

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

	- 2 - Compound la	- 3 -				
Table S1 - Crystal Data and for: S1032B MOK	Table S2	- Final Coor Parameters for: S103	dinates and E of the non-H 2B MOKA 60KV1	quivalent Is ydrogen atom 50MA LNT MON	otropic Therma s 030394	
	Crystal Data	Atom	x	v	Z	U(eq) [Ang^2]
Empirical Formula	C38 H30 N2 O8 Pd					
Formula Weight	749.08	Pd1	0	0.20653(6)	1/4	0.0159(2)
Crystal System	Orthorhombic	01	0.1811(3)	0.2463(4)	0.2936(4)	0.0270(17)
Space group	Pbcn (No. 60)	02	0.1804(3)	0.3452(4)	0.1535(5)	0.0300(19)
a, b, c [Angstrom]	18.4348(13) 14.505(2) 12.110(2)	03	0.0681(4)	0.5482(5)	0.1889(8)	0.093(4)
alpha, beta, gamma [deg]	90 90 90	04	0.1259(4)	0.4908(4)	0.3307(6)	0.043(2)
V [Ang**3]	3238.2(7)	Nl	0.0621(3)	0.0913(4)	0.1957(5)	0.017(2)
Z	4	C1	0.1185(4)	0.1561(6)	0.0313(7)	0.024(3)
D(calc) [g/cm**3]	1.536	C2	0.1769(5)	0.1634(6)	-0.0396(7)	0.034(3)
F(000) [Electrons]	1528	C3	0.2398(5)	0.1155(6)	-0.0170(8)	0.034(3)
Mu(MoKa) [/cm]	6.3	C4	0.2449(5)	0.0642(6)	0.0773(7)	0.033(3)
Crystal Size [mm]	$0.3 \times 0.5 \times 0.5$	C5	0.1873(4)	0.0581(6)	0.1506(7)	0.024(3)
Data	Collection	C6	0.1232(4)	0.1009(5)	0.1238(6)	0.017(2)
Temperature (K)	150	C7	0.0299(4)	0.0134(5)	0.2083(6)	0.018(2)
Radiation [Angstrom]	MoKa (graphite monochromator) 0.71073	C8	0.0426(4)	-0.0748(6)	0.1472(6)	0.018(3)
Theta Min-Max [Deg]	1.11, 27.50	С9	0.0742(4)	-0.0763(6)	0.0428(7)	0.022(3)
Scan,(Type & Range) [Deg]	Omega / 2 Theta, 0.77 + 0.35 Tan(Theta)	C10	0.0859(4)	-0.1577(6)	-0.0093(7)	0.027(3)
Hor. and vert. aperture [mm	a] 3.22 4.00	C11	0.0656(5)	-0.2402(6)	0.0401(8)	0.036(3)
Reference Reflection(s)	6 0 2, 6 -2 0, 2 0 4	C12	0.0324(5)	-0.2392(6)	0.1403(8)	0.033(3)
Dataset	-23 : 23 ; -18 : 0 ; 0 : 15	C13	0.0194(4)	-0.1569(5)	0.1976(6)	0.023(3)
Tot., Uniq. Data, Rint	8317, 3717, 0.127	C14	0.0691(4)	0.3131(5)	0.2378(8)	0.020(2)
F	Refinement	C15	0.1477(4)	0.2982(6)	0.2334(6)	0.018(2)
Npar	224	C16	0.2556(4)	0.3265(6)	0.1399(8)	0.037(3)
wR2, R1, S 0.1465,	0.0796 [for 1662 $F > 4$ sigma(F)], 0.928	C17	0.0403(4)	0.3981(5)	0.2465(11)	0.026(3)
w [sigma**2(F)+(0.03	800P)**2]**-1, P=(Max(Fo**2,0)+2Fc**2)/3	C18	0.0788(4)	0.4873(5)	0.2510(12)	0.034(3)
Max. and Av. Shift/Error	0.006, 0.000	C19	0.1592(5)	0.5790(6)	0.3502(9)	0.055(4)
Min. and Max. resd. dens.	[e/Ang^3] -0.67, 0.73	U(eq) :	= 1/3 of the	trace of the	orthogonaliz	ed U Tensor

pic Thermal)394

Table S3 - Hydrogen Atom Positions and Isotropic Thermal Parameters for: S1032B MOKA 60KV150MA LNT MON 030394

Atom	x	У	z	U(iso) [Ang^2]
н1	0.0750(4)	0.1891(6)	0.0164(7)	0.0290
Н2	0.1738(5)	0.2012(6)	-0.1035(7)	0.0410
нз	0.2795(5)	0.1181(6)	-0.0669(8)	0.0410
H4	0.2886(5)	0.0321(6)	0.0928(7)	0.0400
Н5	0.1921(4)	0.0250(6)	0.2179(7)	0.0290
н9	0.0875(4)	-0.0201(6)	0.0079(7)	0.0270
H10	0.1081(4)	-0.1584(6)	-0.0801(7)	0.0320
H11	0.0750(5)	-0.2972(6)	0.0040(8)	0.0440
H12	0.0176(5)	-0.2959(6)	0.1724(8)	0.0400
H16A	0.2746(8)	0.363(3)	0.078(3)	0.0550
H16B	0.2625(5)	0.2607(10)	0.125(5)	0.0550
H16C	0.2817(6)	0.343(4)	0.2076(19)	0.0550
H19A	0.2061(16)	0.5701(7)	0.387(5)	0.0820
H19B	0.1276(16)	0.6164(17)	0.397(4)	0.0820
H19C	0.167(3)	0.6106(19)	0.2795(10)	0.0820

