
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           0, 1, 0, 0, 0, 1,B P B P P Ps s s s s s            and: 

           0, 1, 0, 1, 1, 1,B P B B B Ps s s s s s           

Recalling that: 

   
 

          

   
 

 
        

1
1, 0, exp exp exp exp

1 /

/
1,s 0, exp exp

1 /

B B
P B

P B
P P

P B

s s A s B y s A B s A s B s
r r

r r
s A s B s A B s A B

r r

 

 

           
   

         
 

 

   

       

0, 0,

1, 1, exp exp

B P

B P

s s A B

s s A s B s

 

 

  

   
 

It follows that, according e.g. to the first option: 

           0, 1, 0, 0, 0, 1, ,B P B P P Ps s s s s s         
 

   
 

 
        

/
0, 1, exp exp

1 /

P B
B P

P B

r r
s s A B A s B s A B s A B

r r
            

 
 

taking into account that: 

   
 

 

   
 

exp exp/
2

1 / 1 /exp exp

P B

P B P B

s sr rs
A B

r r r rs s


  
   
   
 

 

   
     

 

 
   

1

1 /

/2
exp exp exp exp

1 / 1 /exp exp

P B

P B

P B P B

A B
r rs

r rs
A s B s s s

r r r rs s





  


               

 

   
 

 
        

/
0, 1, exp exp

1 /

P B
B P

P B

r r
s s A B A s B s A B s A B

r r
            

 
. 

Finally: 
   

       

 
 

2 2

2 2 2

cosh0, 1, 2 2 1 1
( )

sinh sinh

B P P B P B B P

B P B P B P

ss s r r r r r r
z s

ss s sr r r r r r

 



 
   

  
 



 S17 

2. Dual-phase ohmic drop effects in linear sweep voltammetric and prep-scale electrolysis 

on catalytic currents responses in Tafel conditions 

2.1 Recalling the model 

 

Fig. 5S. Schematic representation of the mesoporous films with a catalytic reaction represented by a the 

distributed faradaic impedance, Zf . Same symbolism as in figure 4S.  

 

2.2. Governing equations 

Ohmic drop in the bulk of the film: 0B
B Br I

x


 


                                                                          (10S) 

Ohmic drop in the pores: 0P
P Pr I

x


 


                                                                                            (11S) 

Catalysis at the pore s' walls: 
   

00

exp exp
B P B PcatP B

f

F kI I
F F

x x d RT RT

         
             

    (12S) 

 0

exp
B PF

f

I
F

d RT

   
   

 
        with:    

 
0

0 0 exp
B P

F catI F k F
RT

 


 
  
 
 

 

Equation (12S) expresses a steady-state situation (   / 0B P t     ) in which the capacitance is charged 

and the instrument is hypothetically perfect. 

Conservation of fluxes throughout the system: ( , ) ( , ) ( )P BI x t I x t I t                                               (13S) 

Boundary conditions:  

Working

Electrode

B(x)

P (x) rPdx

B (x-dx)
rBdx B (x+dx)

P (x+dx)
rPdxrPdx

P (x-dx)

Reference

Electrode

RE

WE

RS L

xdf0

I

IB

IP

rBdx rBdx

Zf dx Zf dx Zf dx
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0x  :   0B WE  ,  0 0P

x





,  0 0PI  ,  0BI I  

fx d :    P f RE u ud R i SR I     ,  0B
fd

x





,   0B fI d  ,  P fI d I  

The potential difference WE RE   is imposed by the instrument, and:  

     0B p f WE RE ud SR I        

2.3. Dimensionless formulation 

Because the discussion encompass here cases where there is no capacitive current (or where it is 

negligible) and because we focus on a faradaic catalytic current, the definition of the dimensionless current 

densities had to be changed: 

0 0 0
, ,cat cat cat cat catP B

P B B P

F F F

I I I

I I I
          (but for the sake of simplicity, in the following we 

note , ,cat cat cat
P P B B        ) 

and a new dimensionless parameter had to be introduced: 

  0
f P B F

F
d r r I

RT
    

defines the competition between two types of current-controlling factors, the catalytic reaction on the one 

hand and the effect of various resistances (or resistivities) on the other. 

