

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

N-Li(1)-Si(1)#1	118.8(4)	Li(2)-Li(1)-Si(1)#1	73.5(2)
Si(1)-Li(1)-Si(1)#1	147.0(4)	O(1)-Li(1)-Si(2)#1	104.71(12)
O(1)#1-Li(1)-Si(2)#1	113.58(11)	N#1-Li(1)-Si(2)#1	27.64(12)
N-Li(1)-Si(2)#1	106.7(4)	Li(2)-Li(1)-Si(2)#1	60.53(18)
Si(1)-Li(1)-Si(2)#1	104.1(2)	Si(1)#1-Li(1)-Si(2)#1	58.46(11)
O(1)-Li(1)-Si(2)	113.58(11)	O(1)#1-Li(1)-Si(2)	104.71(12)
N#1-Li(1)-Si(2)	106.7(4)	N-Li(1)-Si(2)	27.64(12)
Li(2)-Li(1)-Si(2)	60.53(18)	Si(1)-Li(1)-Si(2)	58.46(11)
Si(1)#1-Li(1)-Si(2)	104.1(2)	Si(2)#1-Li(1)-Si(2)	121.1(4)
O(2)-Li(2)-O(2)#1	101.2(6)	O(2) - Li(2) - N # 1	128.93(15)
O(2)#1-Li(2)-N#1	98.03(15)	O(2)-Li(2)-N	98.03(15)
O(2)#1-Li(2)-N	128.93(15)	N#1-Li(2)-N	105.6(6)
O(2) - Li(2) - Li(1)	129.4(3)	O(2)#1-Li(2)-Li(1)	129.4(3)
N#1-Li(2)-Li(1)	52.8(3)	N-Li(2)-Li(1)	52.8(3)
O(2)-Li(2)-C(9)#1	127.4(5)	O(2)#1-Li(2)-C(9)#1	29.24(15)
N#1-Li(2)-C(9)#1	71.30(16)	N-Li(2)-C(9)#1	125.0(2)
Li(1)-Li(2)-C(9)#1	102.0(3)	O(2) - Li(2) - C(9)	29.24(15)
O(2)#1-Li(2)-C(9)	127.4(5)	N#1-Li(2)-C(9)	124.9(2)
N-Li(2)-C(9)	71.30(16)	Li(1)-Li(2)-C(9)	102.0(3)
C(9)#1-Li(2)-C(9)	155.9(5)	O(2)-Li(2)-Si(2)#1	143.3(3)
O(2)#1-Li(2)-Si(2)#1	66.14(11)	N#1-Li(2)-Si(2)#1	33.75(11)
N-Li(2)-Si(2)#1	116.9(4)	Li(1)-Li(2)-Si(2)#1	71.8(2)
C(9)#1-Li(2)-Si(2)#1	37.89(12)	C(9) - Li(2) - Si(2) #1	156.88(17)
O(2) - Li(2) - Si(2)	66.14(11)	O(2) #1-Li(2)-Si(2)	143.3(3)
N#1-Li(2)-Si(2)	116.9(4)	N-Li(2)-Si(2)	33.75(11)
Li(1) - Li(2) - Si(2)	71.8(2)	C(9)#1-Li(2)-Si(2)	156.88(17)
C(9) - Li(2) - Si(2)	37.89(12)	Si(2)#1-Li(2)-Si(2)	143.5(4)
· · · · · ·	• •		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y,-z

<u>Table 4</u>. Anisotropic displacement parameters $[\dot{A}^2 \times 10^3]$ for 9. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$(ha^*)^2 U_{11}^2 + \ldots + 2hka^*b^* U_{12}^2$]