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

Table	S4	-	(An)i;	sotropic	r The	ermal	Para	neter	s	
			for:	S1032B	MOKA	60KV1	50MA	LNT	MON	030394

Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
Pd1	0.0158(3)	0.0158(3)	0.0162(3)	0	0.0030(6)	
01	0.023(3)	0.035(3)	0.023(3)	0.009(3)	0.000(3)	-0.002 (
02	0.026(3)	0.031(3)	0.033(4)	0.013(3)	0.013(3)	-0.003 (
03	0.090(6)	0.035(4)	0.153(9)	0.049(5)	-0.079(6)	-0.024 (4
04	0.055(4)	0.020(3)	0.055(5)	-0.002(3)	-0.018(4)	-0.014(
N1	0.022(4)	0.012(3)	0.016(4)	0.000(3)	-0.005(3)	-0.002(
C1	0.016(4)	0.028(5)	0.028(5)	0.000(4)	-0.001(4)	0.008(
C2	0.053(6)	0.021(4)	0.027(5)	0.015(4)	0.014(5)	-0.002 (
C3	0.029(5)	0.034(5)	0.040(6)	-0.006(5)	0.012(5)	-0.003 (
C4	0.022(5)	0.033(6)	0.045(6)	0.007(5)	0.009(5)	0.011(
C5	0.021(5)	0.029(5)	0.022(5)	-0.001(4)	-0.004(4)	0.002(
C6	0.015(4)	0.018(4)	0.017(4)	0.000(3)	0.006(3)	-0.001(
C7	0.018(4)	0.021(4)	0.015(4)	-0.003(3)	-0.004(3)	0.007(
C8	0.015(4)	0.029(5)	0.010(4)	-0.003(3)	-0.007(3)	0.004(
C9	0.016(4)	0.028(5)	0.023(4)	-0.006(4)	0.004(4)	0.000(
C10	0.005(4)	0.048(6)	0.027(5)	-0.012(5)	-0.005(4)	-0.001(
C11	0.038(6)	0.032(5)	0.038(6)	-0.021(5)	-0.017(5)	0.013(
C12	0.045(5)	0.012(4)	0.043(6)	-0.006(4)	-0.018(5)	0.006(
C13	0.023(5)	0.021(4)	0.025(4)	-0.003(4)	-0.005(3)	0.003(
C14	0.019(3)	0.024(4)	0.017(5)	-0.002(4)	0.004(4)	0.002(
C15	0.023(3)	0.021(3)	0.010(5)	-0.002(4)	0.002(3)	-0.004(
C16	0.019(4)	0.044(6)	0.047(6)	0.012(5)	0.009(5)	0.000(
C17	0.021(4)	0.018(4)	0.038(5)	0.012(7)	-0.005(7)	-0.001(
C18	0.021(4)	0.029(5)	0.053(6)	0.019(8)	0.002(7)	0.003(
C19	0.060(7)	0.040(6)	0.064(8)	-0.027(6)	-0.011(6)	-0.019(

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

			- 7 -				
Table	S6 - Bo fo	nd Angles r: S1032B	(Degrees) MOKA 60KV150M	ia lnt m	ON 0303	394	
N1	-Pd1	-C14	103.9(3)	C11	-C12	-C13	121.9(
N1	-Pd1	-N1_a	76.6(2)	C8	-C13	-C12	117.1(
N1	-Pd1	-C14_a	165.4(3)	C8	-C13	-C13_a	121.9(
N1_a	-Pd1	-C14	165.4(3)	C12	-C13	-C13_a	121.0(
C14	-Pd1	-C14_a	79.4(3)	Pd1	-C14	-C15	121.1(
N1_a	-Pd1	-C14_a	103.9(3)	Pđ1	-C14	-C17	116.7(
C15	-02	-C16	115.4(6)	C15	-C14	-C17	121.8(
C18	04	-C19	116.2(7)	01	-C15	-02	121.7(
Pd1	-N1	-C6	122.3(4)	01	-C15	-C14	124.8(
Pd1	-N1	-C7	113.9(5)	02	-C15	-C14	113.5(
C6	-N1	-C7	121.4(6)	C14	-C17	-C18	128.0(
C2	-C1	-C6	120.0(7)	C14	-C17	-C17_a	113.5(
C1	-C2	C3	119.6(8)	C17_a	-C17	-C18	118.5(
C2	-C3	C4	119.9(9)	03	-C18	-04	123.9(
C3	-C4	-C5	121.1(8)	03	-C18	-C17	123.6(1
C4	-C5	C6	118.6(8)	04	-C18	-C17	112.5(
N1	-C6	-C1	120.1(6)	C2	-C1	-H1	120.0(1
N1	-C6	-C5	119.3(7)	C6	-C1	-H1	119.9(
C1	-C6	-C5	120.5(7)	C1	-C2	-H2	120.2(1
N1	-C7	-C8	128.4(7)	C3	-C2	H2	120.2(1
N1	-C7	-C7_a	114.9(6)	C2	-C3	-H3	120.1(1
C7_a	-C7	-C8	116.7(6)	C4	-C3	-H3	120.0(1
C7	-C8	-C9	121.9(7)	C3	-C4	-H 4	119.4()
C7	-C8	-C13	117.5(6)	C5	-C4	-H 4	119.5()
C9	-C8	-C13	120.6(8)	C4	-C5	-H5	120.7
C8	-C9	-C10	120.2(8)	C6	-C5	-H2	120.7
C9	-C10	-C11	120.5(8)	C8	-C9	-H9	119.9(:
C10	-C11	-C12	119.8(8)	C10	-C9	-H9	119.9(:

