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Figure S1: Logarithm of the rescaled self diffusion coefficients niD
(s)
i , with the alkane

lenght ni, versus the free volume fraction Vfree/V
0
free. The latter is calculated independently

for a given adsorbed amount Γ. Symbols denote different mixtures: methane/dodecane
(dots), methane/hexane (circles), methane/propane (crosses) and methane/propane/hexane
(squares). The colors indicate the alkane type: methane (black), propane (blue), hexane
(green) and dodecane (red). The solid line is the prediction of the free volume theory
ln(niD

(s)) ∝ 1−V 0
free/Vfree taken from the single component case (inset where closed symbols

are for pure alkanes: methane (black), propane (blue), hexane (green), nonane (orange), and
dodecane (red), the solid line is a linear fit).
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Figure S2: Rescaled permeability nνiKi, using the correction inspired by the Zimm theory
(see text), of the different components in different mixtures as a function of the free volume
fraction Vfree/V

0
free (with ν = 0.7). The dashed line is a fit using eq 13 (see article) rewritten as

nνiKi = K0/(1−Vfree/V 0
free)× exp (−αV 0

free/Vfree) with α = 2.76, K0 = 4.97 10−15 m2 Pa−1 s−1

and using Vfree/V
0
free = 1− βΓ (β = 0.37, Fig. S3). Same color code as in Figure S1 is used.
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Figure S3: Free volume fraction Vfree/V
0
free versus the loading Γ = NCHx/N

∞
CHx

for different
mixtures (dots: methane/dodecane, crosses: methane/propane, circles: methane/hexane,
squares: methane/propane/hexane). The dashed line is a linear fit such as Vfree/V

0
free = 1−βΓ

with β = 0.37 (same value as for the pure component case).
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Figure S4: Rescaled permeability (ni+n0)Ki of the different components in different mixtures
as a function of the free volume fraction Vfree/V

0
free. The dashed line is a fit using the

free volume scaling eq 13 (see article) rewritten as (ni + n0)Ki = K0/(1 − Vfree/V
0
free) ×

exp (−αV 0
free/Vfree) with α = 2.76, K0 = 4.97 10−15 m2 Pa−1 s−1 and using Vfree/V

0
free = 1−βΓ

(β = 0.37, Fig. S3). Inset : Permeances Ki in a logscale versus the loading Γ. The dashed
lines correspond to the free volume predictions for the different alkanes. Same color code as
in Figure S1 is used.
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Molecular models

Nanoporous carbon material

The numerical model of nanoporous structure used in this study is taken from the work

of Bousige et al.1 The sample is constructed numerically with a Hybrid Reverse Monte

Carlo method to fit experimental data such as diffraction data, composition, density.2,3 In

particular, the structure is an atomistic pyrobitumen model containing 5410 atoms in a

5 nm cubic box characterized by a mass density of 0.8 g cm−3 and a porosity about 0.56.

The structure, which is analogous to a very mature kerogen (pore size, density, chemical

composition and hybridization ratio, morphological disorder),2,4–6 is mainly composed of

carbon atoms but also of hydrogen atoms (hydrogen index H/C = 0.091) and oxygen atoms

(oxygen index O/C = 0.0087). The structure is isotropic and characterized by pore sizes

ranging from 3 to 15 nm. Adsorption isoterms for different linear alkanes are shown in Fig. 1

together with a snapshot of a ternary mixture of methane, propane and hexane adsorbed in

the nanoporous structure.

n-alkanes model

For the fluids, we use a well established united atoms force field for alkanes.7 A coarse grained

approach is used in which each functional group CHx is represented by a single interaction

site (where x = 2 or 3 depending on the position of the group in the alkyl chain). The

pseudo atoms of one n-alkane molecule are connected as a flexible chain with bonds of a

fixed length (1.54 Å). Bending and torsion of the chain are described by intramolecular

interaction potentials thus constraining the angles between three neighboring atoms (θ) and

the dihedral angles formed by four neighboring atoms (ψ). The bending potential is a

harmonic potential:

Ubending(θ) =
C

2
(θ − θ0)2 (1)
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with C/kB = 62500K and θ0 = 114 ◦. The torsion potential is given by:

Utorsion(ψ) = C1[1 + cos(ψ)] + C2[1− cos(2ψ)] + C3[1 + cos(3ψ)] (2)

with C1/kB = 355.03K, C2/kB = −68.19K and C3/kB = 791.32K. Liquid-solid and liquid-

liquid interactions (also for functionnal sites of the same molecule separated by at least four

neighbors) are modeled by the Lennard-Jones (LJ) potential

ULJ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(3)

as a function of rij = |ri − rj| the distance between the centers of the interacting atoms.

