General Information. All reactions were carried out in an inert-atmosphere glove box or by using standard high vacuum and Schlenk line techniques unless otherwise noted. Tetrahydrofuran, benzene, hexanes and Et₂O were distilled from purple solutions of sodium and benzophenone immediately prior to use. The NMR solvents were dried from activated molecular sieves (4 Å). All organic alkyne substrates were received from commercial sources and used without further purification. The ¹H, ¹³C and ³¹P NMR spectra were recorded on a GE GN-Omega 300 MHz FT-NMR spectrometer. Mass spectra were recorded from a Hewlett-Packard HP 5970 GC/MS spectrometer. High resolution FAB mass spectra were performed at the Center of Mass Spectrometry, Washington University, St. Louis, MO. Elemental analyses were performed at the Midwest Microlab, Indianapolis, IN. Preparation of [(PCy₃)₂(CO)(CI)Ru=CHCH=C(CH₃)₂]⁺BF₄⁻ (1). The ruthenium-alkylidene complex 1 was prepared by following the literature procedure. ¹² To a Et₂O (30 mL) solution of **6b** (100 mg, 0.13 mmol), HBF₄·OEt₂ (25 μL, 0.17 mmol, 54 wt. %) was added dropwise at room temperature. After stirring for 30 min at room temperature, the mixture was concentrated to about 10 mL, and the solution was triturated with 10 mL of hexanes. The resulting yellow precipitate was collected by a filtration, and washed several times with small amounts of Et₂O and hexanes to give 1 as a bright yellow solid (89 mg, 80% yield). ¹H NMR (CD₂Cl₂, 300 Mhz) δ 15.88 (d, J = 11.1 Hz, Ru=CH), 7.51 (d, J = 11.1 Hz, CH=C(CH₃)₂), 2.55 (br s, CH₃), 1.93-1.70, 1.50-1.19 (m, P(C₆H₁₁)₃); ¹³C{¹H} NMR (CD₂Cl₂, 75 MHz) δ 286.4 (br s, Ru=CH), 197.3 (br s, CO), 165.0 (Ru=CHCH=), 147.1 (=C(CH₃)₂), 35.8 (pseudo t, J_{PC} = 9.4 Hz, C_{ipso} of P(C₆H₁₁)₃), 30.4 (d, J_{PC} = 54 Hz, C_{ortho} of P(C₆H₁₁)₃), 28.1 (m, C_{meta} of P(C₆H₁₁)₃), 26.5 (C_{para} of P(C₆H₁₁)₃), 22.7 and 15.7 (=C(CH₃)₂); ³¹P{¹H} NMR (CD₂Cl₂, 121.6 MHz) δ 48.6 (s, PCy₃); FAB-MS: 793.4 (M+-BF₄). Preparation of (PCy₃)₂(CO)(Cl)RuH (5). The ruthenium complex [RuCl₂(COD)]₂ (500 mg, 1.78 mmol) and PCy₃ (1.00 g, 3.56 mmol) were charged in a 50 mL Schlenk tube equipped with a Teflon valve in a glove box. A 20 mL of anhydrous ethanol was added to the reaction tube *via* a syringe. The Teflon valve was closed, and the reaction tube was heated for 2 days in an oil bath at 90-95 °C. The yellowish microcrystalline solid was precipitated during the reaction. After cooling the reaction mixture to room temperature, the solid was filtered and washed with ethanol and Et₂O. Drying under vacuum led to analytically pure product 5 as a bright yellow microcrystalline solid in 85% yield (1.27 g). ¹H NMR (CD₂Cl₂, 300 MHz) δ 2.40-2.32, 2.04-1.71 and 1.54-1.23 (m, P(C₆H₁₁)₃), -24.7 (t, $J_{PH} = 18.0$ Hz, Ru-H); ¹³C{¹H} NMR (CD₂Cl₂, 75 MHz) δ 201.9 (t, $J_{PC} = 13.6$ Hz, CO), 34.9 (pseudo t, J = 9.6 Hz, C_{ipso} of P(C₆H₁₁)₃), 30.43 (C_{meta} of P(C₆H₁₁)₃), 28.33 (C_{ortho} of P(C₆H₁₁)₃), 27.20 (C_{para} of P(C₆H₁₁)₃); ³¹P{¹H} NMR (CD₂Cl₂, 121.6 MHz) δ 46.6 (s, PCy₃); Anal. Calcd for C₃₇H₆₇OP₂ClRu: C, 61.26; H, 9.31. Found: C, 61.26; H, 8.97. Preparation of (PCy₃)₂(CO)(Cl)RuCH=CHR (R = Ph (6a), C(CH₃)=CH₂(6b)). The ruthenium-vinyl complex 6 was prepared by following the literature procedure. To a suspension of 5 (100 mg, 0.14 mmol) in 15 mL of benzene, was added desired alkyne RC≡CH (0.18-0.20 mmol) *via* a microsyringe. The mixture became clear red-purple solution upon stirring for a few minutes at room temperature. After stirring for 30 min, the solvent was removed under vacuum, and the residue was washed with dry acetone (5 mL, 3 times). Drying under a vacuum gave 6 as a red-purple solid in 90-95% yields. For **6a**: 1 H NMR (C₆D₆, 300 MHz) δ 8.92 (d, J = 14.8 Hz, RuCH=), 7.34 (d, J = 7.8 Hz, Ph_{ortho}), 7.24 (t, J = 7.2 Hz, Ph_{meta}), 6.94 (t, J = 7.5 Hz, Ph_{para}), 6.20 (d, J = 14.8 Hz, =CHPh), 2.64-2.05, 1.69-1.53 and 1.28-1.11 (m, P(C₆H₁₁)₃); 13 C{ 1 H} NMR (C₆D₆, 75 MHz) δ 204.1 (t, J_{PC} = 13.0 Hz, CO), 151.5 (t, J_{PC} = 11.2 Hz, Ru-CH=), 140.0 (=CHPh), 134.8 (Ph_{ipso}), 129.3 (Ph_{ortho}), 128.9 (Ph_{para}) and 124.8 (Ph_{meta}), 35.4 (pseudo t, J = 9.6 Hz, C_{ipso} of P(C₆H₁₁)₃), 30.8 (C_{meta} of P(C₆H₁₁)₃), 28.4 (m, C_{ortho} of P(C₆H₁₁)₃), 27.2 (C_{para} of P(C₆H₁₁)₃); 31 P{ 1 H} NMR (C₆D₆, 121.6 MHz) δ 29.0 (s, PCy₃); FAB-MS: 828.5 (M+); Anal. Calcd for C₄5H₇₃OP₂ClRu: C, 65.23; H, 8.88. Found: C, 66.05, H, 9.38 For **6b**: ¹H NMR (C_6D_6 , 300 MHz) δ 8.47 (d, J = 13.2 Hz, Ru-CH=), 6.30 (dm, J = 13.2 Hz, Ru-CH=CH), 4.70 and 4.53 (br s, =CH₂), 2.67-2.59, 2.22-2.05, 1.75-1.50 and 1.29-1.15 (m, $P(C_6H_{11})_3$), 2.08 (s, CH₃); $^{13}C\{^{1}H\}$ NMR (C_6D_6 , 75 MHz) δ 204.0 (t, J_{PC} = 13.5 Hz, CO), 150.9 (t, J_{PC} = 11.7 Hz, Ru-CH=), 142.3 ($C(CH_3)$ =), 138.7 (=CH-C(CH₃)), 105.6 (=CH₂), 35.4 (pseudo t, J = 9.4 Hz, C_{ipso} of $P(C_6H_{11})_3$), 30.7 (d, J_{PC} = 26.1 Hz, C_{meta} of $P(C_6H_{11})_3$), 28.4 (m, C_{ortho} of $P(C_6H_{11})_3$), 27.3 (C_{para} of $P(C_6H_{11})_3$); $^{31}P\{^{1}H\}$ NMR (C_6D_6 , 121.6 MHz): 28.6 (s, PCy₃); FAB-MS: 792.4 (M+); Anal Calcd for $C_{42}H_{73}OCIP_2Ru$: C 63.65, H 9.28. Found: C, 63.73, H, 9.42. General Procedure of the Catalytic Hydrovinylation and [2+2] Cycloaddition Reactions of Alkynes and Ethylene. In a 25 mL Schlenk tube equipped with