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Table S1. 
1
H-NMR Resonance assignments with chemical shifts, multiplicities and coupling 

constant values for signals identified in aqueous liver biopsy extracts. 

Metabolites identified 
Chemical shift (δ, 

ppm) 

Multiplicity 

(j, Hz) 

Unassigned 0.80   t (7.5) 

2-Hydroxybutyrate-CH3 0.89 t (7.5) 

L-Valine-CH3 0.98 d (7.1) 

2-Aminobutyrate-CH3 0.98 t (7.5) 

Propylene glycol-CH3 1.14 d (6.5) 

Lactate-CH3 1.33 d (7.1) 

Alanine-CH3 1.48 d (7.1) 

Lysisne-C5-CH2 1.73 m 

Ornithine-C4-CH2 1.73 m 

Acetate-CH3 1.93 s 

Methionine-S-CH3 2.13 s 

Glutamate-C4-CH2 2.35 m 

Oxaloacetate-CH2 2.38 s 

Succinate-CH2 2.41 s 

Glutamine-C4-CH2 2.45 m 

Hypotaurine-C4-CH2 2.65 t (7.1) 

Cadaverine-C1/5-CH2 2.68 t (7.3) 

Aspartate-CH2a 2.69 dd (8.9) 

Sarcosine-CH3 2.74 s 

TMA-CH3’s 2.88 s 

Dimethylglycine-CH3’s 2.90 s 

Creatine-CH3 3.08 s 

Choline/Phosphocholine-CH3’s 3.21 s 

Betaine-CH3’s 3.23 s 

Taurine-S-CH2 3.26 t (6.8) 

GSSG-Cys-CH2a 3.33 m 

Methanol 3.36 s 

Glycine 3.57 s 

Glycerol-C1/3-CH2 3.63 m 

Threonine-CH2 4.26 m 

Ascorbate 4.50 d (2.1) 

GSH-Cys-CH 4.58 m 

β-Glucose-/Glucose-6P-C1-CH 4.66 d (8.0) 

Phosphoenolpyruvate-CH2a 5.18 t (1.1) 

α-Glucose-/Glucose-6P-C1-CH 5.25 d (3.8) 

Glycogen 5.42 br. 

Uracil-CO-CH 5.81 d (7.7) 
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GTP-C1’-CH 5.98 d (6.8) 

3-Hydroxyphenylacetate-CH2 6.78 m 

Tyr-C2/6-CH 6.90 d (8.2) 

Phenylalanine 7.32 m 

Guanosine-C8-CH 7.97 s 

GTP/GMP-C8-CH 8.12 s 

Hypoxanthine-C8-CH 8.21 s 

Inosine-C2-CH 8.35 s 

Niacinamide-C2-CH 8.91 s 

Nicotinate-C2-CH 8.93 s 

 

Abbreviations: Cys, cysteine; Glucose-6P, glucose-6-phosphate; GSH and GSSG, reduced and 

oxidised glutathione, respectively; GMP, guanosine monophosphate; GTP, guanosine 

triphosphate; TMA, trimethylamine; br., broad.  
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 (a) 

 

(b) 

 

Figure S1. Receiver operating characteristic (ROC) curve exploration and testing probability 

view for direct comparisons of the NP-C1 disease classification with the (a) WT and (b) HET 

ones. These plots are derived from a balanced sub-sampling RFs model training strategy 

(predicted class probabilities for each sample employed the most significant 25 variables 

determined from the AUROC testing strategy). 
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Figure S2. 400 MHz 2D 
1
H-

1
H COSY NMR profiles of aqueous liver biopsy sample extracts 

 

 

 

 

Figure S2. Full and expanded 5.8-9.2 ppm region of the 400 MHz 
1
H-

1
H COSY spectrum of an 

aqueous liver sample extract (prepared as outlined in section 2.2). Typical spectra are 

shown. Cross-peaks for selected metabolites are indicated in the spectrum. Abbreviations: 

