

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

Crystal data for $[Au_2(C^N^C)_2(\mu-dppm)](ClO_4)_2$, $5(ClO_4)_2$ •1.5(CH₃)₂NCHO

Table 5. Bond Angles(°)

atom	atom	atom	angle	atom	atom	atom	angle
P(1)	Au(1)	N(1)	175.3(5)	P(1)	Au(1)	C(1)	98.3(5)
P(1)	Au(1)	C(17)	103.0(5)	N(1)	Au(1)	C(1)	80.1(7)
N(1)	Au(1)	C(17)	78.8(7)	C(1)	Au(1)	C(17)	158.7(7)
P(2)	Au(2)	N(2)	173.9(5)	P(2)	Au(2)	C(18)	95.5(5)
P(2)	Au(2)	C(34)	103.1(5)	N(2)	Au(2)	C(18)	83.1(7)
N(2)	Au(2)	C(34)	78.9(8)	C(18)	Au(2)	C(34)	160.8(7)
P(3)	Au(3)	N(3)	175.8(5)	P(3)	Au(3)	C(60)	97.3(5)
P(3)	Au(3)	C(76)	104.1(5)	N(3)	Au(3)	C(60)	80.6(6)
N(3)	Au(3)	C(76)	78.2(6)	C(60)	Au(3)	C(76)	158.3(7)
P(4)	Au(4)	N(4)	172.8(4)	P(4)	Au(4)	C(77)	95.6(5)
P(4)	Au(4)	C(93)	105.1(6)	N(4)	Au(4)	C(77)	80.5(7)
N(4)	Au(4)	C(93)	79.4(7)	C(77)	Au(4)	C(93)	158.6(7)
O(1)	Cl(1)	O(2)	108(1)	O(1)	Cl(1)	O(3)	108(1)
O(1)	Cl(1)	O(4)	113(1)	O(2)	Cl(1)	O(3)	112(1)
O(2)	Cl(1)	O(4)	109(1)	O(3)	Cl(1)	O(4)	104(1)
O(5)	Cl(2)	O(6)	100(2)	O(5)	Cl(2)	O(7)	103(2)
O(5)	Cl(2)	O(8)	126(3)	O(6)	Cl(2)	O(7)	107(2)
O(6)	Cl(2)	O(8)	113(2)	O(7)	Cl(2)	O(8)	104(2)
O(9)	Cl(3)	O(10)	103(2)	O(9)	Cl(3)	O(11)	109(1)
O(9)	Cl(3)	O(12)	96(1)	O(10)	Cl(3)	O(11)	108(1)
O(10)	Cl(3)	O(12)	129(1)	O(11)	Cl(3)	O(12)	107(1)
O(13)	Cl(4)	O(14)	96(1)	O(13)	Cl(4)	O(15)	117(1)
O(13)	Cl(4)	O(16)	115(2)	O(14)	Cl(4)	O(15)	91(1)
O(14)	Cl(4)	O(16)	96(2)	O(15)	Cl(4)	O(16)	125(2)

Crystal data for $[Au_2(C^N^C)_2(\mu-dppm)](ClO_4)_2$, $5(ClO_4)_2$ •1.5(CH₃)₂NCHO

Table 5.	Bond	Angles(°)	(continued)

atom	atom	atom	angle	atom	atom	atom	angle
Au(1)	P(1)	C(35)	113.4(6)	Au(1)	P(1)	C(36)	112.4(6)
Au(1)	P(1)	C(42)	113.1(7)	C(35)	P(1)	C(36)	104.6(9)
C(35)	P(1)	C(42)	111.9(9)	C(36)	P(1)	C(42)	100.5(8)
Au(2)	P(2)	C(35)	113.8(6)	Au(2)	P(2)	C(48)	120.3(6)
Au(2)	P(2)	C(54)	108.7(6)	C(35)	P(2)	C(48)	102.1(9)
C(35)	P(2)	C(54)	105.6(9)	C(48)	P(2)	C(54)	105.2(9)
Au(3)	P(3)	C(94)	112.4(5)	Au(3)	P(3)	C(95)	111.7(6)
Au(3)	P(3)	C(101)	116.2(7)	C(94)	P(3)	C(95)	105.1(9)
C(94)	P(3)	C(101)	111.2(8)	C(95)	P(3)	C(101)	98.9(8)
Au(4)	P(4)	C(94)	113.7(5)	Au(4)	P(4)	C(107)	107.5(6)
Au(4)	P(4)	C(113)	119.5(7)	C(94)	P(4)	C(107)	106.3(9)
C(94)	P(4)	C(113)	103.2(8)	C(107)	P(4)	C(113)	105.6(9)
Au(1)	N(1)	C(7)	115(1)	Au(1)	N(1)	C(11)	116(1)
C(7)	N(1)	C(11)	127(1)	Au(2)	N(2)	C(24)	114(1)
Au(2)	N(2)	C(28)	119(1)	C(24)	N(2)	C(28)	125(1)
Au(3)	N(3)	C(66)	116(1)	Au(3)	N(3)	C(70)	118(1)
C(66)	N(3)	C(70)	124(1)	Au(4)	N(4)	C(83)	115(1)
Au(4)	N(4)	C(87)	117(1)	C(83)	N(4)	C(87)	126(1)
C(119)	N(5)	C(120)	124(2)	C(119)	N(5)	C(121)	125(3)
C(120)	N(5)	C(121)	110(2)	C(122)	N(6)	C(123)	104(3)
C(122)	N(6)	C(124)	131(3)	C(123)	N(6)	C(124)	122(3)
C(125)	N(7)	C(126)	125(4)	C(125)	N(7)	C(127)	103(3)
C(126)	N(7)	C(127)	127(4)	Au(1)	C(1)	C(2)	131(1)
Au(1)	C(1)	C(6)	110(1)	C(2)	C(1)	C(6)	117(1)

Crystal data for $[Au_2(C^N^C)_2(\mu\text{-dppm})](ClO_4)_2$, $5(ClO_4)_2$ •1.5(CH₃)₂NCHO

Table 5. Bond Angles(°) (continued)