pd1	-N1	2.130(6)	C11	-C12	1.359(14)
pd1	-C14	2.008(7)	C12	-C13	1.401(12)
01	-C15	1.215(10)	C13	-C13_a	1.457(10)
02	-C15	1.328(10)	C14	-C15	1.466(10)
02	-C16	1.422(9)	C14	-C17	1.347(10)
03	-C18	1.177(14)	C17	-C18	1.477(10)
04	-C18	1.299(14)	C17	-C17_a	1.488(10)
04	-C19	1.439(11)	C1	-H1	0.951(11)
N1	-C6	1.430(9)	C2	-H2	0.950(12)
N1	-07	1.285(9)	C3	-H3	0.950(13)
C1	-C2	1.381(12)	C4	-H4	0.949(13)
C1	-C6	1.380(11)	C5	-н5	0.950(12)
C2	-C3	1.379(13)	C9	-H9	0.950(12)
с3	-C4	1.366(13)	C10	-H10	0.950(12)
C4	-C5	1.387(12)	C11	-H11	0.951(13)
C5	-C6	1.374(11)	C12	-H12	0.950(13)
C7	-C8	1.496(11)	C16	-H16A	0.98(4)
C7	-C7_a	1.495(10)	C16	-H16B	0.98(2)
C8	-C9	1.392(11)	C16	-H16C	0.98(3)
C8	-C13	1.405(11)	C19	-H19A	0.98(4)
C9	-C10	1.356(12)	C19	-H19B	0.98(4)
C10	-C11	1.389(12)	C19	-H19C	0.98(2)

Table S7 - Torsion Angles (Degrees) for: S1032B MOKA 60KV150MA LNT MON 030394

C14	-Pd1	-N1	-C6	-24.3(6)
C14	-Pd1	-N1	-C7	172.9(6)
N1_a	-Pd1	-N1	-C6	170.8(6)
N1_a	-Pđ1	-N1	-C7	8.0(5)
N1	-Pd1	-C14	-C15	-19.8(8)
N1	-Pd1	-C14	-C17	167.5(8)
C14_a	-Pd1	-C14	-C15	174.8(8)
C14_a	-Pđ1	-C14	-C17	2.1(9)
C16	-02	-C15	-01	3.4(11)
C16	-02	-C15	-C14	-174.6(7)
C19	-04	-C18	-03	8.0(15)
C19	-04	-C18	-C17	-172.3(8)
Pd1	-N1	-C6	-C1	-46.1(9)
Pđ1	-N1	-C6	-C5	130.9(6)
C7	-N1	-C6	-C1	115.4(8)
C7	-N1	-C6	-C5	-67.6(10)
Pd1	-N1	-C7	-C8	156.3(6)
Pd1	-N1	-C7	-C7_a	-20.8(8)
C6	-N1	-C7	-C8	-6.7(11)
C6	-N1	-C7	-C7_a	176.2(6)
C6	-C1	-C2	-C3	-0.2(13)
C2	-C1	-C6	-N1	-178.3(7)
C2	-C1	-C6	-C5	4.7(12)
C1	-C2	-C3	-C4	-2.6(13)
C2	-C3	-C4	-C5	1.0(14)
C3	-C4	-C5	-C6	3.4(13)
C4	-C5	-C6	-N1	176.8(7)
C4	-C5	-C6	-C1	-6.2(12)

Table S6 - Bond Angles (Degrees) (continued) for: S1032B MOKA 60KV150MA LNT MON 030394

C9	-C10	-H10	119.8(10)	H16A	-C16	-H16B	110(4)
C11	-C10	-H10	119.7(10)	H16A	-C16	-H16C	109(3)
C10	-C11	-H11	120.1(11)	H16B	-C16	-H16C	109(4)
C12	-C11	-H11	120.1(10)	04	-C19	-H19A	109.5(10)
C11	-C12	-H12	119.0(10)	04	-C19	-H19B	109.5(18)
C13	-C12	-H12	119.1(11)	04	-C19	-H19C	110(2)
02	-C16	-H16A	109.5(15)	H19A	-C19	-H19B	110(4)
02	-C16	-H16B	109.5(9)	H19A	-C19	-H19C	109(4)
02	-C16	-H16C	109.6(15)	H19B	-C19	-H19C	110(3)

Table S7 - Torsion Angles (Degrees) (continued) for: S1032B MOKA 60KV150MA LNT MON 030394