Thus:  

0B B
B

P B

r

y r r





 

 
                                                                               (10S’)  

0P P
P

P B

r

y r r





 

 
                                                                                (11S’) 

 expP B
B P

y y

 
 

 
   

 
                                                                       (12S') 

( ) ( )B Py y                                                                                             (13S') 

Boundary conditions:  
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y=0:  0B WE  ,  0 0P

y





,  0 0P  ,  0B   

1y  :  1 0B

y





,  1 0B  ,  1P   

Potential:    
 

0 1
WE RE

B p u

F

RT

 
   


    

The system thus depends upon three dimensionless parameters, which can be conveniently chosen as: 

 , /P Br r  and u . 

2.4. Semi-analytical resolution 

From (10S' – 12S'):  

 
 

2

2
exp

B P
B P

y

 
  

 
 


 

and after integration, 

 
 

2
1

exp
2

B P
B P A

y

 
  

  
   

 
                                                                            (14S')  

 
2

,0 ,0

0

1
exp

2

B
B P

y

A
y


  



 
   

 
                                                                             (15S') 

 
2

,1 ,1

1

1
exp

2

P
B P

y

A
y


  



 
   

 
                                                                             (16S')  

It follows that:  

2
2 2

,0 ,0

2

ln
2

B

P B
B P

r
A

r r
 

 


  
  

  
   

 
 
 

                                                                   (17S')  
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2
2 2

,1 ,1

2

ln
2

P

P B
B P

r
A

r r
 

 


  
  

  
   

 
 
 

                                                                   (18S')  

From (10S') and (11S'): 

0P B B P B P

B P

r r r r

r y r y

 


   
  

 
 

By integration, taking the boundary conditions into account: 

   ,1 ,0 ,1 ,0
P B P B

B B P P
B P

r r r r

r r
    

 
      

To obtain the expression of the dimensionless catalytic current-potential response, it remains to 

introduce the potential difference between the working and the reference electrode as: 

 
,0 ,1

WE RE
B p u

F

RT

 
   


    

Defining WE REE     and using (17S') and (18S'): 

2 2
2 2 2 22 2

ln
2 2

P B

P B P B

r r

r r r r
P B

P B P B
u

r r
A A

r r r r FE

RT

   

 
 

 
 
       
        

        
      

    
    
    
 

      (19S') 

(+ for oxidations, - for reductions) 

A remains to be determined. We start from the variation of B P   with the dimensionless distance, y, 

given by equation (14S'). We assume that, starting from the electrode surface,   /B P y     is first 

negative and changes sign at try y  ( 0 1try  ) before reaching the film's end (in a second stage, the 

validity of these starting assumptions will be checked later on by reductio ad absurdum). Thus: 
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 

 

, ,

,0 ,0

2 exp 2

B tr P tr

B P

B P
tr

B P

d
y

A

 

 

 

  






 

   and: 

 , ,0 exp B tr P tr A       (showing that 0A ) 

Integration, taking the latter equation into account leads to: 

 ,0 ,0exp2
arctan

2

B P
tr

A
y

AA

   



 

Taking into account that, from (17S’),  
2

2
,0 ,02 exp 2 B

B P
B P

r
A

r r
    

 
    

 
: 

2
2

2

2
arctan

22

B

B P
try

AA


 

 

 
  
   

  
  

 
  

  

Similarly: 

2
2

2

2
1 arctan

22

P

B P
tr

r

r r
y

AA

 

 
  
   

   
  

 
  

 

An implicit expression for A as a function of ,  and /P Br r   is finally obtained: 

2 2
2 2

2 2

arctan arctan
2 2 2

P B

B P B P

r r

r r r rA

A A

   

   
      
          

     
    

   
      

      (20S') 

The dimensionless catalytic current-potential curve,  /FE RT , thus results from the elimination of A 

between equations (19S') and (20S') not leading to a close-form expression. Numerical resolution may thus 
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be called for to obtain the  /FE RT  relationship. An alternative to this approach is to numerically 

resolve the problem by direct finite difference resolution of the derivative equation system as described in 

the next section. Before we come to this point, we may use equations (19S') and (20S') to obtain the 

asymptotic behavior of the  /FE RT  response when E   (for oxidations) or E   (for 

reductions) 

In order to validate the assumption that that, starting from the electrode surface,   /B P y     is first 

negative, we make the assumption that   /B P y     is positive. We then obtain: 

 

 

, ,

,0 ,0

2 exp 2

B tr P tr

B P

B P
tr

B P

d
y

A

 

 

 

  








   and  , ,0 exp B tr P tr A       (showing that 0A ) 

Integration, taking the latter equation into account leads to: 

 ,0 ,0exp2
arctan

2

B P
tr

A
y

AA

   
 


 leading to 0try   which is absurd. 