	U11	U22	U33	U23	U13	U12
	20/1)	EQ(1)	EQ(1)	4(1)	0(1)	-2(1)
2T(T)	39(1) 54(1)	50(1)	50(1) 51(1)	4 (⊥) 2 (1)	24(1)	-2(1)
51(2)	54(1)	57(I)	51(1)	2(1)	24(1)	4(2)
N	35(2)	53(2)	42(2)	8(2)	10(2)	4(2)
C(3)	42(3)	58(4)	45(3)	3(3)	6(3)	2(3)
C(5)	78(4)	64(4)	58(4)	17(3)	9(3)	0(4)
C(6)	61(4)	53(4)	98(5)	8(4)	17(4)	-11(3)
C(7)	70(5)	110(5)	102(5)	27(4)	48(4)	15(4)
C(8)	137(6)	76(4)	61(4)	-11(3)	41(4)	5(4)
C(11)	89(5)	83(5)	77(5)	35(4)	22(4)	10(4)
C(9)	57(4)	59(3)	48(3)	1(3)	24(3)	-1(3)
C(12)	69(4)	58(4)	102(6)	23(4)	30(4)	18(4)
C(2)	47(4)	121(6)	110(6)	40(5)	3(4)	5(4)
0(2)	73(3)	62(2)	59(2)	13(2)	35(2)	15(2)
0(1)	47(2)	60(2)	71(3)	21(2)	-7(2)	-10(2)
C(1)	112(5)	65(4)	59(4)	-4(3)	-24(4)	-11(4)
C(4)	76(4)	78(5)	42(3)	12(3)	-4(3)	-9(4)
C(10)	103(5)	80(5)	53(4)	19(3)	33(4)	20(4)
Li(1)	55(8)	54(7)	35(6)	0	-2(6)	0
Li(2)	52(7)	56(7)	30(6)	0	12(5)	0

Table 1. Crystal data ,data collection and structure refinement for 7

,

.

τ.

Empirical formula	$C_{32}H_{44}Li2N2O_4Si_4$
Formula weight	646.94
Crystal system	triklin
Space group	P-1
Unit cell dimensions	a = 12.366(2) Å α = 71.74(3) ^o b = 13.262(3) Å β = 72.99(3) ^o c = 14.059(3) Å γ = 65.34(3) ^o
Volume	1954.6(7) Å ³
Z	2
Density (calculated)	1.099 Mg/m ³
Absorption coefficient	0.185 mm ⁻¹
F(000)	688
Crystal size	0.1 x 0.5 x 0.2 mm
Diffractometer used	Stoe/IPDS
Measurement method	direct
Temperature	293(2) К
Wavelength	0.71073 Å
Monochromator	graphite
heta range for data collection	1.84 to 24.15 ⁰
Ind ex ranges	$-14 \le h \le 14$, $-15 \le k \le 15$, $-16 \le \ell \le 16$
Reflections collected	15440
Independent reflections	5775 ($R_{int} = 0.0468$)
Observed refection	3945 (I>2sigma(I))

Programs used	SHELXS-97 (Sheldrick, 1990),
	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5775 / 0 / 397
Goodness-of-fit on F ²	0.965
Final R indices $[I>2\sigma(I)]$	R1 = 0.0404, $wR2 = 0.1017$
R indices (all data)	R1 = 0.0631, wR2 = 0.1105
Hydrogen atoms	geom
Largest diff. peak and hole	0.188 and -0.127 eÅ ⁻³

<u>Table 2</u>. Atomic coordinates [x 10⁴] and equivalent isotropic displacement parameters [$\dot{A}^2 \times 10^3$] for **7**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