Pd1	-C14	-C17	-C17_a	-5.4(14)
C15	-C14	-C17	-C18	1.2(19)
C15	~C14	~C17	-C17_a	-178.0(9)
C14	-C17	-C18	-03	123.5(13)
C14	-C17	-C18	-04	-56.2(18)
C17_a	-C17	-C18	-03	-57.3(17)
C17_a	-C17	-C18	-04	123.0(11)
C14	-C17	-C17_a	-C14_a	7.0(16)
C14	-C17	-C17_a	-C18_a	-172.3(12)
C18	-C17	-C17_a	-C14_a	-172.3(12)
C18	-C17	-C17_a	-C18_a	8.4(18)

Table S7 - Torsion Angles (Degrees) (continued) for: S1032B MOKA 60KV150MA LNT MON 030394

N1	-C7	-C8	-C9	-22.6(12)
N1	-C7	-C8	-C13	159.3(7)
C7_a	-C7	-C8	-C9	154.5(7)
C7_a	-C7	-C8	-C13	-23.6(10)
N1	-C7	-C7_a	-N1_a	28.6(9)
Nl	-C7	-C7_a	-C8_a	-148.8(7)
C8	-C7	-C7_a	-N1_a	-148.8(7)
C8	-C7	-C7_a	-C8_a	33.7(9)
C7	-C8	-C9	-C10	179.0(7)
C13	-C8	-C9	-C10	-3.0(11)
C7	-C8	-C13	-C12	-179.2(7)
C7	-C8	-C13	-C13_a	3.5(11)
С9	-C8	-C13	-C12	2.7(11)
C9	-C8	-C13	-C13_a	-174.7(7)
C8	-C9	-C10	-C11	0.9(12)
С9	-C10	-C11	-C12	1.4(13)
C10	-C11	-C12	-C13	-1.7(14)
C11	-C12	-C13	-C8	-0.3(12)
C11	-C12	-C13	-C13_a	177.0(8)
C8	-C13	-C13_a	-C8_a	7.0(11)
C8	-C13	-C13_a	-C12_a	-170.2(8)
C12	-C13	-C13_a	-C8_a	-170.2(8)
C12	-C13	-C13_a	-C12_a	12.6(12)
Pd1	-C14	-C15	-01	-45.4(11)
Pd1	-C14	-C15	-02	132.5(7)
C17	-C14	-C15	-01	126.9(11)
C17	-C14	-C15	-02	-55.2(13)
Pd1	-C14	-C17	-C18	173.8(11)

- 2 -	Compound 1d	
Table S1 - Crystal Data and Details of for: s1225b C22 H20 N2	f the Structure Determination 08 Pd	on Tab
. Crystal Da	ta	
Empirical Formula	C22 H20 N2 08 H	Pd
Formula Weight	546.8	33 Pd (
Crystal System	Orthorhomb	.c 0(1
Space group	Pbca (No. 62	.) 0(2
a, b, c [Angstrom] 15.4590	(8) 13.5717(9) 20.4773(12	.) 0(3
alpha, beta, gamma [deg]	90 90 9	0 0(4
V [Ang**3]	4296.2(4	l) 0(5
z		8 0(6
D(calc) [g/cm**3]	1.6	91 0(7
F(000) [Electrons]	22	0 (8
Mu(MoKa) [/cm]	9	.2 N(1
Crystal Size [mm]	0.13 x 0.13 x 0.1	18 N (2
Data Collectio	n	C (1
Temperature (K)	1	50 C (2
Radiation [Angstrom] MoKa (w:	th monochromator) 0.710	73 C (3
Theta Min-Max [Deg]	2.0, 26	.2 C(4
Scan type, Scan, [Deg] (Dmega, 0.70 + 0.35 Tan(Theta	a) C (5
Hor. and vert. aperture [mm]	3.00 4.	00 C(6
Reference Reflection(s)	2, 4, 0 ; 3, 2,	-3 C (7
Dataset	0: 18 ; 0: 17 ; -24:	0 C (8
Tot., Uniq. Data, R(int)	3940, 3940, 0.	C(2
DIFABS transmission range	0.580, 1.0	00 C (1
Nref Npar Refinement	2020 2	C (1
wP2 P1 S 0 1146 0 0634 F	for 2004 $\mathbf{F} > 4$ simma (\mathbf{F}) 1 1	C (1
$W = \frac{1}{[c^{2}(v_{1}^{2}) + (v_{2}^{2})]}$	$(216P)^{201}$ $P = (P^{20})^{201}$	C(1
$\mathbf{H}_{\mathbf{X}} = \mathbf{A} \mathbf{A} \mathbf{V} \mathbf{A} \mathbf{Y} \mathbf{V} \mathbf{Y} \mathbf{Y} \mathbf{V} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} Y$	$\frac{1}{2} \frac{1}{2} \frac{1}$	() 00
Min and May road done [0/3==~??]		C(1
and Max. read. dens. [c/Ally 3]	-0.58, 0.	· · · · · · · · · · · · · · · · · · ·

.

able S2 - Final Coordinates and Equivalent Isotropic Thermal Parameters of the non-Hydrogen atoms for: s1225b C22 H20 N2 O8 Pd