atom	atom	atom	angle	atom	atom	atom	angle
C(1)	C(2)	C(3)	121(1)	C(2)	C(3)	C(4)	120(1)
C(3)	C(4)	C(5)	116(1)	C(4)	C(5)	C(6)	122(2)
C(1)	C(6)	C(5)	121(1)	C(1)	C(6)	C(7)	118(1)
C(5)	C(6)	C(7)	120(1)	N(1)	C(7)	C(6)	114(1)
N(1)	C(7)	C(8)	113(1)	C(6)	C(7)	C(8)	130(1)
C(7)	C(8)	C(9)	120(2)	C(8)	C(9)	C(10)	120(1)
C(9)	C(10)	C(11)	120(2)	N(1)	C(11)	C(10)	116(1)
N(1)	C(11)	C(12)	114(1)	C(10)	C(11)	C(12)	128(1)
C(11)	C(12)	C(13)	122(1)	C(11)	C(12)	C(17)	116(1)
C(13)	C(12)	C(17)	120(1)	C(12)	C(13)	C(14)	121(1)
C(13)	C(14)	C(15)	119(1)	C(14)	C(15)	C(16)	120(1)
C(15)	C(16)	C(17)	122(1)	Au(1)	C(17)	C(12)	112(1)
Au(1)	C(17)	C(16)	130(1)	C(12)	C(17)	C(16)	116(1)
Au(2)	C(18)	C(19)	132(1)	Au(2)	C(18)	C(23)	107(1)
C(19)	C(18)	C(23)	119(1)	C(18)	C(19)	C(20)	122(1)
C(19)	C(20)	C(21)	119(2)	C(20)	C(21)	C(22)	120(2)
C(21)	C(22)	C(23)	122(2)	C(18)	C(23)	C(22)	115(1)
C(18)	C(23)	C(24)	118(1)	C(22)	C(23)	C(24)	124(1)
N(2)	C(24)	C(23)	115(1)	N(2)	C(24)	C(25)	112(2)
C(23)	C(24)	C(25)	131(2)	C(24)	C(25)	C(26)	122(2)
C(25)	C(26)	C(27)	121(2)	C(26)	C(27)	C(28)	117(2)
N(2)	. C(28)	C(27)	120(2)	N(2)	C(28)	C(29)	113(1)
C(27)	C(28)	C(29)	126(2)	C(28)	C(29)	C(30)	123(2)
C(28)	C(29)	C(34)	117(1)	C(30)	C(29)	C(34)	118(2)

Crystal data for $[Au_2(C^N^C)_2(\mu\text{-dppm})](ClO_4)_2$, $5(ClO_4)_2$ •1.5(CH₃)₂NCHO

Table 5. Bond Angles(°) (continued)

atom	atom	atom	angle	atom	atom	atom	angle
C(29)	C(30)	C(31)	120(2)	C(30)	C(31)	C(32)	119(2)
C(31)	C(32)	C(33)	121(2)	C(32)	C(33)	C(34)	119(2)
Au(2)	C(34)	C(29)	110(1)	Au(2)	C(34)	C(33)	130(1)
C(29)	C(34)	C(33)	119(1)	P(1)	C(35)	P(2)	124.0(10)
P(1)	C(36)	C(37)	117(1)	P(1)	C(36)	C(41)	124(1)
C(37)	C(36)	C(41)	117(1)	C(36)	C(37)	C(38)	121(2)
C(37)	C(38)	C(39)	122(2)	C(38)	C(39)	C(40)	118(2)
C(39)	C(40)	C(41)	123(2)	C(36)	C(41)	C(40)	117(1)
P(1)	C(42)	C(43)	120(1)	P(1)	C(42)	C(47)	118(1)
C(43)	C(42)	C(47)	120(1)	C(42)	C(43)	C(44)	120(2)
C(43)	C(44)	C(45)	118(2)	C(44)	C(45)	C(46)	122(2)
C(45)	C(46)	C(47)	119(2)	C(42)	C(47)	C(46)	119(2)
P(2)	C(48)	C(49)	122(1)	P(2)	C(48)	C(53)	116(1)
C(49)	C(48)	C(53)	121(1)	C(48)	C(49)	C(50)	122(2)
C(49)	C(50)	C(51)	113(2)	C(50)	C(51)	C(52)	124(2)
C(51)	C(52)	C(53)	118(2)	C(48)	C(53)	C(52)	118(2)
P(2)	C(54)	C(55)	123(1)	P(2)	C(54)	C(59)	116(1)
C(55)	C(54)	C(59)	119(1)	C(54)	C(55)	C(56)	121(2)
C(55)	C(56)	C(57)	117(2)	C(56)	C(57)	C(58)	123(2)
C(57)	°C(58)	C(59)	116(2)	C(54)	C(59)	C(58)	120(2)
Au(3)	C(60)	C(61)	131(1)	Au(3)	C(60)	C(65)	110(1)
C(61)	C(60)	C(65)	117(1)	C(60)	C(61)	C(62)	121(1)
C(61) ·	C(62)	C(63)	118(1)	C(62)	C(63)	C(64) .	120(1)
C(63)	C(64)	C(65)	121(1)	C(60)	C(65)	C(64)	119(1)

Crystal data for [Au₂(C^N^C)₂(μ -dppm)](ClO₄)₂, **5**(ClO₄)₂•1.5(CH₃)₂NCHO

Table 5. Bond Angles(°) (continued)

atom	atom	atom	angle	atom	atom	atom	angle
C(60)	C(65)	C(66)	117(1)	C(64)	C(65)	C(66)	122(1)
N(3)	C(66)	C(65)	114(1)	N(3)	C(66)	C(67)	117(1)
C(65)	C(66)	C(67)	127(1)	C(66)	C(67)	C(68)	118(1)
C(67)	C(68)	C(69)	121(1)	C(68)	C(69)	C(70)	120(1)
N(3)	C(70)	C(69)	117(1)	N(3)	C(70)	C(71)	113(1)
C(69)	C(70)	C(71)	129(1)	C(70)	C(71)	C(72)	121(1)
C(70)	C(71)	C(76)	118(1)	C(72)	C(71)	C(76)	120(1)
Ċ(71)	C(72)	C(73)	120(1)	C(72)	C(73)	C(74)	118(1)
C(73)	C(74)	C(75)	121(1)	C(74)	C(75)	C(76)	121(1)
Au(3)	C(76)	C(71)	111(1)	Au(3)	C(76)	C(75)	131(1)
C(71)	C(76)	C(75)	117(1)	Au(4)	C(77)	C(78)	131(1)
Au(4)	C(77)	C(82)	109(1)	C(78)	C(77)	C(82)	118(1)
C(77)	C(78)	C(79)	119(1)	C(78)	C(79)	C(80)	122(2)
C(79)	C(80)	C(81)	118(1)	C(80)	C(81)	C(82)	121(1)
C(77)	C(82)	C(81)	119(2)	C(77)	C(82)	C(83)	118(1)
C(81)	C(82)	C(83)	121(1)	N(4)	C(83)	C(82)	114(1)
N(4)	C(83)	C(84)	115(1)	C(82)	C(83)	C(84)	129(1)
C(83)	C(84)	C(85)	121(2)	C(84)	C(85)	C(86)	120(1)
C(85)	C(86)	C(87)	117(2)	N(4)	C(87)	C(86)	118 (2)
N(4)	C(87)	C(88)	115(1)	C(86)	C(87)	C(88)	126(2)
C(87)	C(88)	C(89)	121(2)	C(87)	C(88)	C(93)	115(1)
C(89)	C(88)	C(93)	122(2)	C(88)	C(89)	C(90)	117(2)
C(89)	C(90)	C(91)	120(2)	C(90)	C(91)	C(92)	123(2)
C(91)	C(92)	C(93)	118(2)	Au(4)	C(93)	C(88)	111(1)