٣

	x	У	Z	U(eq)
Si(1)	2386(1)	6229(1)	6161(1)	77(1)
Si(2)	2644(1)	8535(1)	5402(1)	84(1)
Si(3)	3354(1)	7465(1)	8911(1)	58(1)
Si(4)	707(1)	7658(1)	9279(1)	60(1)
Li(1)	3168(4)	6531(4)	7577(3)	72(1)
Li(2)	1438(4)	8447(4)	7310(3)	71(1)
N(1)	2433(2)	7422(2)	6277(1)	72(1)
N(2)	2116(2)	7488(2)	8649(1)	61(1)
0(1)	3097(2)	5286(2)	7129(1)	85(1)
0(2)	1969(2)	9527(2)	6127(1)	88(1)
0(3)	4422(1)	6615(1)	8126(1)	72(1)
0(4)	-67(1)	8619(1)	8346(1)	69(1)
C(1)	3249(4)	5775(4)	4945(3)	142(2)
C(2)	871(3)	6155(3)	6424(3)	125(1)
C(3)	4251(3)	8407(4)	4938(3)	149(2)
C(4)	1810(4)	9062(4)	4328(3)	147(2)
C(5)	3614(3)	6787(3)	10237(2)	95(1)
C(6)	3569(3)	8849(2)	8490(2)	90(1)
C(7)	275(3)	6396(2)	9618(2)	88(1)
C(8)	181(3)	8287(3)	10414(2)	95(1)
C(9)	3112(2)	4209(2)	7650(2)	76(1)
C(10)	3262(3)	3841(3)	8642(2)	85(1)
C(11)	3289(3)	2781(3)	9187(2)	98(1)
C(12)	3158(3)	2059(3)	8758(3)	100(1)
C(13)	3015(3)	2405(3)	7785(3)	118(1)
C(14)	2995(4)	3476(3)	7208(3)	115(1)
C(15)	5662(2)	6150(2)	7977(2)	63(1)
C(16)	6347(2)	6356(2)	8463(2)	81(1)
C(17)	7587(3)	5841(2)	8299(2)	90(1)
C(18)	8162(3)	5131(3)	7647(Ż)	94(1)
C(19)	7490(3)	4933(3)	7153(2)	98(1)
C(20)	6247(2)	5438(2)	7315(2)	80(1)
C(21)	1751(3)	10666(2)	5912(2)	82(1)
C(22)	2295(4)	11220(3)	5034(3)	135(1)
C(23)	2048(5)	12369(4)	4868(4)	153(2)
C(24)	1261(6)	12970(4)	5551(5)	150(2)
C(25)	698(5)	12423(4)	6417(4)	154(2)
C(26)	951(3)	11269(3)	6595(2)	113(1)
C(27)	-1300(2)	9059(2)	8362(2)	64(1)
C(28)	-1802(2)	8535(2)	8000(2)	75(1)
C(29)	-3014(3)	8991(3)	7970(2)	90(1)
C(30)	-3738(3)	9958(3)	8306(3)	103(1)
C(32)	-3254(3)	10485(3)	8659(3)	114(1)
C(32)	-2024(3)	10033(2)	8690(2)	94(1)

Table 4. Bond lengths [Å] and angles [$^{\circ}$] for **7**.

8

Si(1) - N(1)1.668(2)Si(1) - O(1)1.705(2)Si(1)-C(2)1.838(3) Si(1) - C(1)1.861(3)Si(1)-Li(1)2.649(4) Si(2) - N(1)1.661(2) Si(2) - O(2)1.701(2) Si(2) - C(3)1.853(4) Si(2) - C(4)1.865(4) Si(2)-Li(2)2.654(4)Si(3) - N(2)1.663(2) Si(3)-O(3) 1.708(2) Si(3) - C(6)1.850(3) Si(3) - C(5)1.857(3) Si(3)-Li(1)2.655(4)Si(4)-N(2)1.662(2)Si(4) - O(4)1.712(2) Si(4) - C(7)1.847(3) Si(4) - C(8)1.854(3) Si(4)-Li(2)2.662(4)Li(1) - O(3)1.977(4) Li(1) - O(1)1.984(4) Li(1)-N(2)2.061(4) Li(1) - N(1)2.070(4) Li(1)-Li(2) 2.552(6) Li(2)-O(2) 1.976(4) Li(2) - O(4)1.976(4) Li(2) - N(1)2.065(4) Li(2) - N(2)2.097(4)O(1)-C(9) 1.380(3) O(2)-C(21) 1.367(3) O(3) - C(15)1.371(3)O(4) - C(27)1.382(3) C(9) - C(10)1.366(4) C(9)-C(14) 1.379(4) C(10) - C(11)1.365(4) C(11) - C(12)1.362(4) C(12) - C(13)1.340(4) C(13) - C(14)1.392(5) C(15) - C(20)1.366(3) C(15)-C(16) 1.381(3)C(16) - C(17)1.374(4) C(17) - C(18)1.354(4)C(18) - C(19)1.368(4) C(19) - C(20)1.377(4) C(21)-C(26) 1.344(4)1.369(4) C(21) - C(22)C(22)-C(23) 1.379(5)C(23) - C(24)1.337(6) C(24)-C(25) 1.366(7) C(25) - C(26)1.381(5)C(27) - C(32)1.359(3) C(27) - C(28)1.377(3) C(28)-C(29) 1.371(4) C(29) - C(30)1.359(4) C(30) - C(31)1.354(4) C(31) - C(32)1.392(4) N(1) - Si(1) - O(1)99.66(9) 116.09(14) N(1) - Si(1) - C(2)O(1) - Si(1) - C(2)107.0(2) N(1)-Si(1)-C(1)115.5(2) O(1) - Si(1) - C(1)108.7(2) C(2) - Si(1) - C(1)109.0(2) N(1) - Si(1) - Li(1)51.40(11) O(1) - Si(1) - Li(1)48.49(11)