Atom	x 	У	z 	U(eq) [Ang^2]
Pd(1)	0.07300(4)	0.12320(5)	0.06539(3)	0.0157(2)
0(1)	0.1962(4)	0.1082(5)	0.2355(2)	0.0230(19)
0(2)	0.0886(4)	-0.0001(4)	0.2162(3)	0.024(2)
0(3)	0.2949(4)	-0.0742(5)	0.1797(3)	0.026(2)
0(4)	0.3822(4)	0.0281(5)	0.1237(3)	0.027(2)
0(5)	0.3312(4)	0.0336(4)	-0.0656(3)	0.026(2)
0(6)	0.3427(4)	-0.0814(4)	0.0136(3)	0.024(2)
0(7)	0.1371(4)	0.0054(4)	-0.1032(3)	0.022(2)
0(8)	0.1559(4)	0.1697(5)	-0.0966(3)	0.021(2)
N(1)	-0.0350(4)	0.1613(5)	0.0062(3)	0.013(2)
N(2)	-0.0081(5)	0.1980(5)	0.1320(3)	0.019(3)
C(1)	-0.0471(5)	0.1412(6)	-0.0567(4)	0.015(3)
C(2)	-0.1198(6)	0.1676(6)	-0.0899(4)	0.020(3)
C(3)	-0.1867(5)	0.2162(6)	-0.0585(4)	0.020(3)
C(4)	-0.1759(6)	0.2328(6)	0.0078(4)	0.017(3)
C(5)	-0.0995(5)	0.2070(6)	0.0391(4)	0.014(3)
C(6)	-0.0840(6)	0.2258(7)	0.1090(4)	0.022(3)
C(7)	-0.1451(6)	0.2732(7)	0.1477(4)	0.018(3)
C(8)	-0.1251(6)	0.2928(7)	0.2134(4)	0.028(3)
C(9)	-0.0456(6)	0.2671(7)	0.2362(4)	0.029(3)
C(10)	0.0125(6)	0.2206(6)	0.1949(4)	0.025(3)
C(11)	0.1766(6)	0.0990(7)	0.3037(4)	0.035(4)
C(12)	0.1452(6)	0.0529(7)	0.1954(4)	0.017(3)
C(13)	0.1629(5)	0.0678(6)	0.1255(4)	0.015(3)
C(14)	0.2364(6)	0.0321(6)	0.0986(4)	0.015(3)
C(15)	0.3060(6)	-0.0118(7)	0.1387(4)	0.021(3)
C(16)	0.4557(6)	-0.0147(9)	0.1556(5)	0.049(5)

Table	S2	-	Final Coordina	ites	and	Equi	valent	Isotrop:	ic Thermal
			Parameters of	the	non-	-Hydr	ogen at	toms (co	ontinued)
			for: s1225b	C22	2 H2() N2	08 Pd		

Atom	x	У	Z 	U(eq) [Ang^2]
C(17)	0.2353(6)	0.0383(7)	0.0268(4)	0.017(3)
C(18)	0.3077(6)	-0.0004(7)	-0.0142(4)	0.017(3)
C(19)	0.4170(6)	-0.1234(7)	-0.0195(4)	0.028(3)
C(20)	0.1629(6)	0.0744(7)	0.0012(4)	0.017(3)
C(21)	0.1533(5)	0.0905(6)	-0.0703(5)	0.014(3)
C(22)	0.1251(6)	0.0171(7)	-0.1726(4)	0.027(3)

U(eq) = 1/3 of the trace of the orthogonalized U

.

Table S3 - Hydrogen Atom Positions and Isotropic Thermal Parameters for: s1225b C22 H20 N2 O8 Pd

Atom	x	У	z	U(iso) [Ang^2]
H(1)	-0.0030(5)	0.1068(6)	-0.0795(4)	0.0180
H(2)	-0.1247(6)	0.1526(6)	-0.1351(4)	0.0240
H(3)	-0.2371(5)	0.2371(6)	-0.0811(4)	0.0240
H(4)	-0.2214(6)	0.2622(6)	0.0321(4)	0.0200
H(7)	-0.1994(6)	0.2920(7)	0.1300(4)	0.0220
H(8)	-0.1663(6)	0.3234(7)	0.2413(4)	0.0330
H(9)	-0.0299(6)	0.2810(7)	0.2801(4)	0.0350
H(10)	0.0682(6)	0.2039(6)	0.2109(4)	0.0290
H(11A)	0.121(2)	0.131(4)	0.3129(7)	0.0520
H(11B)	0.222(2)	0.131(4)	0.3295(4)	0.0520
H(11C)	0.173(4)	0.0291(7)	0.3154(7)	0.0520
H(16A)	0.458(3)	0.008(4)	0.2009(11)	0.0730
H(16B)	0.5086(6)	0.005(4)	0.133(2)	0.0730
H(16C)	0.451(2)	-0.0867(9)	0.155(3)	0.0730
H(19A)	0.4006(10)	-0.143(4)	-0.0639(10)	0.0420
H(19B)	0.437(2)	-0.181(3)	0.0046(15)	0.0420
H(19C)	0.4635(14)	-0.0744(15)	-0.022(2)	0.0420
H(22A)	0.123(4)	-0.0479(7)	-0.1933(5)	0.0400
H(22B)	0.1737(19)	0.055(4)	-0.1908(6)	0.0400
H(22C)	0.0710(18)	0.053(4)	-0.1808(4)	0.0400