Crystal data for [Au₂(C^N^C)₂(μ -dppm)](ClO₄)₂, 5(ClO₄)₂•1.5(CH₃)₂NCHO

Table 5. Bond Angles(°) (continued)

atom	atom	atom	angle	atom	atom	atom	angle
Au(4)	C(93)	C(92)	130(1)	C(88)	C(93)	C(92)	117(1)
P(3)	C(94)	P(4)	123(1)	P(3)	C(95)	C(96)	115(1)
P(3)	C(95)	C(100)	124(1)	C(96)	C(95)	C(100)	120(1)
Č(95)	C(96)	C(97)	120(2)	C(96)	C(97)	C(98)	120(2)
C(97)	C(98)	C(99)	119(2)	C(98)	C(99)	C(100)	118(2)
C(95)	C(100)	C(99)	120(2)	P(3)	C(101)	C(102)	119(1)
P(3)	C(101)	C(106)	119(1)	C(102)	C(101)	C(106)	121(1)
C(101)	C(102)	C(103)	118(2)	C(102)	C(103)	C(104)	119(2)
C(103)	C(104)	C(105)	123(2)	C(104)	C(105)	C(106)	118(2)
C(101)	C(106)	C(105)	120(2)	P(4)	C(107)	C(108)	123(1)
P(4)	C(107)	C(112)	117(1 <u>)</u>	C(108)	C(107)	C(112)	118(2)
C(107)	C(108)	C(109)	118(2)	C(108)	C(109)	C(110)	122(2)
C(109)	C(110)	C(111)	120(2)	C(110)	C(111)	C(112)	116(2)
C(107)	C(112)	C(111)	123(2)	P(4)	C(113)	C(114)	İ18(1)
P(4)	C(113)	C(118)	122(1)	C(114)	C(113)	C(118)	119(1)
C(113)	C(114)	C(115)	117(2)	C(114)	C(115)	C(116)	122(2)
C(115)	C(116)	C(117)	119(2)	C(116)	C(117)	C(118)	120(2)
C(113)	C(118)	C(117)	119(2)	O(17)	C(119)	N(5)	123(3)
O(18)	C(122)	N(6)	114(3)	O(19)	C(125)	N(7)	112(4)
			•				

Table of Least-Squares Planes

	Plane num	ber 1	
Atoms Defining N(1) C(7) C(8) C(9) C(10) C(11)	Plane	Distance 0.0070 -0.0047 -0.0067 0.0155 -0.0078 -0.0045	esd 0.0159 0.0197 0.0211 0.0243 0.0234 0.0188
Additional Atom N(2) C(24) C(25) C(26) C(27) C(28)	ns	Distance -3.4423 -3.3346 -3.4466 -3.5715 -3.5889 -3.4880	
Mean deviation Chi-squared:	from plan 0.	e is 0.0077 8	angstroms
	•		
	Plane num	ber 2	
Atoms Defining N(2) C(24) C(25) C(26) C(27) C(28)	Plane num Plane	ber 2 Distance -0.0317 0.0305 -0.0023 -0.0205 0.0022 0.0286	esd 0.0163 0.0198 0.0256 0.0285 0.0255 0.0196
Atoms Defining N(2) C(24) C(25) C(26) C(27) C(28) Additional Atom N(1) C(7) C(8) C(9) C(10) C(11)	Plane num Plane	ber 2 Distance -0.0317 0.0305 -0.0023 -0.0205 0.0022 0.0286 Distance 3.2916 3.2152 3.2700 3.4034 3.4382 3.3886	esd 0.0163 0.0256 0.0285 0.0255 0.0196

Dihedral angles between least-squares planes plane plane angle 2 1 4.61

Table o	f Least-So	uares Plane	s (continued)
	Plane numb	per 3	
Atoms Defining N(3) C(66) C(67) C(68) C(69) C(70)	Plane	Distance -0.0040 0.0125 -0.0189 0.0128 0.0013 -0.0019	esd 0.0157 0.0183 0.0219 0.0251 0.0232 0.0192
Additional Atom N(4) C(83) C(84) C(85) C(86) C(87)	IS .	Distance -3.4056 -3.3736 -3.5382 -3.6614 -3.6471 -3.4759	
Mean deviation Chi-squared:	from plane 1.4	e is 0.0086 L	angstroms
Dihedral angles pl	between l ane plane 3 1 3 2	east-square angle 8.50 13.10	s planes
	Plane numb	oer 4	
Atoms Defining N(4) C(83) C(84) C(85) C(85) C(86) C(87)	Plane	Distance -0.0207 0.0196 -0.0068 -0.0054 -0.0050 0.0236	esd 0.0142 0.0172 0.0229 0.0229 0.0225 0.0184
Additional Atom N(3) C(66) C(67) C(68) C(69) C(70)	ns 	Distance 3.3181 3.3074 3.3982 3.5713 3.5809 3.4557	
Mean deviation Chi-squared:	from plane 4.8	e is 0.0135 3	angstroms
Dihedral angles pl	s between 1 lane plane 4 1 4 2 4 3	least-square e angle 2.14 6.74 6.42	s planes

Complex 6(ClO₄)₂•CH₃CN : ip 157

Crystal data. { $[C_{60}H_{46}N_2P_2Au_2]^{2+}$ 2ClO₄⁻. CH₃CN}; formula weight = 1490.88, monoclinic, space group P2/c (No. 13), a = 19.889(3) Å, b = 15.157(3) Å, c =19.907 (3) Å, $\beta = 101.87(2)^{\circ}$, V = 5872(1) Å³, Z = 4, $D_{c} = 1.686$ g cm⁻³, μ (Mo-K α)= 52.10 cm^{-1} , F(000) = 2912, T = 301 K. A vellow crystal of dimensions 0.20 x 0.15 x 0.30 mm in a sealed capillary tube was used for data collection at 28°C on a MAR diffractometer with a 300 mm image plate detector using graphite monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å). Data collection were made with 3° oscillation (64 images) at 120 mm distance and 240 s exposure. The images were interpreted and intensities integrated using program DENZO¹. 10692 unique reflections were obtained from a total of 54914 measured reflections. 8200 reflections with $I > 3 \sigma(I)$ were considered observed and used in the structural analysis. These reflections were in the range h: 0 to 24; k: 0 to 18; and l: -23 to 23 with a $2\theta_{max} = 51.3^{\circ}$. The space group was determined based on systematic absences and a statistical analysis of intensity distribution and the refinement of the structure solved by Patterson methods and expanded by Fourier methods ($PATTY^2$) and refinement by full-matrix leastsquares using the software package TeXsan³ on a Silicon Graphics Indy computer. One crystallographic asymmetric unit consists of one complex cation, one perchlorate anion, two half perchlorate anions with the chlorine atoms at special positions with an occupation number of 0.5 and one CH₃CN solvent molecule. In the least-squares refinement, all 79 non-H atoms were refined anisotropically. 49 H atoms at calculated positions with thermal parameters equal to 1.3 times that of the attached C atoms were not refined. Convergence for 710 variable parameters by least-squares refinement on F with $w = 4 F_0^2 / \sigma^2 (F_0^2)$, where $\sigma^2 (F_0^2) = [\sigma^2 (I) + (0.040 F_0^2)^2]$ for 8194 reflections with $I > 3 \sigma(I)$ was reached at R = 0.037 and wR = 0.054 with a goodness-of-fit of 1.62. (Δ/σ)_{max} = 0.04 for atoms of the complex cation. The final difference Fourier map was featureless, with maximum positive and negative peaks of 2.02 and 1.55 e Å⁻³ respectively. The ORTEP⁴ drawing of the complex cation with H atoms omitted shows thermal ellipsoids at the 50 % probability level and the numbering scheme.