We use the Lorentz-Berthelot mixing rules to compute the parameters εij =
√
εiεj and

σij = (σi +σj)/2 as a function of the interacion strength εi and the group diameter σi (given

in Tab. S5). The atoms of the structure are frozen during all the simulations performed in

this work so that the swelling and flexibility effects are not investigated here. Even if this

effect can increase the transport properties, we do not expect significant changes since the

structure of the matrix is mainly composed of graphitic domains and is thus rigid.1

Site ε/kB (K) σ (Å)

C 28 3.36

H 15 2.42

O 78 3.17

CH2 46 3.95

CH3 98 3.75

CH4 148 3.73

Figure S5: Lennard-Jones parameters used in the simulations for the atoms of the structure
(C, H, O) and the functionnal sites of the fluid molecules (CHx).
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Numerical methods

Configurational Biased Grand Canonical Monte Carlo simulations

(CBGCMC)

We use the Grand Canonical Monte Carlo scheme described in8,9 with a biased procedure to

simulate adsorption in the grand canonical (µVT) ensemble. Monte Carlo simulation steps

consist of insertion, deletion, partial regrowth, translation or rotation of the alkane chains.

Since we deal with long and flexible molecules in a very confining host matrix, we use a

biased technique for the insertion and partial regrowth to increase the probability to find

energetically favorable configurations. This technique allows us to control the composition

and the total loading of the adsorbed fluids.

Equilibrium Molecular Dynamics (EMD)

We consider mixtures of hydrocarbons composed of ` different types of n-alkanes at a molec-

ular density ρ = N/V with molecular fractions xi = Ni/N , with Ni the number of molecules

of component i and N the total number of molecules in the mixture (
∑`

i=1 xi = 1). We

define for a component i, its monomer length ni, its number density ρi = Ni/V , its chemical

potential µi and its centre of mass velocity:

vi =

Ni∑
k=1

vk
i /Ni (4)

with vk
i the velocity of the kth molecule of the component i.

In order to perform Equilibrium (EMD) or Non Equilibrium (NEMD) simulations of the

systems considered here, we use MD simulations in the NVT ensemble with the LAMMPS

software.10 We use a 1 fs time step to integrate the equations of motion over 10 ns long

simulation runs (40 for some low loading systems), where the initial configurations at differ-

ent loadings and compositions are prepared using the CBGCMC technique. We investigate
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several binary mixtures and a ternary case. In all the simulations, the temperature is kept

constant at 423 K by the use of a Nosé-Hoover thermostat with a relaxation time of 0.1 ps.

During NEMD, no thermostat is applied in the flowing direction, although it does not af-

fect the temperature of the system. Transport coefficients at equilibrium are computed by

integrating the velocity auto correlation functions:

D
(c)
i =

Ni

3

∫ ∞
0

〈vi(t) · vi(0)〉eq dt (5)

for the collective diffusivities, and

D
(s)
i =

1

3Ni

Ni∑
k=1

∫ ∞
0

〈vk
i (t) · vk

i (0)〉eq dt (6)

for the self diffusivities. Inserting eq 4 in eq 5 straightforwardly leads to the following

relations between the collective and the self diffusion coefficients:

D
(c)
i = D

(s)
i +

1

3Ni

Ni∑
k 6=p

∫ ∞
0

〈vk
i (t) · vp

i (0)〉eq dt . (7)

Non Equilibrium Molecular Dynamics (NEMD)