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

Table S4 - (An)isotropicThermal Parametersfor:s1225bC22 H20 N2 O8 Pd

Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
Pd(1)	0.0155(3)	0.0161(3)	0.0154(3)	-0.0015(4)	0.0004(4)	0.0012(4)
0(1)	0.022(3)	0.033(4)	0.014(3)	-0.004(3)	-0.001(3)	-0.005(3)
0(2)	0.025(4)	0.026(4)	0.020(3)	0.002(3)	0.003(3)	0.001(3)
0(3)	0.023(4)	0.031(4)	0.025(4)	0.014(3)	0.004(3)	0.001(3)
0(4)	0.014(4)	0.036(4)	0.031(4)	0.012(3)	-0.006(3)	-0.007(3)
0(5)	0.031(4)	0.026(4)	0.020(3)	0.006(4)	0.012(4)	0.005(3)
0(6)	0.030(4)	0.016(4)	0.027(4)	0.006(3)	0.002(3)	0.010(3)
0(7)	0.030(4)	0.016(4)	0.020(3)	0.004(3)	-0.001(3)	0.000(3)
0(8)	0.022(4)	0.018(4)	0.022(4)	0.004(3)	0.000(3)	-0.002(3)
N(1)	0.014(4)	0.007(4)	0.018(4)	0.002(3)	-0.005(3)	0.000(3)
N(2)	0.018(4)	0.021(5)	0.019(4)	-0.003(4)	-0.004(4)	0.004(4)
C(1)	0.014(4)	0.018(5)	0.013(4)	0.003(4)	0.003(4)	-0.005(4)
C(2)	0.023(5)	0.024(5)	0.013(4)	0.002(4)	-0.001(4)	-0.008(5)
C(3)	0.021(5)	0.020(5)	0.020(5)	0.005(5)	-0.006(5)	-0.009(4)
C(4)	0.017(5)	0.010(6)	0.024(5)	0.001(4)	0.009(4)	0.002(4)
C(5)	0.015(5)	0.008(5)	0.020(5)	-0.003(4)	0.004(4)	0.000(4)
C(6)	0.027(6)	0.020(5)	0.019(5)	0.001(4)	-0.009(5)	-0.007(5)
C(7)	0.010(5)	0.025(6)	0.019(5)	-0.004(5)	0.000(4)	0.004(4)
C(8)	0.027(6)	0.027(6)	0.029(6)	-0.001(5)	0.009(5)	0.008(5)
C(9)	0.038(6)	0.032(6)	0.018(5)	-0.008(5)	-0.004(5)	0.014(5)
C(10)	0.028(6)	0.026(6)	0.020(5)	0.000(5)	-0.013(5)	0.000(5)
C(11)	0.032(6)	0.055(9)	0.018(5)	-0.007(5)	-0.007(5)	-0.013(6)
C(12)	0.020(5)	0.012(5)	0.020(5)	0.000(4)	-0.006(4)	0.005(4)
C(13)	0.014(5)	0.021(6)	0.011(5)	0.008(4)	-0.003(4)	0.005(5)
C(14)	0.014(5)	0.009(5)	0.021(5)	0.000(4)	-0.004(4)	0.001(4)
C(15)	0.026(6)	0.021(6)	0.017(5)	-0.003(5)	-0.012(5)	-0.002(5)
C(16)	0.014(6)	0.085(10)	0.048(7)	0.019(7)	-0.009(5)	0.012(6)

Table S4 - (An)isotropicThermal Parameters (continued)for:s1225bC22 H20 N2 O8 Pd

Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
C(17)	0.016(5)	0.021(6)	0.013(5)	-0.004(5)	-0.001(4)	-0.002(!
C(18)	0.015(5)	0.016(5)	0.020(5)	0.004(5)	-0.008(4)	0.004(4
C(19)	0.031(5)	0.026(5)	0.028(5)	-0.003(5)	0.010(5)	0.015(
C(20)	0.017(5)	0.013(5)	0.022(5)	-0.001(4)	-0.006(4)	0.000(
C(21)	0.006(4)	0.016(5)	0.019(5)	0.000(5)	-0.001(4)	0.006(4
C(22)	0.041(7)	0.027(6)	0.013(5)	-0.004(5)	-0.011(5)	-0.010(

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

 Table S6 - Bond Angles
 (Degrees)