Phe-C1/C2, Phenylalanine-C1/C2-CH; Tyr-C3/C5, Tyrosine-C3/C5-CH; Tyr-C2/C6, Tyrosine-

C2/C6-CH; Lys/Orn, Lysine-C6-CH2/Ornithine-C5-CH2; Hypotau, Hypotaurine-C4-CH2SO2
-
; 

Met, Methionine-C4-CH2; Val, Valine-CH3; Thr, Threonine-C3-CH; Nic/Nia-C4, 

Nicotinate/Niacinamide-C4-H; Phe-C3/4/5, Phenylalanine-C3/4/5-CH; Glu, Glutamate-C4-

CH2a. 
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Figure S3: Box plots of TSP-normalised and Pareto-scaled intensities of GSSG and GSH 
1
H 

NMR resonances (Table S1), and the GSH:GSSG molar ratio. P-values were determined from 

the ANCOVA model employed (equation 1). Abbreviations: ns, not significant; 
*
, p < 0.05; 

**
, 

p < 0.01. 
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Section S1. 

Metabolomic advantages offered by the RFs multivariate analysis strategy employed: 

Several MV analysis strategies have been successfully utilised for the analysis of datasets in 

which the number of possible predictor variables exceeds the number of samples available, 

i.e. P > n situations; one approach is the RFs strategy, which has been successfully applied in

a range of metabolomics studies.
1,2

 Indeed, the RFs technique provides a 

prediction/classification model consisting of an ensemble of tree-structured classifiers.
3
 

Our RFs model was primarily tuned in order to improve its performance, and this approach 

has been previously investigated by Diaz-Uriate et al.,
4
 in which the investigators 

demonstrated that both mtry and ntree can be tuned seperately since they are independent 

parameters. Moreover, the computational time required proportionally increases with the 

number of trees, and selecting a very large number does not necessarily provide an 

improved performance, and this approach was further explored in this investigation. Mtry 

has been shown to be the most critical parameter to tune. The default value for the dataset 

analysed was 11.66 [(136)
1/2

], and therefore the value employed was 11.

In order to improve the accuracy of the variable selection, an iterative cross-validated 

process was employed for the analysis of our dataset. In view of the random sub-sampling 

procedure conducted by RFs for classification purposes, the variables with selectively higher 

MDA values can, of course, vary when this classification technique is repetitively applied to 
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MV analysis of the same dataset; moreover, in order to explore as many combinations of 

samples in the training and test sets possible, an iterative process was implemented here, 

although the OOB error term computation already involves a cross-validation (CV) 

procedure.
5
 An assessment of the performance of this iterative cross-validated process was 

also conducted in order to test the reliabilities of the selected metabolite variables, and this 

revealed that, with the employment of the MDA value of the 15
th

-ranked variable as a 

threshold, the top 5 ranked variables selected would not have been selected in 2, 3, 5, 10 

and 12% respectively of the CV testing cases (Figure S4). As expected, this percentage 

increases for variables with lower rankings.  

 

Further iterative processes have been proposed, such as the recursive elimination of 

features by Diaz-Uriarte et al.,
4
 in which the variable importance parameters (VIPs) are 

computed during the RFs analysis, a process repeated following removal of 20% of the least 

important variables until the OOB error term decreases to a stable value. This was also 

investigated in detail in.
6
 The MV analysis strategies described in these works have the final 

goal of reducing the number of variables to a minimum. However, in cases where the 

selected features may be related to further, albeit associated, health disorders arising from 

the classifiable disease process and not the disease per se, such reductions in the number of 

biomarker variables retained may limit the level of metabolomics information derived 

therefrom.     
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Figure S4. Mean decrease in accuracy (MDA) values computed for the 5 most effective 

discriminatory variables throughout 100 iterations. For this model, the black line represents 

the mean MDA value for the 15
th

 most important selected ISB variable 

(nicotinate/niacinamide-C4-CH) acting as a threshold for variable selection. 
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