Ref:

- DENZO: In "<u>The HKL Manual</u> A description of programs DENZO, XDISPLAYF, and SCALEPACK " written by Gewirth, D. with the cooperation of the program authors Otwinowski, Z. and Minor, W. (1995).
- 2. *PATTY*: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., Garcia-Granda, S., Gould, R.O., Smits, J.M.M. and Smykalla, C. (1992). The *DIRDIF* program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- 3. TeXsan : Crystal Structure Analysis Package, Molecular Structure Corporation, (1985 & 1992).
- 4. *ORTEPII* : Johnson, C.K. (1976). Report ORNL-5318. Oak Ridge National Laboratory, Tennessee, U.S.A.

Table 1. Atomic coordinates and B_{iso}/B_{eq}

atom	x	у	Z	Beq
Au(1)	0.16970(1)	0.15339(2)	0.09191(1)	3.366(6)
Au(2)	0.27041(1)	0.24000(2)	-0.06189(1)	3.589(6)
Cl(1)	0.5000	0.4251(3)	0.2500	6.89(9)
Cl(2)	1.0000	0.1067(3)	0.2500	7.15(8)
Cl(3)	0.2114(1)	0.3494(1)	0.5649(1)	6.42(6)
P(1)	0.18871(8)	0.2910(1)	0.13834(9)	3.20(3)
P(2)	0.35087(9)	0.3013(1)	0.02353(9)	3.48(4)
O(1)	0.4433(5)	0.3786(9)	0.2479(8)	16.0(5)
O(2)	0.4928(9)	0.466(1)	0.1904(7)	25.2(8)
O(3)	0.9530(5)	0.1513(7)	0.2034(5)	13.6(4)
O(4)	1.031(1)	0.063(1)	0.2157(8)	39(1)
O(5)	0.1738(9)	0.3365(10)	0.5014(6)	18.4(6)
O(6)	0.1694(7)	0.3298(6)	0.6090(6)	15.3(5)
O(7)	0.2643(5)	0.2906(6)	0.5716(8)	15.8(5)
O(8)	0.2371(4)	0.4346(5)	0.5753(6)	11.9(3)
N(1)	0.1438(3)	0.0328(4)	0.0502(3)	4.1(1)
N(2)	0.2067(3)	0.1812(4)	-0.1414(3)	4.2(1)
N(3)	0.6450(7)	0.2635(8)	0.6922(8)	11.0(4)
C(1)	0.2324(4)	0.0735(5)	0.1666(4)	4.2(2)
C(2)	0.2831(4)	0.0949(5)	0.2234(4)	5.0(2)
C(3)	0.3233(5)	0.0289(6)	0.2615(5)	6.0(2)
C(4)	0.3135(5)	-0.0588(6)	0.2425(6)	6.4(3)
C(5)	0.2643(5)	-0.0807(5)	0.1859(5)	5.4(2)
C(6)	0.2222(4)	-0.0167(5)	0.1477(4)	4.8(2)

Table 1. Atomic coordinates and B_{iso}/B_{eq} (continued)

atom	x	У	Z	Beq
C(7)	0.1689(4)	-0.0380(5)	0.0857(4)	5.1(2)
C(8)	0.1459(5)	-0.1198(5)	0.0632(6)	6.0(2)
C(9)	0.0990(6)	-0.1261(7)	0.0042(6)	7.0(3)
C(10)	0.0753(4)	-0.0535(7)	-0.0330(5)	6.2(2)
C(11)	0.0981(4)	0.0298(5)	-0.0099(4)	4.8(2)
C(12)	0.0798(3)	0.1169(6)	-0.0408(4)	4.5(2)
C(13)	0.0409(4)	0.1272(7)	-0.1050(5)	5.7(2)
C(14)	0.0276(5)	0.2108(8)	-0.1338(5)	6.6(3)
C(15)	0.0526(5)	0.2828(7)	-0.0961(5)	6.1(2)
C(16)	0.0908(4)	0.2740(5)	-0.0303(4)	4.3(2)
C(17)	0.1055(4)	0.1925(5)	-0.0017(4)	4.2(2)
C(18)	0.2859(4)	0.1076(5)	-0.0319(4)	4.4(2)
C(19)	0.3270(4)	0.0684(5)	0.0266(4)	4.7(2)
C(20)	0.3255(5)	-0.0203(6)	0.0359(5)	5.6(2)
C(21)	0.2852(5)	-0.0743(6)	-0.0131(6)	6.4(3)
C(22)	0.2450(5)	-0.0391(6)	-0.0711(5)	5.9(2)
C(23)	0.2443(4)	0.0521(5)	-0.0817(4)	4.6(2)
C(24)	0.2023(4)	0.0931(5)	-0.1422(4)	4.5(2)
C(25)	0.1611(4)	0.0521(6)	-0.1982(5)	5.5(2)
C(26)	0.1297(4)	0.1035(7)	-0.2530(5)	6.2(2)
C(27)	0.1368(4)	0.1943(7)	-0.2515(4)	5.8(2)
C(28)	0.1756(4)	0.2339(6)	-0.1934(4)	4.8(2)
C(29)	0.1830(4)	0.3278(6)	-0.1785(4)	4.8(2)
C(30)	0.1473(4)	0.3927(7)	-0.2213(5)	6.1(2)

Table 1. Atomic coordinates and B_{iso}/B_{eq} (continued)

atom	x	У	Z	Beq
C(31)	0.1488(5)	0.4802(7)	-0.1989(6)	6.8(3)
C(32)	0.1872(4)	0.5026(5)	-0.1348(5)	5.5(2)
C(33)	0.2260(4)	0.4396(5)	-0.0932(4)	4.4(2)
C(34)	0.2251(3)	0.3528(5)	-0.1133(4)	4.1(2)
C(35)	0.2498(3)	0.3477(4)	0.0965(4)	3.7(1)
C(36)	0.3181(3)	0.2982(5)	0.1023(3)	3.6(1)
C(37)	0.2209(3)	0.2951(4)	0.2298(3)	3.6(1)
C(38)	0.1819(4)	0.2571(5)	0.2722(4)	4.3(2)
C(39)	0.2069(5)	0.2575(5)	0.3422(4)	4.9(2)
C(40)	0.2686(5)	0.2952(6)	0.3707(4)	5.5(2)
C(41)	0.3063(4)	0.3338(6)	0.3288(4)	5.6(2)
C(42)	0.2828(4)	0.3349(5)	0.2585(4)	4.5(2)
C(43)	0.1098(3)	0.3537(4)	0.1236(3)	3.8(1)
C(44)	0.0495(4)	0.3129(5)	0.1266(5)	5.2(2)
C(45)	-0.0118(4)	0.3609(7)	0.1141(6)	7.3(3)
C(46)	-0.0099(5)	0.4489(7)	0.0980(7)	7.7(3)
C(47)	0.0477(5)	0.4891(6)	0.0960(6)	6.8(3)
C(48)	0.1100(4)	0.4438(5)	0.1089(4)	4.8(2)
C(49)	0.3761(3)	0.4122(5)	0.0092(3)	3.6(1)
C(50)	0.3745(4)	0.4798(5)	0.0540(4)	5.0(2)
C(51)	0.3966(5)	0.5642(6)	0.0400(6)	6.6(3)
C(52)	0.4212(5)	0.5785(7)	-0.0181(6)	6.9(3)
C(53)	0.4249(4)	0.5123(7)	-0.0627(5)	5.9(2)
C(54)	0.4014(4)	0.4298(6)	-0.0504(4)	5.1(2)

