Supplementary Information for

Plastic chip based magnetophoretic immunoassay for point-of-care diagnosis of tuberculosis

Jeonghyo Kim ${ }^{1, \dagger}$, Minji Jang ${ }^{1, \dagger}$, Kyoung G. Lee ${ }^{2}$, Kil-Soo Lee ${ }^{3}$, Seok Jae Lee ${ }^{2}$, Kyung-Won Ro ${ }^{4}$, In Sung Kang ${ }^{4}$, Byung Do Jeong ${ }^{4}$, Tae Jung Park ${ }^{5}$, Hwa-Jung Kim ${ }^{6}$, Jaebeom Lee ${ }^{1, *}$

${ }^{1}$ Departments of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
${ }^{2}$ Department of Nano Bio Research, National NanoFab Center (NNFC), Daejeon 305-806, Republic of Korea
${ }^{3}$ Department of Bacterial Respiratory Infections, Center for Infectious Diseases, National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju 28159, Republic of Korea
${ }^{4}$ Scinco R\&D Center, 746, Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea
${ }^{5}$ Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
${ }^{6}$ Department of Microbiology and Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
†Both contributed equally.
*Corresponding authors: Jaebeom Lee, PhD; E-mail: jaebeom@pusan.ac.kr

Supplementary Methods

Calculation of LOD

The LOD was calculated by the 3σ criterion method ${ }^{1}$, where σ stands for the standard deviation of negative control background data $(\mathrm{n}=5)$. In the analytical procedure, total signal $\left(\mathrm{S}_{\mathrm{t}}\right)$ can be explained by the sum of background signal $\left(\mathrm{S}_{\mathrm{b}}\right)$ and analyte signal $\left(\mathrm{S}_{\mathrm{x}}\right)$. And the analyte signal can be expressed as gC_{x}, where g is the sensitivity of instrument which is equal to the slope of calibration curve. According to this analytical method, LOD of signal ($\mathrm{S}_{\text {LOD }}$) is calculated as equation S1,
$\mathrm{S}_{\mathrm{LOD}}=\mathrm{S}_{\mathrm{t}}-\mathrm{S}_{\mathrm{b}} \geq 3.3 \delta_{\mathrm{b}}$. (equation S 1)

The $\mathrm{S}_{\text {LOD }}$ value must be higher than 3.3 times the δ_{b} to have 99.9% of confidence limit, where the δ_{b} is standard deviation of the background signal. LOD of concentration ($\mathrm{C}_{\mathrm{LOD}}$) can be obtained by substituting the calculated $\mathrm{S}_{\text {LOD }}$ value for Y in the regression equation for the signalconcentration calibration curve (Figure 5A).

Based on these considerations, the resulting $\mathrm{S}_{\mathrm{LOD}}$ and $\mathrm{C}_{\text {LOD }}$ are 2.3% and $1.8 \times 10^{-12} \mathrm{~g} \cdot \mathrm{~mL}^{-1}$, respectively.

Supplementary Figures

Figure S1. Comparative time-based UV-vis absorbance kinetic plot for magnetophoresis time.

Figure S2. SEM image of bare magnetic micro particles used as the core material for MMP@Au probes.

Figure S3. Particle size distribution for MMPs and MMP@Au NPs.

Supplementary Movie S1. Video clip showing real-time monitoring of the magnetophoresis process before and after coating of the MMP cores with Au shells.

Supplementary Tables

Sputum number	Sex	$\begin{gathered} \mathrm{pcMPI}^{*} \\ (n \triangle A B S, \%) \end{gathered}$	Gold standard		
			$\begin{gathered} \mathrm{AFB} \\ \text { test** } \end{gathered}$	MGIT growth unit***	PCR
1	F	9.25	2+	++	MTB
2	F	13.17	$2+$	++	MTB
3	F	8.13	$2+$	++	MTB
4	M	8.03	$2+$	++	MTB
5	F	0.21	$2+$	++	MTB
6	M	3.96	$2+$	+	MTB
7	M	-5.02	$2+$	++	MTB
8	M	-9.84	$2+$	++	MTB
9	F	17.82	$2+$	++	MTB
10	M	11.52	2+	+++	MTB
11	M	6.84	$2+$	++	MTB
Sputum number	Sex	$\begin{gathered} \mathrm{pcMPI}{ }^{*} \\ (n \triangle A B S, \%) \end{gathered}$	Gold standard		
			$\begin{gathered} \text { AFB } \\ \text { test** } \end{gathered}$	MGIT growth unit***	PCR
12	F	-0.32	$2+$	+	NTM (M.intracellulare)
13	M	3.90	2+	++	NTM (M.intracellulare)
14	M	-12.52	$2+$	++	NTM (M.avium)
15	M	-7.35	2+	++	NTM (M.avium)
16	M	1.84	$2+$	++	NTM (M.avium)

* Values for pcMPI analysis represent $n \triangle A B S(\%)$. Higher $n \triangle A B S(\%)$ value indicate higher concentration of secretory CFP-10 was monitored.
** Acid-Fast Bacilli (AFB) Smear test
*** Bacterial culture result from BACTEC MGIT 960 instrumentation. Detection signal levels: High (> 1,000 growth unit (GU)) for +++ ; medium (100 to $<1000 \mathrm{GU}$) for ++ ; and low (10 to $<100 \mathrm{GU}$) for + . Manufacturer-set threshold was 50 GU .

Table S1. Comparison of results from the pcMPI and conventional diagnostic systems (AFB test, MGIT bacterial culture, PCR) in clinical sputum samples.

Supporting Information References

1. Apostol, I.; Miller, K. J.; Ratto, J.; Kelner, D. N. Comparison of Different Approaches for Evaluation of the Detection and Quantitation Limits of a Purity Method: A Case Study Using a Capillary Isoelectrofocusing Method for a Monoclonal Antibody. Anal. Biochem. 2009, 385, 101-106.
