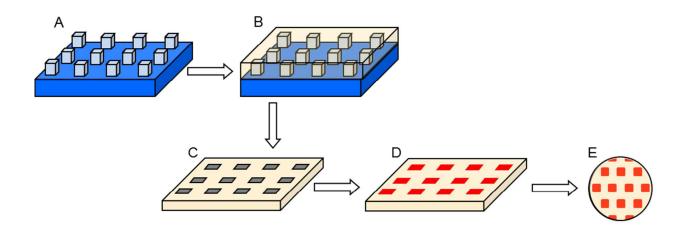
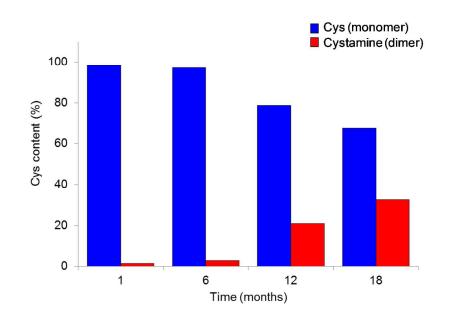
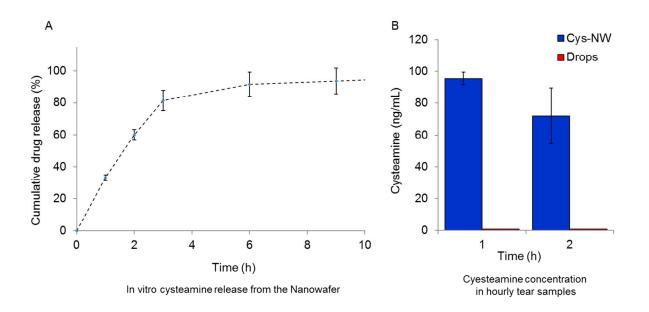
Supporting Information


Synergistic Cysteamine Delivery Nanowafer as an Efficacious Treatment Modality for Corneal Cystinosis

Daniela C. Marcano,^a Crystal S. Shin,^a Briana Lee,^b Lucas C. Isenhart,^a Xing Liu,^c Feng Li,^c James Jester,^b Stephen C. Pflugfelder,^a Jennifer Simpson,^b* Ghanashyam Acharya.^a*


a Department of Ophthalmology, Baylor College of Medicine, Houston, TX

b Department of Ophthalmology, University of California, Irvine, CA


c Metabolomics Core Facility, Baylor College of Medicine, Houston, TX

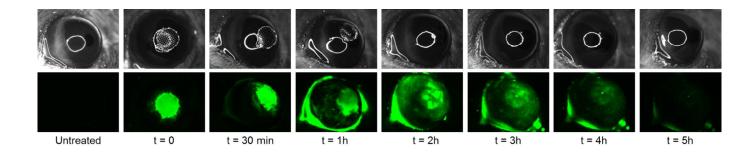

Figure S1. Schematic of the nanowafer fabrication *via* the hydrogel template strategy. (A) Silicon wafer master template having 500 nm square posts fabricated by e-beam lithography. (B) Fabrication of a PVA template. (D) PVA template. (E) PVA template filled with drug. (F) A drug filled nanowafer.

Figure S2. Cys-NW protects Cys from oxidation to therapeutically inactive cystamine. A plot depicting the stability of Cys (monomer) in the nanowafer compared to cystamine (dimer).

Figure S3. Cys-NW improves the drug residence time on the ocular surface. (A&B) Bright field and fluorescence images demonstrating the application of a nanowafer on mouse eye. (C) In vitro drug release profile of Cys-NW. (D) Cys content in the tear samples collected after Cys-NW and Cys eye drop instillation. Data is represented as mean±SEM.

Figure S4. Demonstration of adherence and dissolution of the nanowafer during the course of the drug release. Top Panel: Bright field micrographs demonstrating the disappearance of the nanowafer after 1 hour (please see the arrows pointing the position of the nanowafer). Bottom Panel: Fluorescence micrographs demonstrating the presence of fluorescein in the corneal tissue for up to 5 hours.