Table 1. Atomic coordinates and B_{iso}/B_{eq} (continued)

atom	x	У	Z	B_{eq}
C(55)	0.4305(4)	0.2397(5)	0.0394(4)	4.4(2)
C(56)	0.4502(5)	0.1945(7)	-0.0130(5)	6.2(2)
C(57)	0.5137(6)	0.1507(8)	0.0004(7)	8.7(4)
C(58)	0.5552(6)	0.1546(8)	0.0654(8)	8.8(4)
C(59)	0.5365(5)	0.2005(9)	0.1141(6)	7.5(3)
C(60)	0.4746(4)	0.2433(6)	0.1017(5)	5.8(2)
C(61)	0.6564(7)	0.3298(9)	0.7202(7)	8.1(4)
C(62)	0.6740(8)	0.416(1)	0.7516(8)	11.7(5)
H(1)	0.2907	0.1549	0.2365	5.9616
H(2)	0.3573	0.0444	0.3005	7.1708
H(3)	0.3407	-0.1035	0.2685	7.6895
H(4)	0.2586	-0.1408	0.1724	6.5309
H(5)	0.1626	-0.1711	0.0886	7.1602
H(6)	0.0821	-0.1826	-0.0118	8.3777
H(7)	0.0430	-0.0597	-0.0751	7.4735
H(8)	0.0225	0.0767	-0.1306	6.8131
H(9)	0.0014	0.2174	-0.1791	7.8755
H(10)	0.0437	0.3399	-0.1155	7.2676
H(11)	0.1071	0.3252	-0.0045	5.1788
H(12)	0.3559	0.1041	0.0597	5.6837
H(13)	0.3523	-0.0458	0.0762	6.6538
H(14)	0.2857	-0.1363	-0.0062	7.7029
H(15)	0.2176	-0.0766	0.1040	7.1016
H(16)	0.1547	-0.0101	-0.1988	6.6268

Table 1. Atomic coordinates and B_{iso}/B_{eq} (continued)

atom	x	У	Z	B_{eq}
H(17)	0.1027	0.0760	-0.2924	7.4671
H(18)	0.1154	0.2291	-0.2897	7.0081
H(19)	0.1219	0.3774	-0.2656	7.2931
H(20)	0.1237	0.5243	-0.2275	8.1548
H(21)	0.1869	0.5618	-0.1191	6.5909
H(22)	0.2534	0.4567	-0.0503	5.3269
H(23)	0.2295	0.3546	0.0493	4.4632
H(24)	0.2591	0.4041	0.1171	4.4632
H(25)	0.3114	0.2384	0.1134	4.3752
H(26)	0.3512	0.3243	0.1380	4.3752
H(27)	0.1386	0.2311	0.2534	5.1918
H(28)	0.1805	0.2308	0.3714	5.9224
H(29)	0.2849	0.2945	0.4190	6.6455
H(30)	0.3492	0.3604	0.3481	6.7343
H(31)	0.3092	0.3627	0.2299	5.3532
H(32)	0.0491	0.2518	0.1372	6.2334
H(33)	-0.0541	0.3332	0.1167	8.7846
H(34)	-0.0516	0.4814	0.0880	9.2166
H(35)	0.0472	0.5503	0.0855	8.1815
H(36)	0.1518	0.4735	. 0.1077	5.6946
H(37)	0.3582	0.4696	0.0949	6.0330
H(38)	0.3945	0.6114	0.0709	7.8558
H(39)	0.4361	0.6360	-0.0274	8.3089
H(40)	0.4435	0.5227	-0.1022	7.0482

Table 1. Atomic coordinates and B_{iso}/B_{eq} (continued)

atom	x .	У	Z	Beq
H(41)	0.4024	0.3839	-0.0827	6.1326
H(42)	0.4214	0.1929	-0.0575	7.5026
H(43)	0.5283	0.1185	-0.0350	10.3723
H(44)	0.5976	0.1237	0.0746	10.5692
H(45)	0.5659	0.2040	0.1581	9.0212
H(46)	0.4620	0.2766	0.1376	6.9014
H(47)	0.7226	0.4200	0.7662	13.9870
H(48)	0.6582	0.4608	0.7192	13.9870
H(49)	0.6531	0.4223	0.7901	13.9870

 $B_{eq} = \frac{8}{3}\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha)$

Crystal data for $[Au_2(C^N^C)_2(\mu$ -dppe)](ClO₄)₂, 6(ClO₄)₂•CH₃CN

Table 2. Anisotropic D	isplacement	Parameters
------------------------	-------------	------------

atom	U11	U22	U33	U ₁₂	U ₁₃	U ₂₃
Au(1)	0.0430(1)	0.0376(2)	0.0495(2)	-0.00057(10)	0.0147(1)	-0.0051(1)
Au(2)	0.0441(2)	0.0449(2)	0.0492(2)	-0.0041(1)	0.0138(1)	-0.0046(1)
Cl(1)	0.056(2)	0.153(4)	0.053(2)	0.0000	0.012(1)	0.0000
Cl(3)	0.100(2)	0.053(1)	0.098(2)	-0.007(1)	0.036(1)	-0.002(1)
P(1)	0.0403(8)	0.0357(9)	0.0479(9)	0.0004(7)	0.0143(7)	-0.0036(7)
P(2)	0.0392(8)	0.0454(10)	0.0494(9)	-0.0020(7)	0.0136(8)	-0.0013(8)
O(1)	0.078(6)	0.26(1)	0.27(2)	-0.034(7)	0.049(8)	-0.03(1)
O(2)	0.29(2)	0.52(3)	0.16(1)	0.12(2)	0.07(1)	0.19(2)
O(3)	0.172(9)	0.20(1)	0.158(8)	0.128(8)	0.070(7)	0.099(8)
O(4)	0.53(4)	0.53(3)	0.29(2)	0.45(3)	-0.22(2)	-0.31(2)
O(5)	0.28(2)	0.27(2)	0.123(9)	-0.07(1)	-0.02(1)	0.015(9)
O(6)	0.35(2)	0.089(7)	0.21(1)	-0.061(8)	0.22(1)	-0.041(6)
O(7)	0.136(8)	0.068(6)	0.40(2)	0.013(6)	0.06(1)	-0.001(8)
O(8)	0.121(6)	0.064(5)	0.29(1)	-0.027(4)	0.103(8)	-0.030(6)
N(1)	0.050(3)	0.042(3)	0.067(4)	-0.003(3)	0.020(3)	-0.009(3)
N(2)	0.049(3)	0.056(4)	0.058(4)	-0.007(3)	0.017(3)	-0.010(3)
N(3)	0.16(1)	0.098(9)	0.17(1)	-0.003(8)	0.072(10)	0.042(8)
C(1)	0.057(4)	0.043(4)	0.063(4)	0.006(3)	0.024(4)	0.005(3)
C(2)	0.060(5)	0.055(5)	0.074(5)	0.007(4)	0.016(4)	0.004(4)
C(3)	0.064(5)	0.073(6)	0.087(6)	0.016(4)	0.009(5)	0.009(5)
C(4)	0.078(6)	0.068(6)	0.102(7)	0.027(5)	0.031(6)	0.032(5)
C(5)	0.082(6)	0.044(5)	0.091(6)	0.015(4)	0.042(5)	0.013(4)
C(6)	0.071(5)	0.044(4)	0.075(5)	0.006(4)	0.035(4)	-0.001(4)
C(7)	0.075(5)	0.052(5)	0.079(6)	-0.001(4)	0.046(5)	-0.005(4)

