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Ⅰ. Structural characterization of novolac resins 

 

 

Figure S1 MALDI-TOF spectra of novolacs 

 

Figure S2 
1
H NMR (a) and 

13
C NMR (b) spectra of novolacs 
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Figure S3 FTIR spectra of novolacs 

Table S1 Elemental composition of novolacs 

Novolacs 
Content of elements (wt%) Atomic ratio 

C H O N S sum C H O 

2123
#
 76.01 5.85 17.37 0.23 0.11 99.57 6 5.48 1.03 

3490
#
 76.43 5.87 16.58 0.20 0.09 99.16 6 5.44 0.98 

Table S2 Properties of novolacs 

Novolacs Density(g·cm
−3

, 298K) Tg (K) Softening point (K) 

3490
#
 1.210 324.1 378.15 

2123
#
 1.196 316.4 373.15 
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Ⅱ. Model construction 

Table S3 Composition of novolac models 

Model 

Single chain Bulk model 

Formula 
Molecular 

weight 
Chains 

Phenolic 

rings 
Atoms 

End 

phenolic 

rings 

Ratio of 

end/total 

phenolic 

ring 

PhOH C6H6O 94 960 960 12480 480 1.00 

Boo-2(Bop-2)
*
 C13H12O2 200 480 960 12960 480 1.00 

Boo-3(Bop-3) C20H18O3 306 300 900 12300 600 0.67 

Boo-4(Bop-4) C27H24O4 412 220 880 12100 440 0.50 

Boo-6(Bop-6) C41H36O6 624 148 888 12284 296 0.33 

Boo-8(Bop-8) C55H48O8 836 120 960 13320 240 0.25 

Boo-12(Bop-12) C83H72O12 1260 74 888 12358 148 0.17 

Boo-16(Bop-16) C111H96O16 1684 56 896 12488 112 0.13 

Boo-20(Bop-20) C139H120O20 2108 44 880 12276 88 0.10 

Boo-mix 129 889 12453 259 0.29 

Bop-mix 121 882 12348 243 0.28 
*
 Boo-x and Bop-x share the same composition when the DP(x) is same. 
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Figure S4 Molecular weight distributions and snapshots of Boo-mix and Bop-mix 

Table S4 Equilibrated density of novolac models (300K) 

Model ρ/g·cm
−3

 Model ρ/g·cm
−3

 

PhOH 1.069   

Boo-2 1.176 Bop-2 1.186 

Boo-3 1.189 Bop-3 1.190 

Boo-4
*
 1.195 Bop-4 1.218 

Boo-6 1.207 Bop-6 1.210 

Boo-8 1.209 Bop-8 1.213 

Boo-12 1.205 Bop-12 1.208 

Boo-16 1.216 Bop-16 1.202 

Boo-20 1.194 Bop-20 1.201 

Boo-mix 1.196 Bop-mix 1.215 

*
 Only the density of novolac models with DP ≥ 4 were compared with the density of real novolac resins. 
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Figure S5 The proportion of nonbond interaction energy (black dots) and van der Waals energy (blue dots) 

in the total energy in Boo-8, calculated at different Ewald accuracy levels (the horizontal axis). It can be 

seen that the plots converged around the accuracy of 10
−5

 kcal/mol. 
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Ⅲ. Glass transition temperature 

 

Figure S6 Glass transition temperatures based on density~temperature relationship of Boo-8 and Bop-8 

(a), Boo-12 and Bop-12 (b), Boo-16 and Boo-16 (c), Boo-20 and Boo-20 (d), Boo-mix and Bop-mix (e). 

The density~temperature data were obtained from a gradually cooling down process with a cooling rate of 

20 K/200 ps. Densities of the last 500 frames in 1000 frames at each temperature were averaged. 
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Figure S7 The free volume fraction~temperature relationship of Boo-8 and Bop-8 (a), Boo-12 and 

Bop-12 (b), Boo-16 and Boo-16 (c), Boo-20 and Boo-20 (d), Boo-mix and Bop-mix (e). The free volume 

for each model were calculated with a probe radius of 1.4Å. 
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Figure S8 The ratio of hydrogen bonds number to total oxygen number for Boo-x (left) and Bop-x (right). 

