

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

	0
	Ě
	8
	8
	\geq
	Ħ
	<u>e</u>
	сiс
	ài
	$\overline{}$
	G.
	et -
	E.
	S
	õ
	<u>Ω</u> .
	et
•	,
	0
•	3.I.
`	ä
	no
	Ē
	et
	al
	E
,	Ň
	7
	10
	ut
	<u>l</u> <u>e</u> .
	S
	0
	Ľ
	š
	8
	õ
	S.
	S
	Ē
F	ğ
	0ľ
	Ξ÷
(ğ
	Ц
	If
	$\frac{1}{2}$
	Pa
(20
	~ "

Solvent	Compound	$\delta(H^{\alpha})$	δ(H _{3,5})	δ(H _{2,6})	δ(H4)	$\delta(\mathrm{Hc_{p}}^{*})$
(CD ₃) ₂ SO	6	5.62	6.10 ^b	6.10 ^b	6.10 ^b	1.90
	C-6	6.27	5.75	6.35	5.70	1.85
	Δδ	0.65	-0.35	0.25	-0.40	- 0.05
50:50 H ₂ O-(CD ₃) ₂ SO	6	5.45	6.0 ^b	6.0 ^b	6.0 ^b	1.90
	C-6	6.49	5.79	6.36	5.70	1.90
	Δδ	1.04	-0.21	0.36	-0.30	0
		· · · · ·				

Table S1: ¹H NMR Data for the Cation 6 and the Related Carbon Base C-6 in $(CD_3)_2SO$, and a 50:50 (v/v) H₂O- $(CD_3)_2SO$ Mixture^a

^a δ in ppm relative to internal reference SiMe₄. ^b Broad signal.

Solvent	Compound	δ(Cα)	δ(C1)	δ(C _{2,6})	δ(C _{3,5})	δ(C4)	$\delta(C^{c_{p^*}})$	δ(Сснз)	$J(C\alpha H\alpha)$
(CDa)2SO	6	75.8	89.7	89.2 ^b	87.9 ^b	87.6	96.7	10.0	150.5
(C-6	99.9	104.0	80.2 ^b	86.0 ^b	83.9	94.1	9.89	182.1
	Δδ	23.9	14.3	-9.0	-1.9	-3.7	-2.6	-0.11	31.6
50:50 H ₂ O-(CD ₃) ₂ SO	6	76.0	89.3	88.6 ^b	87.7 ^b	87.6	97.5	9.9	150.2
	C-6	106.0	97.7	83.0 ^b	86.3 ^b	85.4	95.8	9.8	184.4
	Δδ	30.0	8.4	-5.6	-1.4	-2.2	-1.7	-0.1	34.2
		-			·				
									·

Table S2 : ¹³C NMR Data for the Cation 6 and the Related Carbon Base C-6 in $(CD_3)_2$ SO and a 50:50(v/v) H₂O- $(CD_3)_2$ SO Mixture ^a

^a δ in ppm relative to internal reference SiMe₄; J in Hz.^b represent tentative assignments for ortho (C_{2,6}) and meta (C_{3,5}) carbons.

© 1998 American Chemical Society, Organometallics, Moutiers om9800905 Supporting Info Page 3 **Table S3** Observed First-Order Rate Constants for the Ionization of **6** by amine buffers in 50:50(v/v) H₂O Me₂SO at 25°C.

Buffer (B)	pН	[B] (mol.L ⁻¹)	[BH] (mol.L ⁻¹)	k_{obsd} (s ⁻¹)
OH-		0.0005	·.	11.80
		0.00075		12.40
		0.0010		23.00
		0.0015		54.65
		0.0020		55.90
				r,
Butylamine	9.99	0.0040	0.0040	2.46
		0.0045	0.0045	2.79
		0.0050	0.0050	2.93
		0.0100	0.0100	4.86
		0.0150	0.0150	7.61
		0.0200	0.0200	9.73
N-Methylaminoethanol	9.39	0.004	0.004	2.33
		0.005	0.005	2.88
		0.010	0.010	5.73
		0.020	0.020	8.68
		0.025	0.025	12.07
		0.030	0.030	13.50
2-Methoxyethylamine	9.11	0.004	0.004	0.37
		0.005	0.005	0.43
		0.010	0.010	0.79
		0.020	0.020	1.46
		0.025	0.025	1.88
		0.030	0.030	2.37
Allylamine	9.08	0.004	0.004	0.51
		0.005	0.005	0.62
		0.010	0.010	0.98
		0.020	0.020	1.44
		0.030	0.030	2.17
		0.040	0.040	3.01
	8.78	0.004	0.008	0.50
		0.005	0.010	0.58
		0.010	0.020	1.13
		0.020	0.040	1.42
		0.030	0.060	2.17

Buffer (B)	pН	[B] (mol.l ⁻¹)	[BH] (mo.l ⁻¹)	k_{obs} (s ⁻¹)
Glycinamide	8.31	0.008	0.004	0.18
		0.010	0.005	0.22
		0.040	0.020	0.75
		0.060	0.030	1.10
		0.080	0.040	1.43
i i				
	7.71	0.004	0.008	0.09
		0.005	0.010	0.12
		0.010	0.020	0.20
		0.020	0.040	0.37
		0.030	0.060	0.63
		0.040	0.080	0.79
Glycine ethyl ester	7.54	0.020	0.010	0.40
		0.030	0.015	0.61
		0.040	0.020	0.88
		0.050	0.025	0.96
		0.060	0.030	1.19
		0.070	0.035	1.40
	7.24	0.010	0.010	0.21
		0.015	0.015	0.30
		0.020	0.020	0.63
		0.025	0.025	0.50
		0.030	0.030	0.42
		0.035	0.035	0.70
	6.94	0.010	0.020	0.23
		0.015	0.030	0.33
		0.020	0.040	0.45
		0.030	0.060	0.69
		0.035	0.070	0.79