Crystal data for $[Au_2(C^N^C)_2(\mu-dppe)](ClO_4)_2, 6(ClO_4)_2 \cdot CH_3CN$

atom	U11	U22	U33	U_{12}	U ₁₃	U_{23}
C(8)	0.086(6)	0.041(4)	0.107(7)	-0.013(4)	0.035(6)	-0.014(5)
C(9)	0.091(7)	0.058(6)	0.126(9)	-0.019(5)	0.045(7)	-0.034(6)
C(10)	0.062(5)	0.078(6)	0.101(7)	-0.018(5)	0.028(5)	-0.045(6)
C(11)	0.049(4)	0.062(5)	0.080(6)	-0.009(3)	0.030(4)	-0.028(4)
C(12)	0.036(3)	0.078(6)	0.059(4)	0.000(3)	0.011(3)	-0.016(4)
C(13)	0.052(4)	0.089(7)	0.077(6)	-0.010(4)	0.017(4)	-0.022(5)
C(14)	0.055(5)	0.130(9)	0.059(5)	0.001(5)	0.001(4)	-0.017(6)
C(15)	0.057(5)	0.100(7)	0.072(6)	0.011(5)	0.011(5)	0.009(5)
C(16)	0.042(4)	0.072(5)	0.046(4)	0.004(3)	0.001(3)	-0.005(3)
C(17)	0.046(4)	0.057(5)	0.056(4)	-0.002(3)	0.013(3)	-0.005(3)
C(18)	0.061(4)	0.041(4)	0.073(5)	-0.001(3)	0.035(4)	0.001(3)
C(19)	0.070(5)	0.049(4)	0.068(5)	0.006(4)	0.032(4)	0.003(4)
C(20)	0.078(6)	0.066(6)	0.075(6)	0.013(4)	0.033(5)	0.008(4)
C(21)	0.094(7)	0.047(5)	0.117(8)	0.004(5)	0.055(6)	-0.006(5)
C(22)	0.100(7)	0.052(5)	0.088(6)	-0.011(5)	0.054(6)	-0.021(5)
C(23)	0.070(5)	0.045(4)	0.073(5)	-0.004(3)	0.043(4)	-0.014(4)
C(24)	0.055(4)	0.059(5)	0.065(5)	-0.010(3)	0.031(4)	-0.013(4)
C(25)	0.067(5)	0.071(6)	0.077(6)	-0.020(4)	0.028(5)	-0.027(5)
C(26)	0.056(5)	0.116(8)	0.067(6)	-0.020(5)	0.017(4)	-0.038(6)
C(27)	0.061(5)	0.108(8)	0.054(5)	-0.018(5)	0.015(4)	-0.013(5)
C(28)	0.042(4)	0.084(6)	0.057(5)	-0.009(4)	0.010(4)	-0.007(4)
C(29)	0.051(4)	0.071(5)	0.064(5)	-0.006(4)	0.019(4)	0.006(4)
C(30)	0.061(5)	0.100(8)	0.066(5)	-0.009(5)	0.005(4)	0.017(5)
C(31)	0.085(6)	0.078(7)	0.095(7)	0.016(5)	0.016(6)	0.032(6)

Table 2. Anisotropic Displacement Parameters (continued)

Table 2. Anisotropic Displacement Parameters (continued)

atom	U11	U ₂₂	U ₃₃	U_{12}	U13	U ₂₃
C(32)	0.067(5)	0.055(5)	0.086(6)	-0.002(4)	0.013(5)	0.014(4)
C(33)	0.048(4)	0.050(4)	0.071(5)	-0.002(3)	0.014(4)	0.003(4)
C(34)	0.038(3)	0.056(4)	0.060(4)	0.002(3)	0.010(3)	0.007(3)
C(35)	0.043(3)	0.051(4)	0.049(4)	0.001(3)	0.012(3)	0.000(3)
C(36)	0.040(3)	0.054(4)	0.045(4)	0.003(3)	0.009(3)	0.005(3)
C(37)	0.051(4)	0.038(4)	0.049(4)	0.003(3)	0.013(3)	-0.005(3)
C(38)	0.057(4)	0.052(4)	0.060(5)	0.002(3)	0.022(4)	0.006(3)
C(39)	0.085(6)	0.059(5)	0.050(4)	0.012(4)	0.028(4)	0.009(3)
C(40)	0.091(6)	0.077(6)	0.041(4)	0.009(5)	0.009(4)	-0.006(4)
C(41)	0.066(5)	0.085(6)	0.057(5)	-0.010(4)	0.001(4)	-0.015(4)
C(42)	0.060(4)	0.055(5)	0.059(4)	-0.009(3)	0.022(4)	-0.009(3)
C(43)	0.045(4)	0.049(4)	0.049(4)	-0.001(3)	0.012(3)	-0.002(3)
C(44)	0.050(4)	0.060(5)	0.092(6)	0.003(4)	0.025(4)	-0.001(4)
C(45)	0.039(4)	0.102(8)	0.14(1)	0.006(4)	0.022(5)	0.008(7)
C(46)	0.058(5)	0.087(8)	0.15(1)	0.028(5)	0.037(6)	0.008(7)
C(47)	0.073(6)	0.065(6)	0.124(8)	0.024(5)	0.026(6)	0.016(5)
C(48)	0.057(4)	0.046(4)	0.081(5)	0.012(3)	0.023(4)	-0.001(4)
C(49)	0.037(3)	0.052(4)	0.049(4)	-0.007(3)	0.008(3)	0.007(3)
C(50)	0.065(5)	0.058(5)	0.073(5)	-0.010(4)	0.023(4)	0.004(4)
C(51)	0.083(6)	0.053(5)	0.111(8)	-0.014(4)	0.016(6)	0.002(5)
C(52)	0.074(6)	0.071(6)	0.108(8)	-0.020(5)	-0.005(6)	0.039(6)
C(53)	0.057(5)	0.085(7)	0.079(6)	-0.008(4)	0.010(5)	0.038(5)
C(54)	0.054(4)	0.077(6)	0.061(5)	-0.011(4)	0.006(4)	0.007(4)
C(55)	0.042(4)	0.061(5)	0.072(5)	0.003(3)	0.027(4)	0.007(4)

atom	U11	U22	U ₃₃	U_{12}	U ₁₃	U ₂₃
C(56)	0.066(5)	0.085(7)	0.094(7)	0.011(5)	0.033(5)	-0.018(5)
C(57)	0.095(8)	0.12(1)	0.13(1)	0.041(7)	0.061(8)	0.006(8)
C(58)	0.075(7)	0.111(10)	0.15(1)	0.039(6)	0.036(8)	0.045(8)
C(59)	0.060(6)	0.127(10)	0.101(8)	0.022(6)	0.020(6)	0.002(7)
C(60)	0.053(5)	0.090(7)	0.075(6)	0.018(4)	0.011(5)	0.000(4)
C(61)	0.118(10)	0.091(9)	0.107(9)	0.031(8)	0.044(8)	0.020(7)
C(62)	0.14(1)	0.16(1)	0.15(1)	0.04(1)	0.04(1)	-0.03(1)

