Organometallics, 1998, 17(3), 290-292, DOI:10.1021/om971065m

Terms \& Conditions
 Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Supporting Information

General Procedure for the Reaction of $\boldsymbol{N}, \boldsymbol{N}$-bis(2-alkynyl)benzylamine with Triallylmanganate. Manganese(II) chloride ($189 \mathrm{mg}, 1.5 \mathrm{mmol}$) was sonicated in THF under argon atmosphere for 10 min . Allylmagnesium chloride (0.77 M THF solution, $5.84 \mathrm{~mL}, 4.5$ mmol) was added to the suspension of MnCl_{2} at $0^{\circ} \mathrm{C}$. The mixture turned into a clear brown solution. After being stirred for 20 min , a solution of N, N-bis(2-nonyny) benzylamine (1a, 0.35 $\mathrm{g}, 1.0 \mathrm{mmol})$ in THF (2 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h , quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$, and poured into water, and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). Concentration of dried organic layer provided a residual oil. The ratio (46:54) of products $\mathbf{2 a}$ and $\mathbf{3 a}$ was determined by the examination of 1_{H} NMR of crude product. Silica gel column chromatography purification afforded 9-aza-9-benzyl-(2,6-dihexyl)bicyclo[5.3.0]deca-1(7),2-diene (2a, $R_{f}=0.45$ (hex/AcOEt $=5 / 1$), 180 mg , contaminated by unidentified by products) and bicyclo[5.3.0]deca-1(7), 3-diene (3a, $R_{f}=0.35$ (hex $/ \mathrm{AcOEt}=10 / 1$), $138 \mathrm{mg}, 35 \%$ isolated yield). 9-aza-9-benzyl-2,6-dihexylbicyclo[5.3.0]deca-1(7),3-diene (3a): IR (neat) $2950,2922,2852,2782,2748,1467,1454,726,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, J=6$ $\mathrm{Hz}, 6 \mathrm{H}), 1.10-1.50(\mathrm{~m}, 20 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 4 \mathrm{H}), 5.53$ $(\mathrm{dd}, J=4.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.00(2 \mathrm{C})$, $22.55,22.58,26.79,27.32,29.45,29.49,30.18,31.75$ (2C), $33.73,34.40,37.00,39.58,60.64$, $64.58,65.12,126.95,127.47,128.36,128.84,132.02,133.83,137.99,139.72$. Found: C, $85.21 ; \mathrm{H}, 10.98 \%$. Calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}: \mathrm{C}, 85.43 ; \mathrm{H}, 11.01 \%$. An analytically pure sample of 2 a could not be obtained because of the contamination by unidentified by products. Thus the yield (30%) of $\mathbf{2 a}$ was calculated from the ratio $(\mathbf{2 a}: 3 \mathrm{a}=46: 54)$ determined by ${ }^{1} \mathrm{H}$ NMR of crude product.
$2.33 \mathrm{H}), 1.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.67 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 0.23 \mathrm{H}), 3.00(\mathrm{~m}$, $0.67 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 5.55(\mathrm{dd}, J=4.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~m}$, $1 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ for a major product $\delta 19.72,19.91,31.65,33.39$ (2C), 60.55, 63.99, 64.16, 126.98, 127.37, 128.37, 128.85, 133.63, 136.06, 137.27, 139.68. The conpound 3b was not stable enough to prepare a sample for elemental analysis and easily oxidized to give 9-aza-9-benzyl-2,6-dimethyl-bicyclo[5.3.0]deca-1(10),3,7-triene (3b') ($\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}$) standing at $25^{\circ} \mathrm{C}$ for 1 d . HRMS 251.1671 Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}$: M+251.1674.

General Procedure for the Reaction of N, N-(3-trimethylsilyl-2propynyl)benzylamine (1c) with triallylmanganate. Manganese(II) chloride (189 mg , 1.5 mmol) was sonicated in THF (5.0 mL) under argon atmosphere for 10 min . Allylmagnesium chloride (0.77 M THF solution, $5.84 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The mixture turned into a clear brown solution and then, after being stirred for 20 min at $0^{\circ} \mathrm{C}$, a solution of $\mathbf{1 c}(327 \mathrm{mg}, 1.0$ mmol) in THF (2 mL) was added at $0^{\circ} \mathrm{C}$. The whole was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Deuterium oxide (10 mmol) was added and the mixture was stirred for another 30 min at $25^{\circ} \mathrm{C}$. The mixture was poured into water extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. Purification of the products by silica gel column chromatography using hex/ $\mathrm{AcOEt}=10 / 1-5 / 1$ as an eluant gave $6 \mathrm{c}\left(R_{f}=0.50\right.$ (hex/ AcOEt $=10 / 1), 146 \mathrm{mg}, 38 \%$ yield $)$ and $\mathbf{4 c}\left(R_{f}=0.35\right.$ (hex/AcOEt $\left.=5 / 1\right), 38 \mathrm{mg}, 10 \%$ yield), and $\mathbf{5 c}$ $\left(R_{f}=0.30(\right.$ hex $/ \mathrm{AcOEt}=5 / 1), 38 \mathrm{mg}, 10 \%$ yield $)$. Physical data for $\mathbf{4 c}, 5 \mathbf{c}$, and $\mathbf{6 c}$ are as follows. An examination of ${ }^{1} \mathrm{H}$ NMR of crude product containing dibenzyl ether as an internal standard revealed that the yields and ratio of products were $\mathbf{4 c}(16 \%), 5 \mathrm{c}(16 \%)$, and $\mathbf{6 c}(43 \%)$ $(4 c: 5 c: 6 c=21: 21: 58)$, respectively .