C(2) - Si(1) - Li(1)	120.4(2)	C(1) - Si(1) - Li(1)	129.4(2)
N(1) - Si(2) - O(2)	98.98(9)	N(1)-Si(2)-C(3)	114.5(2)
O(2) - Si(2) - C(3)	107.9(2)	N(1)-Si(2)-C(4)	115.8(2)
O(2) - Si(2) - C(4)	106.6(2)	C(3) - Si(2) - C(4)	111.7(2)
N(1)-Si(2)-Li(2)	51.09(12)	O(2)-Si(2)-Li(2)	48.07(11)
C(3)-Si(2)-Li(2)	127.0(2)	C(4)-Si(2)-Li(2)	120.1(2)
N(2)-Si(3)-O(3)	98.94(8)	N(2)-Si(3)-C(6)	114.65(12)
O(3)-Si(3)-C(6)	106.90(12)	N(2)-Si(3)-C(5)	116.44(12)
O(3)-Si(3)-C(5)	108.35(12)	C(6)-Si(3)-C(5)	110.34(14)
N(2)-Si(3)-Li(1)	50.93(11)	O(3)-Si(3)-Li(1)	48.10(10)
C(6)-Si(3)-Li(1)	120.52(14)	C(5)-Si(3)-Li(1)	127.95(14)
N(2)-Si(4)-O(4)	99.30(9)	N(2)-Si(4)-C(7)	115.66(12)
O(4) - Si(4) - C(7)	106.73(11)	N(2)-Si(4)-C(8)	117.65(12)
O(4) - Si(4) - C(8)	108.18(12)	C(7)-Si(4)-C(8)	108.20(14)
N(2)-Si(4)-Li(2)	52.00(11)	O(4) - Si(4) - Li(2)	47.90(10)
C(7) - Si(4) - Li(2)	117.24(13)	C(8)-Si(4)-Li(2)	132.84(14)
O(3)-Li(1)-O(1)	131.6(2)	O(3)-Li(1)-N(2)	78.74(14)
O(1)-Li(1)-N(2)	135.4(2)	O(3)-Li(1)-N(1)	132.7(2)
O(1)-Li(1)-N(1)	78.9(2)	N(2)-Li(1)-N(1)	104.5(2)
O(3)-Li(1)-Li(2)	111.3(2)	O(1)-Li(1)-Li(2)	116.9(2)
N(2)-Li(1)-Li(2)	52.80(13)	N(1)-Li(1)-Li(2)	51.81(14)
O(3)-Li(1)-Si(1)	153.2(2)	O(1)-Li(1)-Si(1)	40.06(8)
N(2)-Li(1)-Si(1)	125.8(2)	N(1)-Li(1)-Si(1)	39.02(8)
Li(2)-Li(1)-Si(1)	81.94(14)	O(3) - Li(1) - Si(3)	40.01(8)
O(1)-Li(1)-Si(3)	154.6(2)	N(2)-Li(1)-Si(3)	38.78(8)
N(1)-Li(1)-Si(3)	125.2(2)	Li(2)-Li(1)-Si(3)	79.49(14)
Si(1)-Li(1)-Si(3)	161.4(2)	O(2)-Li(2)-O(4)	132.7(2)
O(2)-Li(2)-N(1)	78.4(2)	O(4) - Li(2) - N(1)	136.3(2)
O(2) - Li(2) - N(2)	132.3(2)	O(4) - Li(2) - N(2)	78.2(2)
N(1)-Li(2)-N(2)	103.4(2)	O(2)-Li(2)-Li(1)	110.4(2)
O(4) - Li(2) - Li(1)	116.6(2)	N(1)-Li(2)-Li(1)	51.98(14)
N(2)-Li(2)-Li(1)	51.51(13)	O(2)-Li(2)-Si(2)	39.83(9)
O(4)-Li(2)-Si(2)	152.4(2)	N(1)-Li(2)-Si(2)	38.75(9)
N(2)-Li(2)-Si(2)	127.6(2)	Li(1)-Li(2)-Si(2)	81.2(2)
O(2)-Li(2)-Si(4)	154.9(2)	O(4)-Li(2)-Si(4)	39.99(9)
N(1)-Li(2)-Si(4)	123.8(2)	N(2)-Li(2)-Si(4)	38.64(8)
Li(1)-Li(2)-Si(4)	80.7(2)	Si(2)-Li(2)-Si(4)	161.4(2)
Si(2) - N(1) - Si(1)	130.96(11)	Si(2)-N(1)-Li(2)	90.2(2)
Si(1)-N(1)-Li(2)	131.8(2)	Si(2)-N(1)-Li(1)	130.1(2)