 for:
 s1225b
 C22 H20 N2 O8 Pd

N(1)	-Pd(1)	-N(2)	77.6(3)	N(2)	-C(10)	-C(9)	121.9(8
N(1)	-Pd(1)	-C(13)	170.4(3)	0(1)	-C(12)	-0(2)	122.2(7
N(1)	-Pd(1)	-C(20)	104.4(3)	0(1)	-C(12)	-C(13)	113.7(7
N(2)	-Pd(1)	-C(13)	101.3(3)	0(2)	-C(12)	-C(13)	124.0(8
N(2)	-Pđ(1)	-C(20)	169.7(3)	Pd(1)	-C(13)	-C(12)	121.4(6
C(13)	-Pd(1)	-C(20)	78.5(3)	Pd(1)	-C(13)	-C(14)	117.8(6
C(11)	-0(1)	-C(12)	114.6(7)	C(12)	-C(13)	-C(14)	120.2(8
C(15)	-0(4)	-C(16)	115.5(7)	C(13)	-C(14)	-C(15)	122.0(8
C(18)	-0(6)	-C(19)	116.1(7)	C(13)	-C(14)	-C(17)	112.1(8
C(21)	-0(7)	-C(22)	114.7(7)	C(15)	-C(14)	-C(17)	125.9(8
Pđ(1)	-N(1)	-C(1)	127.8(5)	0(3)	-C(15)	-0(4)	124.9(8
Pd(1)	-N(1)	-C(5)	113.9(5)	0(3)	-C(15)	-C(14)	124.5(8
C(1)	-N(1)	-C(5)	118.2(7)	0(4)	-C(15)	-C(14)	110.6(7
Pđ(1)	-N(2)	-C(6)	115.8(5)	C(14)	-C(17)	-C(18)	122.1(8
Pđ(1)	-N(2)	-C(10)	125.5(6)	C(14)	-C(17)	-C(20)	115.1(8
C(6)	-N(2)	-C(10)	118.8(7)	C(18)	-C(17)	-C(20)	122.6({
N(1)	-C(1)	-C(2)	123.1(7)	0(5)	-C(18)	-0(6)	124.0({
C(1)	-C(2)	-C(3)	120.7(8)	0(5)	-C(18)	-C(17)	125.6({
C(2)	-C(3)	-C(4)	116.2(8)	0(6)	-C(18)	-C(17)	110.4(
C(3)	-C(4)	-C(5)	120.9(8)	Pđ(1)	-C(20)	-C(17)	116.3((
N(1)	-C(5)	-C(4)	120.8(7)	Pd(1)	-C(20)	-C(21)	121.5((
N(1)	-C(5)	-C(6)	116.3(7)	C(17)	-C(20)	-C(21)	121.7({
C(4)	-C(5)	-C(6)	122.9(8)	0(7)	-C(21)	-0(8)	122.9(
N(2)	-C(6)	-C(5)	116.2(7)	0(7)	-C(21)	-C(20)	112.4(
N(2)	-C(6)	-C(7)	122.2(8)	0(8)	-C(21)	-C(20)	124.6(
C(5)	-C(6)	C(7)	121.5(8)	N(1)	-C(1)	-H(1)	118.4(!
C(6)	-C(7)	-C(8)	118.9(8)	C(2)	-C(1)	-H(1)	118.5(!
C(7)	-C(8)	-C(9)	118.6(8)	C(1)	-C(2)	-H(2)	119.7(1)
C(8)	-C.(9)	-C(10)	119.5(8)	C(3)	-C(2)	-H(2)	119.6(1)

Table S5 - Bond Distances (Angstrom) for: s1225b C22 H20 N2 O8 Pd

- 8 -

Pd(1)	-N(1)	2.127(6)	C(9)	-C(10)	1.386(12)
Pd(1)	-N(2)	2.113(7)	C(12)	-C(13)	1.471(12)
Pd(1)	-C(13)	2.003(8)	C(13)	-C(14)	1.352(12)
Pđ(1)	-C(20)	2.024(9)	C(14)	-C(15)	1.479(13)
0(1)	-C(11)	1.434(9)	C(14)	-C(17)	1.473(12)
0(1)	-C(12)	1.363(11)	C(17)	-C(18)	1.494(13)
0(2)	-C(12)	1.210(11)	C(17)	-C(20)	1.329(13)
0(3)	-C(15)	1.205(11)	C(20)	-C(21)	1.488(13)
0(4)	-C(15)	1.332(11)	C(1)	-H(1)	0.949(11)
0(4)	-C(16)	1.434(12)	C(2)	-H(2)	0.951(12)
0(5)	-C(18)	1.205(10)	C(3)	-н(З)	0.950(11)
0(6)	-C(18)	1.351(11)	C(4)	-H(4)	0.950(12)
0(6)	-C(19)	1.450(11)	C(7)	-н(7)	0.949(13)
0(7)	-C(21)	1.360(10)	C(8)	-H(8)	0.951(13)
0(7)	-C(22)	1.442(10)	C(9)	-н(9)	0.950(12)
0(8)	-C(21)	1.203(11)	C(10)	-H(10)	0.949(13)
N(1)	-C(1)	1.330(10)	C(11)	-H(11A)	0.98(4)
N(1)	-C(5)	1.354(10)	C(11)	-H(11B)	0.98(3)
N(2)	-C(6)	1.319(12)	C(11)	-H(11C)	0.980(14)
N(2)	-C(10)	1.362(10)	C(16)	-H(16A)	0.98(3)
C(1)	-C(2)	1.361(12)	C(16)	-H(16B)	0.98(3)
C(2)	-C(3)	1.385(12)	C(16)	-H(16C)	0.980(17)
C(3)	-C(4)	1.386(12)	C(19)	-H(19A)	0.98(3)
C(4)	-C(5)	1.389(12)	C(19)	-H(19B)	0.97(4)
C(5)	-C(6)	1.474(12)	C(19)	-н(19С)	0.98(2)
C(6)	-C(7)	1.391(13)	C(22)	-H(22A)	0.979(14)
C(7)	-C(8)	1.406(12)	C(22)	-H(22B)	0.98(4)
C(8)	-C(9)	1.360(13)	C(22)	-H(22C)	0.98(4)