Table S4 Observed First-Order Rate Constants for the Ionization of **6** by carboxylic buffers in 50:50(v/v) H₂O-Me₂SO at 25°C

Buffer (BH)	pH	[B] (mol.L ⁻¹)	[BH] (mol.L ⁻¹)	k _{obsd} (s ⁻¹)
Acetic acid	6.32	0.0150	0.0050	0.090
		0.0300	0.0100	0.173
		0.0450	0.0150	0.265
		0.0600	0.0200	0.365
		0.0900	0.0300	0.56
	6.14	0.0400	0.0200	0.280
		0.0500	0.0250	0.355
		0.0600	0.0300	0.425
		0.0700	0.0350	0.510
	5.84	0.0100	0.0100	0.105
		0.0200	0.0200	0.200
		0.0250	0.0250	0.246
		0.0300	0.0300	0.305
		0.0400	0.0400	0.405
		0.0500	0.0500	0.490
	i			
	5.54	0.0100	0.0200	0.093
		0.0200	0.0400	0.18
		0.0300	0.0600	0.28
		0.0400	0.0800	0.36
		0.0500	0.1000	0.46
		0.0600	0.1200	0.55
	5.36	0.0100	0.0300	0.255
		0.0133	0.0400	0.33
		0.0167	0.0500	0.42
		0.0200	0.0600	0.51
		0.0233	0.0700	0.59

Buffer (BH)	pH	[B] (mol.L ⁻¹)	[BH] (mol.L ⁻¹)	k _{obsd} (s ⁻¹)
Methoxyacetic acid	4.95	0.0200	0.0100	0.65
·		0.0400	0.0200	1.125
		0.0500	0.0250	1.625
		0.0600	0.0300	1.85
		0.0700	0.0350	1.97
		0.0800	0.0400	2.29
	4.65	0.0100	0.0100	0.603
		0.0200	0.0200	1.25
		0.0250	0.0250	0.78
		0.0300	0.0300	1.67
		0.0400	0.0400	2.27
		0.0500	0.0500	3.02
	4.35	0.0100	0.0200	1.38
		0.0200	0.0400	2.345
		0.0250	0.0500	2.58
		0.0300	0.0600	3.54
		0.0350	0.0700	3.755
		0.0400	0.0800	4.43
Formic acid	4.75	0.0100	0.0050	0.32
		0.0200	0.0100	0.51
		0.0300	0.0150	0.75
		0.0400	0.0200	1.04
		0.0500	0.0250	1.25
		0.0600	0.0300	1.49
	4.15	0.0050	0.0100	0.47
•		0.0100	0.0200	0.91
		0.0150	0.0300	1.275
		0.0200	0.0400	1.74
		0.0250	0.0500	2.06
		0.0300	0.0600	2.68
		1		

Buffer (BH)	рН	[B] (mol.L ⁻¹)	[BH] (mol.L ⁻¹)	k_{obsd} (s ⁻¹)
Chloroacetic acid	4.19	0.0090	0.0030	0.28
		0.0120	0.0040	0.48
		0.0150	0.0050	0.55
		0.0300	0.0100	1.00
		0.0450	0.0150	1.51
		0.0600	0.0200	1.98
	4.01	0.0060	0.0030	0.34
		0.0080	0.0040	0.42
		0.0100	0.0050	0.55
		0.0300	0.0150	1.38
		0.0400	0.0200	2.00
	3.71	0.0030	0.0030	0.370
		0.0040	0.0040	0.481
		0.0050	0.0050	0.572
		0.0100	0.0100	1.06
		0.0150	0.0150	1.475
		0.0200	0.0200	1.96
	3.41	0.0030	0.0060	0.630
		0.0040	0.0080	0.77
		0.0045	0.0090	0.855
		0.0050	0.0100	0.920
		0.0100	0.0200	1.68
	3.23	0.0030	0.0090	0.860
		0.0035	0.0110	0.905
		0.0040	0.0120	0.99
		0.0045	0.0140	1.10
		0.0050	0.0150	1.25
		0.0100	0.0300	2.15
H3O+			9.5x10-4	0.27
			1.05x10-3	0.28
			1.15x10-3	0.30
			1.25x10-3	0.31
			1.35x10-3	0.33
			2.43x10-3	0.41
			3.93x10-3	0.44
			4.93x10-3	0.46

© 1998 American Chemical Society, Organometallics, Moutiers om 9800905 Supporting Info Page 7

Supplementary material

FIGURE CAPTIONS

Figure S1 : Effect of buffer concentration and pH on the observed rate constant, k_{obsd} , for protonation of C-6 in acetic acid buffers in 50% H₂O / 50% Me₂SO (v/v) ; T = 25°C ; I = 0.5 mol.L⁻¹.

Figure S2 : UV-VIS absorption spectra of the carbon base C-6 and the related nitronic acid C-6aH in a $5x10^{-2}$ mol.L⁻¹ HCl solution in 50% H₂O / 50% Me₂SO (v/v) ; T = 25° C ; I = 0.5 mol.L⁻¹.

figure S2