Hammarström et al. SUPPORTING INFORMATION

The oncolytic efficacy and in vivo pharmacokinetics of [2-(4chlorophenyl)quinolin-4-yl](piperidine-2-yl)methanol (Vacquinol-1) are governed by distinct stereochemical features

Lars G. J. Hammarström^{1,6,*}, Robert K. Harmel¹, Mikael Granath², Rune Ringom², Ylva Gravenfors³, Katarina Färnegårdh³, Per H. Svensson⁴, David Wennman⁴, Göran Lundin⁴, Ylva Roddis⁴, Satish S. Kitambi⁵, Alexandra Bernlind⁴, Fredrik Lehmann², Patrik Ernfors⁵

¹Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden

²OnTargetChemistry AB, Virdings Allé 18, SE-754 50, Uppsala, Sweden

³Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Box-1030, SE-171 21, Solna, Sweden

⁴SP Process Development, Forskargatan 20J, SE-151 36, Södertälje, Sweden

⁵Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden

⁶Glionova Therapeutics, Västra Trädgårdsgatan 15, SE-111 53, Stockholm, Sweden

*Corresponding author, email: lars.gj.hammarstrom@ki.se

CONTENTS

Figure S1. Purity, ee and yield of recovered fractions from chiral separation of 300 mg 1 into enantiomerically pure fractions <i>Ia</i> , <i>Ib</i> , and <i>IIa</i> , <i>IIb</i> , corresponding to [<i>R</i> , <i>R</i>]3, [<i>S</i> , <i>S</i>]3 and [<i>R</i> , <i>S</i>]2, [<i>S</i> , <i>R</i>]2,	,
respectively	3
Figure S2. ¹ H- and ¹³ C-NMR of $[R,R]$ 3 (fraction <i>Ia</i>) in CDCl ₃	4
Figure S3. ¹ H- and ¹³ C-NMR of [<i>S</i> , <i>S</i>]3 (fraction <i>Ib</i>) in CDCl _{3.}	5
Figure S4. ¹ H- and ¹³ C-NMR of [<i>R</i> , <i>S</i>]2 (fraction <i>IIa</i>) in CDCl ₃	6
Figure S5. ¹ H- and ¹³ C-NMR of [<i>S</i> , <i>R</i>]2 (fraction <i>IIb</i>) in CDCl ₃	7
Figure S6. Analytical HPLC-UV (265 nm) chromatogram on Chiralpak AD-H column with overlaid traces of $[R,S]2$ (blue trace, ee: 99 %) and $[S,R]2$ (pink trace, ee: 97%),	8
Figure S7. Chiral analytical HPLC-MS/MS (ES+) indicating the intrinsic stereoselectivity of the synthesis according to Scheme 2	9
Figure S8. Compound $[S,R]2$ (top) and $[R,S]2$ (middle) from syntheses according to Scheme 2 prior t purification, containing 5-10% of $[R,R]3$ and $[S,S]2$, respectively	0 0

Figure S1. Purity, ee and yield of recovered fractions from chiral separation of 300 mg **1** into enantiomerically pure fractions *Ia*, *Ib*, and *IIa*, *IIb*, corresponding to [R,R]**3**, [S,S]**3** and [R,S]**2**, [S,R]**2**, respectively. Data is summarized in the table below.

	Column	Gradient	Purity	ee (%)	$\left[\alpha\right]^{25}_{-}$	Yield
Fraction			(%)		(CHCl.)	(mg)
ID					(CIICI3)	
<i>Ia</i> [<i>R</i> , <i>R</i>]3	Chiralcel	1:9 ethanol/heptane	95.3	100	+19.3	35.4
<i>Ib</i> [<i>S</i> , <i>S</i>] 3	OD-H	(0.2% diethylamine)	99.2	97.8	-18.9	25.4
IIa [R,S] 2	Chiralpak	3:7 ethanol/heptane	98.7	100	+14.1	48.6
<i>IIb</i> [<i>S</i> , <i>R</i>] 2	AD-H	(0.2% diethylamine)	98.1	99.0	-14.3	48.2

Figure S2. ¹H- and ¹³C-NMR of [R,R]**3** (fraction *Ia*) in CDCl_{3.}

Figure S3. ¹H- and ¹³C-NMR of [S,S]**3** (fraction *Ib*) in CDCl_{3.}

Figure S4. ¹H- and ¹³C-NMR of [R,S]**2** (fraction *IIa*) in CDCl₃

Figure S5. ¹H- and ¹³C-NMR of [*S*,*R*]**2** (fraction *IIb*) in CDCl₃

Figure S6. Analytical HPLC-UV (265 nm) chromatogram on Chiralpak AD-H column with overlaid traces of [R,S]**2** (blue trace, ee: 99 %) and [S,R]**2** (pink trace, ee: 97%), both prepared according to Scheme 1, panel B and C, respectively, compared with fraction *II* (racemic *erythro* 2, black trace), containing fraction *IIa* (Rt: 6.87 min, [R,S]**2**) and fraction *IIb* (Rt: 15.63 min, [S,R]**2**) isolated chromatographically.

Figure S7. Chiral analytical HPLC-MS/MS (ES+) indicating the intrinsic stereoselectivity of the synthesis according to Scheme 2.

Analysis performed on a ChiralPak IC column (Diacel), 2.1×150 mm held 20 °C. Mobile phase: 7.5 mM ammonium formate in CH3CN:H2O (98:2). Flowrate: 0.17 mL/min A: [S,R]2 (Rt: 18.17 min) is produced with 6% [R,R]3 (Rt: 11.39 min) resulting from of intermediate 24. No C17(S) isomers were detected. B: [R,S]2 (Rt: 14.92 min) is produced with 9% [S,S]3 (Rt: 13.21 min) resulting from formation of intermediate 20. No C17(R) isomers were observed. C: Reference chromatogram of compound 1 including all four stereoisomers.

Figure S8. Compound [S,R]**2** (top) and [R,S]**2** (middle) from syntheses according to Scheme 2 prior to purification, containing 5-10% of [R,R]**3** and [S,S]**2**, respectively.

Enantiopure compound [*R*,*S*]2 (bottom) after chromatographic purification. Chiral analytical HPLC-MS/MS (ES+) analysis performed on a ChiralPak IC column (Diacel), 2.1×150 mm at 20 °C. Mobile phase: 7.5 mM ammonium formate in CH₃CN:H₂O (98:2). Flowrate: 0.17 mL/min