Steady state flow of hydrocarbon mixture in the kerogen structure subjected to a pressure

gradient ∇P was investigated using non equilibrium molecular dynamics. Since a pressure

gradient corresponds to a force per unit volume F /V = −∇P (V is the system volume), a

constant force f = F /N = −∇P/ρ was applied to each of the N molecules of the confined

mixture (ρ = N/V is the mixture number density). The mean fluid flow velocities for each

component is obtained using eq 4. Forces are applied on the z direction and the velocities

are evaluated in the same direction when steady-state is reached.
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Free volume computation

We use a grid based algorithm to determine the porous volume V 0
free of the material as well

as the free volume Vfree still available when a given amount of fluid is adsorbed in the host

matrix. At each node of the lattice we check if a pointlike probe lie within an atom of the

structure or of the fluid. The atoms in the simulation box are not allowed to move and are

considered as hard spheres of diameter σ (see Table S5). The volume of the simulation box

times the ratio of the number of free grid nodes to the total number of grid nodes gives the

free volume. A lattice spacing of 0.2 nm is found to be sufficient to obtain converged results.

Fig. S3 gives the linear evolution of the free volume normalized by the total porous volume

as a function of the total monomer loading Γ for all the mixtures considered in the article.

It is to be noted that these results are the same as for the pure component case.

Maxwell-Stefan framework

Here we intend to transpose our model to the Maxwell-Stefan (MS) theory which is widely

used in chemical engineering.11–13 We start by introducing the constitutive equations of the

MS theory for mixtures:

−∇µi
kBT

=
∑̀
j=1

xj(vi − vj)

D̃ij

, (8)

when the following condition is imposed to the potential gradients :

∑̀
i=1

xi∇µi = 0 . (9)

We have used here the so called Maxwell-Stefan diffusivities D̃ij which can be seen as the

inverse of phenomenological friction coefficients between two components. By comparison

with the Onsager framework we can relate the MS diffusivities with the Onsager coefficients
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; in the binary case we simply have

D̃12 =
x1
x2

Λ22 +
x2
x1

Λ11 − 2Λ12 . (10)

As in the case of the Onsager framework, the cross correlations can be neglected (inset of

Fig. S6). This motivates us to use predictive equations solely based on the self diffusion

coefficients of the pure components. For binary mixtures, the usual Darken relation

D̃12 ' x1D
(s)
2 + x2D

(s)
1 (11)

holds and can be used to establish a free volume theory for the MS diffusivities as

D̃ij =
kBT

nijξ0
exp

(
−αVmix

Vfree

)
(12)

where the parameters α and ξ0 are also given by the pure component case, with nij =

ninj/(xini + xjnj) as a mixing rule for the alkane length in the binary case. We can extend

these relations in the case of arbitrary mixture by the use of the multicomponent Darken

equation derived by Liu et al.:14

D̃ij ' D
(s)
i D

(s)
j

∑̀
k=1

xk

D
(s)
k

, (13)

which gives the same result as eq 11 when ` = 2. We can thus generalize the free volume

theory (eq 12) for an arbitrary number of components with the following mixing rule:

nij =
ninj∑`
k=1 xknk

(14)

The inset of Fig. S6 confirms the validity of the multicomponent Darken equations in our

cases, and that the free volume theory can be expressed in the MS framework within a

convenient form as for the Onsager framework. As in the Onsager framework, the MS
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diffusivities obey the same free volume scaling as in the pure component case where we have

used the recent predictive model of Liu et al.14 to obtain a mixing rule for the alkane length.
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Figure S6: Logarithm of the rescaled MS diffusivities nijD̃ij computed exactly from the

fluctuations,14 with nij = ninj/
∑`

k=1(xknk + xknk) coming from eq 13, as a function of the
free volume term in the same way as Fig. S1. The solid line corresponds to the prediction
of the self diffusion coefficient of the pure component case (Inset of Fig. S1). Inset: Com-
parisons between the MS diffusivities computed exactly and evaluated using eq 13 where
the cross correlations are neglected. Blue crosses, green circles and red dots denote respec-
tively methane/propane, methane/hexane and methane/dodecane binary mixtures. For the
methane/propane/hexane ternary mixture denoted by the empty squares, green, blue and
black correspond to the three different MS diffusivities involving respectively methane and
propane, methane and hexane, and propane and hexane.
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