Table 2. Anisotropic Displacement Parameters (continued)

The general temperature factor expression:

$$\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$$

Table 3. Bond Lengths(\mathring{A})

atom	atom	distance	atom	atom	distance
Au(1)	P(1)	2.281(2)	Au(1)	N(1)	2.030(6)
Au(1)	C(1)	2.114(7)	Au(1)	C(17)	2.116(7)
Au(2)	P(2)	2.280(2)	Au(2)	N(2)	2.019(6)
Au(2)	C(18)	2.099(7)	Au(2)	C(34)	2.099(7)
Cl(1)	O(1)	1.32(1)	Cl(1)	O(1)	1.32(1)
Cl(1)	O(2)	1.32(1)	Cl(1)	O(2)	1.32(1)
Cl(2)	O(3)	1.355(7)	Cl(2)	O(3)	1.355(7)
Cl(2)	O(4)	1.21(1)	Cl(2)	O(4)	1.21(1)
Cl(3)	O(5)	1.34(1)	Cl(3)	O(6)	1.364(9)
Cl(3)	O(7)	1.363(10)	Cl(3)	O(8)	1.389(7)
P(1)	C(35)	1.823(7)	P(1)	C(37)	1.803(7)
P(1)	C(43)	1.807(7)	P(2)	C(36)	1.818(7)
P(2)	C(49)	1.793(7)	P(2)	C(55)	1.810(7)
N(1)	C(7)	1.325(10)	N(1)	C(11)	1.346(10)
N(2)	C(24)	1.338(9)	N(2)	C(28)	1.35(1)
N(3)	C(61)	1.15(2)	C(1)	C(2)	1.39(1)
C(1)	C(6)	1.422(10)	C(2)	C(3)	1.40(1)
C(3)	C(4)	1.38(1)	C(4)	C(5)	1.37(1)
C(5)	C(6)	1.40(1)	C(6)	C(7)	1.49(1)
C(7)	C(8)	1.36(1)	C(8)	C(9)	$1.34(1)^{-1}$
C(9)	C(10)	1.35(1)	C(10)	C(11)	1.39(1)
C(11)	C(12)	1.47(1)	C(12)	C(13)	1.36(1)
C(12)	C(17)	1.42(1)	C(13)	C(14)	1.39(1)
C(14)	C(15)	1.36(1)	C(15)	C(16)	1.38(1)

atom	atom	distance	atom	atom	distance
C(16)	C(17)	1.37(1)	C(18)	C(19)	1.41(1)
C(18)	C(23)	1.43(1)	C(19)	C(20)	1.36(1)
C(20)	C(21)	1.39(1)	C(21)	C(22)	1.37(1)
C(22)	C(23)	1.40(1)	C(23)	C(24)	1.46(1)
C(24)	C(25)	1.39(1)	C(25)	C(26)	1.38(1)
C(26)	C(27)	1.38(1)	C(27)	C(28)	1.39(1)
C(28)	C(29)	1.46(1)	C(29)	C(30)	1.40(1)
C(29)	C(34)	1.44(1)	C(30)	C(31)	1.40(1)
C(31)	C(32)	1.39(1)	C(32)	C(33)	1.39(1)
C(33)	C(34)	1.37(1)	C(35)	C(36)	1.536(9)
C(37)	C(38)	1.38(1)	C(37)	C(42)	1.385(10)
C(38)	C(39)	1.38(1)	C(39)	C(40)	1.37(1)
C(40)	C(41)	1.36(1)	C(41)	C(42)	1.38(1)
C(43)	C(44)	1.361(10)	C(43)	C(48)	1.396(9)
C(44)	C(45)	1.40(1)	C(45)	C(46)	1.37(1)
C(46)	C(47)	1.31(1)	C(47)	C(48)	1.39(1)
C(49)	C(50)	1.36(1)	C(49)	C(54)	1.41(1)
C(50)	C(51)	1.40(1)	C(51)	C(52)	1.36(2)
C(52)	C(53)	1.35(1)	C(53)	C(54)	1.37(1)
C(55)	C(56)	1.37(1)	C(55)	C(60)	1.36(1)
C(56)	C(57)	1.40(1)	C(57)	C(58)	1.38(2)
C(58)	C(59)	1.31(2)	C(59)	C(60)	1.37(1)
C(61)	C(62)	1.46(2)			

Table 3. Bond Lengths(\hat{A}) (continued)

•

Table 5. Bond Angles(°)

atom	atom	atom	angle	atom	atom	atom	angle
P(1)	Au(1)	N(1)	174.9(2)	P(1)	Au(1)	C(1)	102.4(2)
P(1)	Au(1)	C(17)	96.9(2)	N(1)	Au(1)	C(1)	80.5(3)
N(1)	Au(1)	C(17)	80.6(3)	C(1)	Au(1)	C(17)	160.4(3)
P(2)	Au(2)	N(2)	174.5(2)	P(2)	Au(2)	C(18)	97.9(2)
P(2)	Au(2)	C(34)	101.4(2)	N(2)	Au(2)	C(18)	80.4(3)
N(2)	Au(2)	C(34)	80.8(3)	C(18)	Au(2)	C(34)	160.2(3)
O(1)	Cl(1)	O(1)	115(1)	O(1)	Cl(1)	O(2)	106(1)
O(1)	Cl(1)	O(2)	102(1)	O(1)	Cl(1)	O(2)	102(1)
O(1)	Cl(1)	O(2)	106(1)	O(2)	Cl(1)	O(2)	124(2)
O(3)	Cl(2)	O(3)	120(1)	O(3)	Cl(2)	O(4)	104.5(8)
O(3)	Cl(2)	O(4)	107(1)	O(3)	Cl(2)	O(4)	107(1)
O(3)	Cl(2)	O(4)	104.5(8)	O(4)	Cl(2)	O(4)	113(2)
O(5)	Cl(3)	O(6)	106.1(9)	O(5)	Cl(3)	O(7)	105.5(10)
O(5)	Cl(3)	O(8)	113.1(8)	O(6)	Cl(3)	O(7)	110.9(8)
O(6)	Cl(3)	O(8)	111.2(6)	O(7)	Cl(3)	O(8)	109.9(6)
Au(1)	P(1)	C(35)	108.5(2)	Au(1)	P(1)	C(37)	115.8(2)
Au(1)	P(1)	C(43)	110.4(2)	C(35)	P(1)	C(37)	108.3(3)
C(35)	P(1)	C(43)	108.5(3)	C(37)	P(1)	C(43)	105.1(3)
Au(2)	P(2)	C(36)	108.2(2)	Au(2)	P(2)	C(49)	116.1(2)
Au(2)	P(2)	C(55)	112.0(3)	C(36)	P(2)	C(49)	108.8(3)
C(36)	P(2)	C(55)	107.0(3)	C(49)	P(2)	C(55)	104.4(3)
Au(1)	N(1)	C(7)	118.4(5)	Au(1)	N(1)	C(11)	117.5(5)
C(7)	· N(1)	C(11)	123.9(7)	Au(2)	N(2)	C(24)	118.6(5)
Au(2)	N(2)	C(28)	117.0(5)	C(24)	N(2)	C(28)	124.1(6)