~

Si(1)-N(1)-Li(1)	89.57(14)	Li(2) - N(1) - Li(1)	76.2(2)
Si(3) - N(2) - Si(4)	135.02(11)	Si(3) - N(2) - Li(1)	90.29(13)
Si(4) - N(2) - Li(1)	129.9(2)	Si(3) - N(2) - Li(2)	124.2(2)
Si(4) - N(2) - Li(2)	89.36(14)	Li(1) - N(2) - Li(2)	75.7(2)
C(9) - O(1) - Si(1)	131.7(2)	C(9) - O(1) - Li(1)	131.5(2)
Si(1) - O(1) - Li(1)	91.45(14)	C(21) - O(2) - Si(2)	132.9(2)
C(21) - O(2) - Li(2)	134.5(2)	Si(2)-O(2)-Li(2)	92.1(2)
C(15)-O(3)-Si(3)	133.13(13)	C(15) - O(3) - Li(1)	134.9(2)
Si(3) - O(3) - Li(1)	91.89(13)	C(27)-O(4)-Si(4)	128.7(2)
C(27) - O(4) - Li(2)	137.4(2)	Si(4)-O(4)-Li(2)	92.11(13)
C(10)-C(9)-C(14)	118.1(3)	C(10)-C(9)-O(1)	119.2(2)
C(14) - C(9) - O(1)	122.7(3)	C(11)-C(10)-C(9)	121.3(3)
C(12)-C(11)-C(10)	120.8(3)	C(13)-C(12)-C(11)	118.6(3)
C(12)-C(13)-C(14)	121.8(3)	C(9)-C(14)-C(13)	119.3(3)
C(20)-C(15)-O(3)	117.9(2)	C(20)-C(15)-C(16)	118.5(2)
O(3)-C(15)-C(16)	123.7(2)	C(17)-C(16)-C(15)	120.8(2)
C(18)-C(17)-C(16)	120.5(3)	C(17)-C(18)-C(19)	119.1(3)
C(18)-C(19)-C(20)	121.0(3)	C(15)-C(20)-C(19)	120.1(2)
C(26)-C(21)-O(2)	118.0(3)	C(26)-C(21)-C(22)	118.8(3)
O(2)-C(21)-C(22)	123.3(3)	C(21)-C(22)-C(23)	120.5(4)
C(24)-C(23)-C(22)	120.9(5)	C(23)-C(24)-C(25)	118.7(4)
C(24)-C(25)-C(26)	120.8(4)	C(21)-C(26)-C(25)	120.4(4)
C(32)-C(27)-C(28)	119.0(2)	C(32)-C(27)-O(4)	121.2(2)
C(28)-C(27)-O(4)	119.8(2)	C(29)-C(28)-C(27)	120.4(3)
C(30)-C(29)-C(28)	120.5(3)	C(31)-C(30)-C(29)	119.7(3)
C(30)-C(31)-C(32)	120.3(3)	C(27)-C(32)-C(31)	120.1(3)

.

•

Symmetry transformations used to generate equivalent atoms:

,

Table 5. Anisotropic displacement parameters $[\dot{A}^2 \times 10^3]$ for **7**.