2.5. Asymptotes of the catalytic Tafel plots for E   

If compensation has been adjusted to its maximal value, equation (19S') becomes: 

2 2
2 2 2 22 2

ln
2 2

r rP B

r r r rP B P B

P B

P B P B

r r
A A

r r r r FE

RT

   

 

 
 
 
       
        

        
     

    
    
    
 
 

  

Then, when E  ,    but A remains finite because the function 1tan  is limited to [0,/2] for a 

positive argument. It follows that: 
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2 2
2 2

ln
2 2

rP

r r BP B

P B

r

r r
P B

P B P B

r r

r r r r FE

RT

   





 
 
       
       

        
     

    
    
    
 
 

 

2 2

ln ln
2 2

P B

P B P B

r r

r r r rP B

P B P B

r rFE

RT r r r r




 
 

    
            

 

                  (21S') 

 

2.6. Finite difference resolution 

The finite difference method is applied to the set of equations (10S') – (14S') and attending boundary 

conditions in the same way as in section 1.4. 

Equations (10S') to (13S') become: 

 
, 1, ,

1 /

m j m j m j
B B M

P B

y
r r


   

 


                        (22S') 

 
, 1, ,/

1 /

m j m j m jP B
P P P

P B

r r
y

r r
   

 


                     (23S') 

 , 1, , ,
exp 0

m j m j m j m j
B B B Py    

             (24S') 

 , 1, , 1,m j m j m j m j
B B P P    

                       (25S') 

We now have to linearize  , ,
exp

m j m j
B P   

We can use the value obtained at the previous potential (or time) in the framework of a linear scan: 

       

     

      

, , , 1 , 1 , , , 1 , 1

, 1 , 1 , , , 1 , 1

, 1 , 1 , , , 1 , 1

exp exp

exp exp

exp 1

m j m j m j m j m j m j m j m j
B P B P B P B P

m j m j m j m j m j m j
B P B P B P

m j m j m j m j m j m j
B P B P B P

       

     

     

   

   

   

        
    

     
  

      
  

 

Equation (24S') becomes: 
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    
    

, 1, , , , 1 , 1

, 1 , 1 , 1 , 1

exp

                            1 exp

m j m j m j m j m j m j
B B B P B P

m j m j m j m j
B P B P

y

y

      

    

  

   

    
  

    
  

 

At each j, we have 4l+4 variables: for m = 0 to l: 
,m j

B , ,m j
P , 

,m j
B , 

,m j
P  and 4l+4 equations linking 

these 4l+4 variables and the previous values (at j-1) thus leading to the equation (DC)(D)=(P) 

This can be written as a matrix equation (DC)(D)=(P): (DC) being a square matrix of dimension 4l+4 and 

(D) and (P) are column matrix with 4l+4 lines, see below). Inversion of matrix (DC) allows getting each 

variable (in (D)) at each time corresponding to j knowing the values at j-1 (P).  

 

0,

0,

0,

0,

,

,

,

,

,

,

,

,

                  

/

    

( =1 to 

         

-

    

1

 

)

j
B

j
P

j
B

j
P

k j
B

k j
P

k j
B

k j
P

l j
B

l j
P

l j
B

l j
P

FE R

D kC l

























 
 
 
 

 
 
   
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
   

    , 1 , 1 , 1 , 1

 2 lines (lines # 1 and 2)

4  lines ( =1 to l) (lines # 3 to 4

  
0

2)

2 line

0

0

  
1

s (lines # 4 +3 and

exp

0

0
     4 4)

0
  

m j m j m j m j
B P B P

l m l
y

l l

T

       

  
  



 
 
 
        
  
  
  





















 

This allows filling the column matrix (P). Taking into account the initial conditions, the initial (P) matrix is 

nil. Then, at the beginning of each j calculation filling of column matrix (P) is as follows from previous 

values being in (D). 
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 

1 0  .........................................................................................................................................0   

0 0 0 1  ..........................................

DC 

........................................................................................0

........

0..............-1 0 0 0 1 0  0...............................................................
1 /P B

y
r r






 , 1 , 1

....................0

0..............0 -1 0 0 0 1 0  ..................................................................................0
1 /

0..............0 0 -1 0 exp  - exp

B P

m j m j
B P

y
r r

y y




    



 
   , 1 , 1

 1 0  .........0

0..............0 0 -1 -1 0 0 1 1   ...................................................................................................0

........

0.....................

m j m j
B P   

 

................................................................................................................0 0 1 0

0....................................................................................................................................0 1 0 - u

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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