a Teflon stopcock, complex 1 (4 mg, 3 mol %) was charged with R'C≡CR" (0.15 mmol) in 5 mL of CH₂Cl₂. Excess CH₂=CH₂ (3.2 mmol, ca. 2.5 atm) was transferred *via* a vacuum line, and the reaction mixture was heated at 75 °C under a closed system. The volatiles were evaporated under vacuum, and the residue was chromatographed on a silica gel column (Et₂O: hexanes = 1:3) in air. The product was isolated after evaporation of solvent by a rotary evaporator. For **2a**: ¹H NMR (CDCl₃, 300 MHz) δ 7.47-6.96 (m, Ph), 6.78 (dd, J = 17.0, 11.0 Hz, CH₂=CH), 6.64 (s, =CHPh), 5.19 (br d, J = 11.0 Hz, CHH=), 4.87 (br d, J = 17.0 Hz, CHH=); ¹³C{ ¹H} NMR (CDCl₃, 75 MHz) δ 141.9 (CH₂=CH), 138.0 (PhC=CHPh), 136.8 (=CHPh), 131.7-127.1 (Ph carbons), 116.6 (=CH₂); GC-MS m/z = 206 (M+). For **2b**: ¹H NMR (CDCl₃, 300 MHz) δ 6.62 (dd, J = 17.4, 10.5 Hz, CH₂=CH), 5.46 (t, J = 7.5 Hz, CH=CHCH₂), 5.08 (br d, J = 17.4 Hz, CHH=), 4.91 (br d, J = 10.5 Hz, CHH=), 2.20 (t, J = 7.5 Hz, =CCH₂CH₂CH₃), 2.09 (q, J = 7.5 Hz, =CHCH₂CH₂CH₃), 1.40 (m, CH₂CH₂CH₃, 4H), 0.92 (t, J = 7.5 Hz, CH₃, 6H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 140.8 (CH₂=CH), 138.7 (CH=CCH₂), 133.7 (C=CHCH₂), 110.3 (CH₂=CH), 30.5 and 28.5 (=CCH₂), 23.1 and 22.4 (CH₂CH₂CH₃), 14.5 and 14.1 (CH₂CH₂CH₃); GC-MS m/z = 138 (M⁺). For **2c**: ¹H NMR (CDCl₃, 300 MHz) δ 7.31 (dd, J = 8.1 Hz, Ar, 2H), 7.13 (d, J = 8.1 Hz, Ar, 2H), 6.77 (dd, J = 15.6, 10.5 Hz, CH=CHTol), 6.55 (d, J = 15.9 Hz, CH=CHTol), 6.52 (ddd, J = 16.5, 10.5, 9.9 Hz, CH₂=CH), 5.33 (d, J = 16.5 Hz, CHH=), 5.16 (d, J = 9.9 Hz, CHH=), 2.34 (s, CH₃); 13 C{ 1 H} NMR (CDCl₃, 75 MHz) δ 137.6 (CH=CHTol), 137.5 (CH₂=CH), 134.5 (CH=CHTol), 132.9 (Tol_{ipso}), 129.5 (Tol_{ortho}), 128.8 (Tol_{meta}), 126.5 (Tol_{para}), 117.2 (CH₂=CH), 21.4 (CH₃); GC-MS m/z = 144 (M⁺). For **2d**: ¹H NMR (CDCl₃, 300 MHz) δ 6.54 (dd, J = 18.0, 9.6 Hz, CH=CHSiEt₃), 6.36 (ddd, J = 16.8, 9.9, 9.6 Hz, CH₂=CH), 5.83 (d, J = 18.0 Hz, CH=CHSiEt₃), 5.21 (br d, J = 16.8 Hz, CHH=), 5.11 (br d, J = 9.9 Hz, CHH=), 0.94 (t, J = 7.8 Hz, Si(CH₂CH₃)₃), 0.58 (q, J = 7.8 Hz, Si(CH₂CH₃)₃); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 146.2 (CH₂=CH), 140.3 (CH=CHSiEt₃), 131.5, (CH=CHSiEt₃), 117.4 (CH₂=CH), 7.54 (Si(CH₂CH₃)₃), 3.66 (Si(CH₂CH₃)₃); GC-MS m/z = 168 (M⁺). For **2e**: ¹H NMR (CDCl₃, 300 MHz) δ 6.31 (ddd, J = 16.8, 10.5, 10.2 Hz, CH₂=CH), 6.14 (dd, J = 15.6, 10.5 Hz, CH₂=CHCH), 5.67 (dt, J = 15.0, 7.2 Hz, =CHCH₂CH₂), 5.03 (br d, J = 15.9 Hz, CHH=), 5.00 (d, J = 10.2 Hz, CHH=), 3.67 (t, J = 6.3 Hz, CH₂CH2OH), 2.35 (dt, J = 9.6, 6.3 Hz, =CHCH2CH₂), 1.90 (br s, J = 6.6 Hz, OH); ¹³C{¹H} NMR (C₆D₆, 75 MHz) δ 137.8 (CH₂=CH), 134.0 (CH=CCH₂), 131.7 (CH=CHCH₂), 116.0 (CH₂=CH), 62.3 (CH₂CH₂OH), 36.7 (CH₂CH₂OH); GC-MS M/z = 98 (M⁺). For **2f**: ¹H NMR (CDCl₃, 300 MHz) δ 6.40 (dd, J = 17.4, 10.5 Hz, CH₂=CH), 5.88 (s, =CHCO₂Me), 5.56 (d, J = 17.4 Hz, CHH=CH), 5.51 (d, J =10.5 Hz, CHH=CH), 3.90 and 3.73 (s, CH₃); ¹³C{¹H} NMR (C₆D₆, 75 MHz) δ 161.8 (CO₂Me), 142.7 (MeO₂CC=CHCO₂Me), 132.9 (MeO₂CC=CHCO₂Me), 124.2 (CH₂=CH), 119.9 (CH₂=CH), 52.8 and 52.1 (CH₃); GC-MS m/z = 170 (M⁺). For 3c: ¹H NMR (CDCl₃, 300 MHz) δ 7.27 (d, J = 7.8 Hz, Ar_{ortho}, 2H), 7.12 (d, J = 7.8 Hz, Ar_{meta}, 2H), 6.37 (d, J = 16.2 Hz, =CHTol), 6.13 (dd, J = 16.2, 6.9 Hz, CHCH=CHTol), 5.89 (ddd, J = 16.8, 10.2, 6.6 Hz, CH₂=CH), 5.10-5.01 (m, J = 16.8 Hz, CH₂=CH, 2H), 3.03 (m, CHCH₃), 2.34 (s, C₆H₄CH₃), 1.21 (d, J = 6.9 Hz, CHCH₃); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 142.8 (CH₂=CH), 136.9 (CH=CHTol), 135.1 (CH=CHTol), 133.5 (Tol_{ipso}), 129.4 (Tol_{ortho}), 128.7 (Tol_{meta}), 126.2 (Tol_{para}), 113.4 (CH₂=CH), 40.8 (CHCH₃), 21.3 (C₆H₄CH₃), 20.1 (CHCH₃); GC-MS m/z = 172 (M⁺). For 3f: ¹H NMR (CDCl₃, 300 MHz) δ 7.4-7.1 (m, Ph), 6.33 (d, J = 15.9 Hz, CH=CHPh), 6.12 (dd, J = 15.9, 6.9 Hz, CH=CHPh), 5.82 (ddd, J = 16.5, 10.2, 6.6 Hz, CH₂=CH), 5.02 (d, J = 17.1 Hz, CHH=CH), 4.97 (d, J = 9.9 Hz, CHH=CH), 2.98 (m, CHCH₃), 1.15 (d, J = 6.9 Hz, CHCH₃); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 142.6 (CH₂=CH), 137.2 (CH=HCHPh), 129.8 (H=CHPh), 128.8 (Ph_{ipso}), 128.6 (Ph_{ortho}), 127.2 (Ph_{para}), 126.2 (Ph_{meta}), 113.5 (H=CHPh), 40.8 (H=CHPh), 19.6 (CHCH₃); GC-MS HZ=158 (H+). For **4a**: 1 H NMR (CDCl₃, 300 MHz) δ 3.78 (s, CH₃, 6H), 2.66 (s, CH₂, 4H); 13 C{ 1 H} NMR (C₆D₆, 75 MHz) δ 161.8 (CO₂Me), 142.7 (=CCO₂Me), 52.1 (CH₃), 27.3 (CH₂); GC-MS m/z = 170 (M⁺). For **4b**: ¹H NMR (CDCl₃, 300 MHz) δ 3.76 (s, CH₃, 6H), 2.66 (s, CHC(CO₂Me)=), 2.24 (br s, CH₂CHCH, 2H), 1.60 (m, CHHCHCH, 2H), 1.06 (m, CHHCHCH, 2H), 1.31 and 1.11 (m, CHCH₂CH, 2H); ¹³C{¹H} NMR (C₆D₆, 75 MHz) δ 161.8 (CO₂Me), 142.4 (=CCO₂Me), 52.0 (CO₂CH₃), 47.5 (=CCH), 33.9 (CH₂CHCH), 30.5 (CHCH₂CH), 28.0 (CH₂CH(CH₂)CH); GC-MS m/z = 236 (M⁺). For 8: ¹H NMR (CDCl₃, 300 MHz) δ 5.96 (d, J = 18.6, 7.5 Hz, CH=CHSiEt₃), 5.78 (dq, J = 5.4, 1.8 Hz, CH_2CH =CHCH),), 5.62 (dq, J = 5.4, 2.1 Hz, CH_2CH =CHCH), 5.53 (d, J = 18.6, 1.2 Hz, CH= $CHSiEt_3$), 3.33 (m, =CHCH(CH=) CH_2), 2.25 (m, 2H, = $CHCH_2CH_2$), 1.81 (m, 2H, = $CHCH_2CH_2CH_3$), 0.92 (t, 9H, Si(CH_2CH_3)₃), 0.54 (q, 6H, Si(CH_2CH_3)₃); ¹³ $C\{^1H\}$ NMR (CDCl₃, 75 MHz) δ 151.9 (CH= $CHSiEt_3$), 134.0 (CH= $CHSiEt_3$), 131.6 (CH= $CHCHCH_2$), 123.9 (CH_2CH =CHCH), 52.7 (=CHCH(CH=) CH_2), 32.3 and 30.5 (CH_2), 7.5 (Si CH_2CH_3), 3.7 (Si CH_2CH_3); GC-MS m/z = 208 (M⁺).