9-aza-9-benzyl-[2,6-bis(trimethylsilyl)]-4-deuterio-5-
methylbicyclo[5.3.0]deca-1 (7), 2-diene (4c): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta \mathbf{- 0 . 0 4}$ ($\mathrm{s}, 9 \mathrm{H}$), 0.06 (s, $9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=2.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ $(\mathrm{m}, 1 \mathrm{H}), 3.33-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-1.55,-0.61,26.46,37.85,38.41(\mathrm{t}$,
$d=18.9 \mathrm{~Hz}), 43.70,60.72,64.18,66.44,126.86,128.31,128.68,130.23,138.40,139.79$, 139.90, 141.33.

9-aza-9-benzyl-[2,6-bis(trimethylsilyl)]-2-deuterio-5-

 methylbicyclo[5.3.0]deca-1(7),3-diene (5c): IR (neat) 2948, 2892, 2866, 2782, 1453, $1248,836,740,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.01(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{dq}, J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=8.1,12 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19-7.36 (m, 5H); ${ }^{13} \mathrm{C} \mathrm{NMR}_{\left(\mathrm{CDCl}_{3}\right)} \delta-0.75,0.26,24.03,33.90,37.51,60.81,66.37$, $68.35,126.13,126.82,127.73,128.30,128.62,131.04,133.07,139.98$. Elemental analysis was performed for a mixture of $\mathbf{4 c}$ and $\mathbf{5 c}$. Found: $\mathrm{C}, 71.55 ; \mathrm{H}, 9.35 \%$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{DSi}_{2} \mathrm{~N}: \mathrm{C}$, $71.81 ; \mathrm{H}, 9.43 \%$.
8-aza-8-benzyl-2,5-bis(trimethylsilyl)-3-deuteriomethyl-4-

methylbicyclo[4.3.0]nona-1,5-diene (6c): IR (neat) 2950, 2916, 2892, 2784, 2754, 1455, 1334, 1250, 1163, 1146, 1061, 835, 753, 698, $634 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.06(\mathrm{~s}, 18 \mathrm{H})$, $0.79-0.83(\mathrm{~m}, 5 \mathrm{H}), 2.10(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.14,18.43(\mathrm{t}, J=18.9 \mathrm{~Hz}), 18.72,22.55,31.50,37.00,37.03,57.49,60.88$, $127.09,128.34,129.04,130.51,138.59$. Found: $\mathrm{C}, 71.74 ; \mathrm{H}, 9.34 \%$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{NSi}_{2}$: C, $71.81 ; \mathrm{H}, 9.34 \%$.

9-aza-9-benzyl-2,6-bis(trimethylsilyl)bicyclo[5.3.0]deca-1(7),3-diene (5a): IR (neat) $3014,2946,2894,2858,2780,1453,1375,1342,1248,1156,1113,1064,940,916,837$, $792,750,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.01(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}), 2.05-2.13$ $(\mathrm{m}, 1 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.41(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 5.61-5.74(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.31$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-1.27,-0.66,26.70,28.29,35.06,60.58,66.32,66.72,126.90$, $128.31,128.60,128.74,129.54,131.96,132.56,139.69$. The compound $\mathbf{5 a}$ was easily oxidized to deca-1(10), 3,7-triene (5a'): IR (neat) 2950, 2894, 1519, 1455, 1378, 1356, 1247, 1153, 837,

797, 777, 731, 694, 651, $623 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}), 2.24(\mathrm{~m}$, $3 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-1.68,-1.52,24.03,28.87,28.94$, $52.94,117.63,118.33,122.21,124.53,126.70,127.36,128.62,130.31,130.33,139.05$. HRMS: 367.2142. Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NSi}_{2} \mathrm{M}^{+}$367.2151.