There are obvious infection points (about 400 K) in NHB/NO~temperature curve of Boo-x, while the 

infection points of Bop-x curves are not significant. 

 

Figure S9 Nonbond energy (including van der Waals, hydrogen bond and electrostatic energy) change 

during the cooling down process of Boo-x (left) and Bop-x (right). There are obvious inflection points 

around 500 K for DP=8~12 and Boo-mix/Bop-mix. 
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Figure S10 Van der Waals energy change during the cooling down process of Boo-x (left) and Bop-x 

(right). There are obvious inflection points around 500 K for Boo-mix, Bop-mix, Bop-8 and Bop-16. 

 

Figure S11 Torsion energy change during the cooling down process of Boo-x (left) and Bop-x (right). 

There is no obvious inflection in the torsion energy~temperature curves. 
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Figure S12 MSD of atoms in novolac models at 300 K: (a) all atoms in Boo-x; (b) end phenol rings in 

Boo-x; (c) all atoms in Bop-x; (d) end phenol rings in Bop-x. There are obvious differences among phenol, 

Boo-2/Bop-2 and other novolacs. In order to observe these curves in one figure, the data at the range of 

0−150 ps were adopted.  
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Figure S13 MSD of atoms in novolac models at 540 K: (a) all atoms in Boo-x; (b) end phenol rings in 

Boo-x; (c) all atoms in Bop-x; (d) end phenol rings in Bop-x.   
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Ⅳ. Nearest coordination numbers of oxygen atoms 

The nearest coordination number (Z) is calculated with the most commonly used definition: 

 
max

min

r

r
0 drrrgπρZ 2)(4  (1) 

Where g(r) is the RDF of oxygens, rmin=2.3A and rmax=3.4A were adopted in this study; ρ0 is the number 

density of oxygen atoms in each models. 

 

Figure S14 4πr
2
ρg(r) curve of O···O in: (a) Boo-x at 300 K; (b) Boo-x at 540 K; (c) Bop-x at 300 K; (d) 

Boo-x at 540 K 
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Figure S15 Nearest coordination numbers of oxygen atoms in Boo-x and Bop-x 

 

Figure S16 Ratio of hydrogen bonds to total oxygen atoms (NHB/NO) in novolac models 

 

Figure S17 Distances and angles between phenolic ring pairs in Boo-8. The typical distance between the 

methylene linked phenolic ring pair is 4.8Å, while 4.2Å for phenolic ring pair that are not bridged. 
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Ⅴ. Averaged reduced density gradient of frozen end phenolic rings 

The following color codes are employed to distinguish interaction types of noncovalent interaction: 

· Blue for the highly attractive interactions (such as hydrogen bonds) 

· Green for the weak interactions (such as dispersive-like van der Waals) 

· Red for repulsive interactions (such as steric clashes)  

 

Figure S18 Reduced density gradient isosurfaces (s
pro

=0.35) for interaction of frozen end phenol ring in 

Boo-x and Bop-x at 540 K. The surfaces are colored on a blue-green-red scale according to values of 

sign(λ2)ρ, ranging from −0.06 to +0.05 au. Blue indicates strong attractive interactions, and red indicates 

strong nonbonded overlap. 
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Ⅵ. Conformational analyses 

 

Figure S19 Probability distribution of the radius of gyration (Rg) of Boo-x (a) and Bop-x (b). The novolac 

chains, both in Boo-x and Bop-x, tend to stretch out at 540 K, lead to narrow distributed Rg distribution 

curves. 

 

Figure S20 The minimum energy path of the torsion energy v.s. dihedral angles in Boo-2 (black dots) and 

Bop-2 (red dots).  
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Table S5 Boltzmann average of cosφ for Boo-2 and Bop-2 

 300 K 540 K 

Boo-2 0.028 0.065 

Bop-2 0.120 0.122 

 

 

 

 

Figure S21 Dihedral angel distribution in Boo-8 (black lines) and Bop-8 (red lines) 

 

 