1

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$(ha^*)^2 U_{11} + \dots + 2hka^* b^* U_{12}$]

	U11	U22	U33	U23	U13	U12
Si(1)	81(1)	85(1)	75(1)	-33(1)	-28(1)	-20(1)
Si(2)	90(1)	91(1)	65(1)	-16(1)	-6(1)	-20(1)
Si(3)	58(1)	59(1)	67(1)	-18(1)	-17(1)	-23(1)
Si(4)	58(1)	62(1)	63(1)	-12(1)	-13(1)	-24(1)
Li(1)	72(2)	74(2)	83(2)	-25(2)	-28(2)	-22(2)
Li(2)	67(2)	75(3)	66(2)	-10(2)	-13(2)	-25(2)
N(1)	80(1)	74(1)	64(1)	-19(1)	-19(1)	-24(1)
N(2)	59(1)	68(1)	64(1)	-16(1)	-16(1)	-24(1)
0(1)	108(1)	71(1)	98(1)	-23(1)	-49(1)	-30(1)
0(2)	103(1)	70(1)	76(1)	-9(1)	0(1)	-31(1)
0(3)	53(1)	83(1)	94(1)	-43(1)	-21(1)	-15(1)
0(4)	52(1)	72(1)	73(1)	-7(1)	-14(1)	-20(1)
C(1)	167(4)	151(3)	110(2)	-77(3)	-21(2)	-28(3)
C(2)	96(2)	128(3)	185(3)	-71(3)	-48(2)	-33(2)
C(3)	109(3)	139(3)	173(4)	-45(3)	37(3)	-55(3)
C(4)	204(5)	157(4)	88(2)	13(2)	-55(3)	-82(3)
C(5)	102(2)	115(2)	84(2)	-9(2)	-39(2)	-50(2)
C(6)	82(2)	76(2)	124(2)	-26(2)	-22(2)	-36(2)
C(7)	79(2)	75(2)	110(2)	-2(2)	-26(2)	-35(2)
C(8)	93(2)	113(2)	83(2)	-36(2)	-8(2)	-35(2)
C(9)	76(2)	68(2)	95(2)	-32(1)	-28(1)	-18(1)
C(10)	91(2)	83(2)	92(2)	-28(2)	-27(2)	-27(2)
C(11)	98(2)	89(2)	102(2)	-20(2)	-20(2)	-29(2)
C(12)	84(2)	78(2)	129(3)	-23(2)	-15(2)	-25(2)
C(13)	143(3)	79(2)	157(3)	-45(2)	-45(3)	-39(2)
C(14)	168(3)	86(2)	120(2)	-34(2)	-57(2)	-44(2)
C(15)	57(1)	60(1)	74(1)	-15(1)	-18(1)	-18(1)
C(16)	62(2)	75(2)	119(2)	-38(2)	-30(1)	-17(1)
C(17)	69(2)	79(2)	133(2)	-23(2)	-36(2)	-26(2)
C(18)	57(2)	94(2)	122(2)	-28(2)	-10(2)	-19(2)
C(19)	74(2)	113(2)	101(2)	-49(2)	-4(2)	-16(2)
C(20)	69(2)	95(2)	77(2)	-35(2)	-15(1)	-19(2)
C(21)	91(2)	74(2)	79(2)	-3(1)	-28(2)	-31(2)
C(22)	160(4)	92(3)	126(3)	-3(2)	1(2)	-54(3)
C(23)	204(5)	106(3)	157(4)	23(3)	-57(4)	-86(4)
C(24)	237(6)	79(3)	165(4)	1(3)	-119(4)	-52(3)
C(25)	217(5)	90(3)	146(4)	-34(3)	-55(4)	-27(3)
C(26)	142(3)	85(2)	97(2)	-20(2)	-22(2)	-28(2)
C(27)	59(1)	63(1)	64(1)	-10(1)	-15(1)	-17(1)
C(28)	68(2)	65(2)	88(2)	-13(1)	-22(1)	-19(1)
C(29)	79(2)	88(2)	108(2)	-11(2)	-31(2)	-35(2)
C(30)	(2) 70/2)	106(2)	123(2)	-26(2)	-23(2)	-14(2)
C(33)	/0(2) 91/2)	105(2)	149(3)	-66(2)	-25(2)	6(2)
5(52)	01(2)	01(2)	119(2)	-48(2)	-31(2)	-10(2)