8-aza-8-benzyl-2,5-bis(trimethylsilyl)-3-methylbicyclo[4.3.0]nona-1,5-diene (6a): IR (neat) $2948,2896,2782,2752,1453,1333,1248,1162,1145,1048,962,913,896$, $832,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $2.06-2.31(\mathrm{~m}, 3 \mathrm{H}), 3.27-2.30(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24-7.32 (m, 5H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3\right) ~ \delta-1.58, ~ 0.73,17.98,28.72,33.20,57.52,57.59$, $60.85,124.68,127.08,128.33,128.99,132.87,138.62,143.37,143.56$. Found: C, 71.42; H, 9.60%. Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NSi}_{2}$: $\mathrm{C}, 71.47 ; \mathrm{H}, 9.54 \%$.

9-aza-9-benzyl-[2,6-bis(trimethylsilyl)]-5-methylbicyclo[5.3.0]deca-1(7),3-

 diene (5b): IR (neat) 2950, 2918, 2892, 2862, 2782, 2730, 1454, 1376, 1248, 1076, 987, 875, $837,779,732,696,622 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \mathrm{d} 0.00(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.54(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=3.3,12 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.74,-0.23,23.98,33.91,34.79,37.53,60.81,66.38,68.33,126.17,126.83$, $127.72,128.30,128.64,131.04,133.03,139.94$. The compound $\mathbf{5 b}$ was also unstable like $\mathbf{5 a}$ to prepare a fine sample for elemental analysis.
8-aza-8-benzyl-3,4-dimethyl-[2,5-bis(trimethylsilyl)]bicyclo[4.3.0]nona-1,5-

 diene (6b): IR (neat) 2948, 2916, 2892, 2864, 2787, 2752, 1454, 1368, 1333, 1248, 1163, $1145,1123,1072,1027,938,893,832,746,698,634 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 18 \mathrm{H})$, $0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=$ $12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.14,18.72,37.06,57.49,60.88,127.08,128.33,129.03,130.49,138.60$, 142.46. Found: $\mathrm{C}, 72.04 ; \mathrm{H}, 9.81 \%$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NSi}_{2}: \mathrm{C}, 71.99 ; \mathrm{H}, 9.72 \%$.

9-aza-9-benzyl-[2,5-bis(trimethylsilyl)]-5-decylbicyclo[5.3.0]deca-1(7),3-

 diene (5d): IR (neat) 2918, 2850, 2780, 2732, 1466, 1454, 1376, 1247, 1070, 830, 732, 696, $623 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.02(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.43-1.46$ $(\mathrm{m}, 18 \mathrm{H}), 1.62(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 3.23-3.52(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=3.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.69,-0.23,14.00,22.59,28.33,29.27,29.56,29.59,29.61$, $29.63,31.85,34.37,34.79,37.69,39.17,60.82,66.34,68.15,126.31,126.83,127.72,128.31$, $128.63,131.20,132.51,139.00$. Found: C, $75.28 ; \mathrm{H}, 11.08 \%$. Calcd for $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{NSi}_{2}: \mathrm{C}$, $75.37 ; \mathrm{H}, 10.87 \% .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were for major diastereomer (diastereomeric ratio was 7:1).8-aza-8-benzyl-[2,5-bis(trimethylsilyl)]-3-decyl-4-methylbicyclo[4.3.0]nona-1,5-diene (6d): IR (neat) 2916, 2850, 2780, 2750, 1454, 1334, 1248, 1159, 1145, 895, 832, $751,697,634 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.054(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.34(\mathrm{~m}, 18 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22-3.33(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-1.11,-0.95,14.00,18.70,22.58,26.82,27.42,29.26,29.53,29.76$, $31.17,31.50,31.83,32.39,42.72,57.44,57.47,60.87,127.08,128.34,129.04,130.16$, $130.82,138.59,142.71,143.03$. Found: C, $75.28 ; \mathrm{H}, 11.08 \%$. Calcd for $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{NSi}_{2}: \mathrm{C}$, 75.37 ; H, 10.87%.

N-3-phenyl-2-propynyl-3,4-diphenylmethylenepyrrolidine (8): white needle solid, mp 108-109 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H})$, $7.23-7.50(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 43.24,55.97,83.97,86.09,118.99,123.02,126.96$, $128.27,128.37,128.55,128.76,131.88,137.55,139.71$. Found: C, $88.43 ; H, 6.04 \%$. Calcd
for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 89.71 ; \mathrm{H}, 6.41 \%$.

General Precedure for the Reaction of Enyne and Diene with Triallylmanganate.