Crystal data for $[Au_2(C^N^C)_2(\mu-dppe)](ClO_4)_2, 6(ClO_4)_2 \cdot CH_3CN$

Table 5. Bond Angles(°) (continued)

atom	atom	atom	angle	atom	atom	atom	angle
Au(1)	C(1)	C(2)	131.6(6)	Au(1)	C(1)	C(6)	109.5(5)
C(2)	C(1)	C(6)	118.6(7)	C(1)	C(2)	C(3)	120.8(8)
C(2)	C(3)	C(4)	120.4(8)	C(3)	C(4)	C(5)	119.5(8)
C(4)	C(5)	C(6)	121.6(8)	C(1)	C(6)	C(5)	119.2(8)
C(1)	C(6)	C(7)	117.8(7)	C(5)	C(6)	C(7)	123.0(7)
N(1)	C(7)	C(6)	113.1(7)	N(1)	C(7)	C(8)	119.7(9)
C(6)	C(7)	C(8)	127.2(8)	C(7)	C(8)	C(9)	118.5(9)
C(8)	C(9)	C(10)	121.3(9)	C(9)	C(10)	C(11)	120.3(9)
N(1)	C(11)	C(10)	116.1(9)	N(1)	C(11)	C(12)	113.9(6)
C(10)	C(11)	C(12)	130.0(9)	C(11)	C(12)	C(13)	122.7(8)
C(11)	C(12)	C(17)	117.8(7)	C(13)	C(12)	C(17)	119.5(8)
C(12)	C(13)	C(14)	121.0(8)	C(13)	C(14)	C(15)	119.0(9)
C(14)	C(15)	C(16)	121.0(10)	C(15)	C(16)	C(17)	120.7(8)
Au(1)	C(17)	C(12)	109.9(6)	Au(1)	C(17)	C(16)	131.2(6)
C(12)	C(17)	C(16)	118.7(7)	Au(2)	C(18)	C(19)	131.7(6)
Au(2)	C(18)	C(23)	109.6(6)	C(19)	C(18)	C(23)	118.7(7)
C(18)	C(19)	C(20)	120.3(8)	C(19)	C(20)	C(21)	120.8(8)
C(20)	C(21)	C(22)	120.9(8)	C(21)	C(22)	C(23)	119.8(8)
C(18)	C(23)	C(22)	119.5(8)	C(18)	C(23)	C(24)	118.3(7)
C(22)	C(23)	C(24)	122.2(8)	N(2)	C(24)	C(23)	113.0(6)
N(2)	C(24)	C(25)	118.9(8)	C(23)	C(24)	C(25)	128.0(8)
C(24)	C(25)	C(26)	118.6(8)	C(25)	C(26)	C(27)	121.1(7)
C(26)	C(27)	C(28)	118.9(9)	N(2)	C(28)	C(27)	118.2(8)
N(2)	C(28)	C(29)	114.2(7)	C(27)	C(28)	C(29)	127.5(8)

Table 5. Bond Angles(°) (continued)

atom	atom	atom	angle	atom	atom	atom	angle
C(28)	C(29)	C(30)	123.1(8)	C(28)	C(29)	C(34)	117.2(7)
C(30)	C(29)	C(34)	119.5(8)	C(29)	C(30)	C(31)	119.9(8)
C(30)	C(31)	C(32)	119.8(8)	C(31)	C(32)	C(33)	120.9(8)
C(32)	C(33)	C(34)	120.8(7)	Au(2)	C(34)	C(29)	109.6(5)
Au(2)	C(34)	C(33)	131.2(6)	C(29)	C(34)	C(33)	119.0(7)
P(1)	C(35)	C(36)	113.5(5)	P(2)	C(36)	C(35)	113.1(5)
P(1)	C(37)	C(38)	118.3(5)	P(1)	C(37)	C(42)	122.2(6)
C(38)	C(37)	C(42)	119.5(6)	C(37)	C(38)	C(39)	118.9(7)
C(38)	C(39)	C(40)	121.9(8)	C(39)	C(40)	C(41)	. 119.0(7)
C(40)	C(41)	C(42)	120.7(7)	C(37)	C(42)	C(41)	120.0(7)
P(1)	C(43)	C(44)	119.8(6)	P(1)	C(43)	C(48)	120.5(5)
C(44)	C(43)	C(48)	119.7(7)	C(43)	C(44)	C(45)	120.0(8)
C(44)	C(45)	C(46)	118.8(8)	C(45)	C(46)	C(47)	121.8(8)
C(46)	C(47)	C(48)	121.1(9)	C(43)	C(48)	C(47)	118.6(8)
P(2)	C(49)	C(50)	123.8(6)	P(2)	C(49)	C(54)	118.2(6)
C(50)	C(49)	C(54)	118.0(7)	C(49)	C(50)	C(51)	120.4(8)
C(50)	C(51)	C(52)	119.8(9)	C(51)	C(52)	C(53)	121.1(9)
C(52)	C(53)	C(54)	119.5(9)	C(49)	C(54)	C(53)	121.1(8)
P(2)	C(55)	C(56)	120.1(7)	P(2)	C(55)	C(60)	120.9(6)
C(56)	C(55)	C(60)	118.8(8)	C(55)	C(56)	C(57)	118.5(10)
C(56)	C(57)	C(58)	119(1)	C(57)	C(58)	C(59)	120.7(10)
C(58)	C(59)	C(60)	120(1)	C(55)	C(60)	C(59)	122.1(9)
N(3)	C(61)	C(62)	175(1)				

Table 9. Least Squares Planes

Plane number 1

Atoms defining plane	Distance
N(1)	-0.011(6)
C(7)	0.014(7)
C(8)	-0.002(10)
C(9)	-0.01(1)
C(10)	0.005(9)
C(11)	0.008(7)
Additional Atoms	Distance
N(2)	3.478
C(24)	3.497
C(25)	3.577
C(26)	3.718
C(27)	3.733
C(28)	3.586

Plane number 2

Atoms defining plane	Distance
N(2)	-0.005(6)
C(24)	0.018(7)
C(25)	-0.022(9)
C(26)	0.002(9)
C(27)	0.017(9)
C(28)	-0.010(8)
Additional Atoms	Distance
N(1)	-3.241
C(7)	-3.132
C(8)	-3.196
C(9)	-3.340
C(10)	-3.407
C(11)	-3.356

Summary

1 0,0000 10.2	plane	mean deviation	χ^2
1 0.0090 10.2	1	0.0090	10.2

Crystal data for $[Au_2(C^N^C)_2(\mu\text{-dppe})](ClO_4)_2, 6(ClO_4)_2 \cdot CH_3CN$

Dihedral angles between planes (°)

plane	1
2	5.72