 The reaction of N, N-diallylbenzylamine (12a) with triallylmanganate is representative. A solution of $\mathbf{1 2 a}(187 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF (2 mL) was added to a solution of triallylmanganate, generated from $\mathrm{MnCl}_{2}(189 \mathrm{mg}, 1.5 \mathrm{mmol})$ and allylmagnesium chloride (0.77 M THF solution, $5.84 \mathrm{~mL}, 4.5$ mmol) in THF at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and then for 20 h at $25^{\circ} \mathrm{C}$. The reaction was quenched with methanol and the product was extracted with ethyl acetate (20 mL x 3). The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Silica gel column chromatography gave N-benzyl-cis-3,4-dimethylpyrrolidine ($\mathbf{1 3 a}, 132 \mathrm{mg}$) in 70% yield: IR (neat) $3024,2956,2910,2870,2780,1496,1476,1454,1375,1129,1071,1029$, $736,697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.94(\mathrm{dd}, J=7.5,9.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.29(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{dd}, J=6.9,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.30$, $34.29,61.03,62.26,126.84,128.23,128.90,139.61$.N-benzyl-3-methyl-4-trimethylsilylmethylidenepyrrolidine (10a): IR (neat) 2952, 2924, 2868, 2780, 1635, 1454, 1248, 865, 840, 744, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}$, $9 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ $(\mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.59,17.24,40.25,59.41,60.77$, $61.23,116.74,127.02,128.32,128.90,138.94,162.85$.

N -allyl-3-methyl-4-trimethylsilylmethylidenepyrrolidine (10b): IR (neat) 2952, $2868,2766,1633,1248,918,865,839,689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right)} \delta 0.04(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (dd, $J=8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~m}, 2 \mathrm{H})$, $5.27(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.61,17.24,40.13,59.12,59.44,61.37$, $116.86,117.07,135.78,162.63$. Found: C, $68.55 ; \mathrm{H}, 11.06 \%$. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NSi}: \mathrm{C}, 68.83$; H, 11.07\%.

N-allyl-3-methyl-4-heptylidenepyrrolidine (10c): IR (neat) 2954, 2922, 2852, 2768, $1468,1458,1340,1141,994,917,881 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.83(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.36(\mathrm{~m}, 8 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~d}$, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 3 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.99,17.51,22.54$, $28.88,29.35,29.42,31.70,37.14,56.60,59.53,62.23,116.91,120.02,136.04,143.71$. Found: C, $81.24 ; \mathrm{H}, 12.49 \%$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}: \mathrm{C}, 81.38 ; \mathrm{H}, 12.29 \%$.

N-allyl-3-methyl-4-(2-allyl-heptylidene)pyrrolidine (11): IR (neat) 2954, 2924, 2854, 2766, 1456, 1342, 1132, $993,914 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.36(\mathrm{~m}, 8 \mathrm{H}), 1.86(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=3.3,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=6.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 4 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.98,20.29,22.52,27.61,29.26,31.69,32.37,35.33,36.21,57.23,59.54,62.25$, $115.40,116.70,128.52,136.16,136.99,139.05$. Found: C, $82.70 ; H, 12.02 \%$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}: \mathrm{C}, 82.69 ; \mathrm{H}, 11.95 \%$.

N-cyclohexyl-cis-3,4-dimethylpyrrolidine (13c): IR (neat) 2906, 2852, 2766, 1474, $1464,1449,1375,1181,1138,891 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$, $1.07-1.24(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 5 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H})$, $3.14(\mathrm{dd}, J=7.2,9.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.36,25.08,26.02,31.84,33.91,59.63$, 63.91. Found: $\mathrm{C}, 79.52 ; \mathrm{H}, 13.08 \%$. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 79.49 ; \mathrm{H}, 12.79 \%$.

N-benzyl-cis-3,4-dideuteriomethylpyrrolidine (14): IR (neat) 2950, 2922, 2778, $1453,736,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}_{\left(\mathrm{CDCl}_{3}\right)} \delta 0.87(\mathrm{~m}, 4 \mathrm{H}), 1.94(\mathrm{dd}, J=7.8,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28$ $(\mathrm{m}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=7.2,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $14.01(\mathrm{t}, J=18.9 \mathrm{~Hz}), 34.20,61.03,62.23,126.84,128.23,128.90,139.62$.

N-benzyl-cis-3,4-diiodomethylpyrrolidine (15): IR (neat) 2950, 2906, 2786, 1494, 1452, 1181, 1152, 737, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.42(\mathrm{dd}, J=6.0,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~m}$, $2 \mathrm{H}), 3.01(\mathrm{dd}, J=6.6,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=5.4,9.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.97,44.30,59.88,60.90,127.13$, $128.40,128.62,138.78$.