. - 1

Table S7 - Torsion Angles (Degrees) for: s1225b C22 H20 N2 O8 Pd

N(2)	-Pd(1)	-N(1)	-C(1)	-179.4(7)
N(2)	-Pd(1)	-N(1)	-C(5)	-3.0(5)
C(20)	-Pd(1)	-N(1)	-C(1)	11.0(8)
C(20)	-Pd(1)	-N(1)	-C(5)	-172.6(6)
N(1)	-Pd(1)	-N(2)	-C(6)	3.8(6)
N(1)	-Pd(1)	-N(2)	-C(10)	-174.9(7)
C(13)	-Pd(1)	-N(2)	-C(6)	-166.5(6)
C(13)	-Pđ(1)	-N(2)	-C(10)	14.8(7)
N(2)	-Pd(1)	-C(13)	-C(12)	22.4(7)
N(2)	-Pđ(1)	-C(13)	-C(14)	-166.3(6)
C(20)	-Pd(1)	-C(13)	-C(12)	-168.1(8)
C(20)	-Pd(1)	-C(13)	-C(14)	3.2(7)
N(1)	-Pd(1)	-C(20)	-C(17)	-174.9(7)
N(1)	-Pd(1)	-C(20)	-C(21)	13.0(8)
C(13)	-Pd(1)	-C(20)	-C(17)	-4.2(7)
C(13)	-Pd(1)	-C(20)	-C(21)	-176.3(8)
C(11)	-0(1)	-C(12)	-0(2)	-0.6(12)
C(11)	-0(1)	-C(12)	-C(13)	176.6(7)
C(16)	-0(4)	-C(15)	-0(3)	5.9(13)
C(16)	-0(4)	-C(15)	-C(14)	-174.9(8)
C(19)	-0(6)	-C(18)	-0(5)	4.7(12)
C(19)	-0(6)	-C(18)	-C(17)	-176.7(7)
C(22)	-0(7)	-C(21)	-0(8)	1.3(11)
C(22)	-0(7)	-C(21)	-C(20)	178.6(7)
Pđ(1)	-N(1)	-C(1)	-C(2)	178.8(6)
C(5)	-N(1)	-C(1)	-C(2)	2.5(12)
Pd(1)	-N(1)	-C(5)	-C(4)	-177.3(6)
Pd(1)	~N(1)	-C(5)	-C(6)	1.9(9)
C(1)	-N(1)	-C(5)	-C(4)	-0.5(12)

			- 10 -				
Table S	6 - Bond for:	l Angles s1225b	(Degrees) C22 H20 N2 C	(continu D8 Pd	ıeđ)		
C(2)	-C(3)	-н(З)	121.9(9)	0(4)	-C(16)	-H(16A)	109(3)
C(4)	-C(3)	-H(3)	121.8(9)	0(4)	-C(16)	-H(16B)	110(2)
C(3)	-C(4)	-H(4)	119.5(10)	0(4)	-C(16)	-H(16C)	110(3)
C(5)	-C(4)	-H(4)	119.6(10)	H(16A)	-C(16)	-H(16B)	109(4)
C(6)	-C(7)	-H(7)	120.5(10)	H(16A)	-C(16)	-H(16C)	109(5)
C(8)	-C(7)	-н(7)	120.6(10)	H(16B)	-C(16)	-H(16C)	109(4)
C(7)	-C(8)	-н(8)	120.7(10)	0(6)	-C(19)	-H(19A)	109.6(15)
C(9)	-C(8)	-H(8)	120.7(10)	0(6)	-C(19)	-H(19B)	109(2)
C(8)	-C(9)	-H(9)	120.3(10)	0(6)	-C(19)	-н(19С)	109.8(18)
C(10)	-C(9)	-H(9)	120.2(11)	H(19A)	-C(19)	-H(19B)	110(4)
N(2)	-C(10)	-H(10)	119.0(10)	H(19A)	-C(19)	-н(19С)	109(3)
C(9)	-C(10)	-H(10)	119.1(9)	H(19B)	-C(19)	-H(19C)	110(3)
0(1)	-C(11)	-H(11A)	109.5(14)	0(7)	-C(22)	-H(22A)	109.4(11)
0(1)	-C(11)	-H(11B)	109.6(15)	0(7)	-C(22)	-н(22В)	109.4(12)
0(1)	-C(11)	-H(11C)	109.5(13)	0(7)	-C(22)	-H(22C)	109.4(9)
H(11A)	-C(11)	-H(11B)	109(3)	H(22A)	-C(22)	-н(22В)	109(4)
H(11A)	-C(11)	-H(11C)	109(5)	H(22A)	-C(22)	-H(22C)	110(4)
H(11B)	-C(11)	-H(11C)	110(4)	H(22B)	-C(22)	-H(22C)	109(4)

Table S7 - Torsion Angles (Degrees) (continued) for: s1225b C22 H20 N2 O8 Pd

C(13)	-C(14)	-C(15)	-0(3)	49.8(13)
C(13)	-C(14)	-C(15)	-0(4)	-129.5(9)
C(17)	-C(14)	-C(15)	-0(3)	-127.0(10)
C(17)	-C(14)	-C(15)	-0(4)	53.7(12)
C(13)	-C(14)	-C(17)	-C(18)	-177.4(8)
C(13)	-C(14)	-C(17)	-C(20)	-1.9(12)
C(15)	-C(14)	-C(17)	-C(18)	-0.3(14)
C(15)	-C(14)	-C(17)	-C(20)	175.2(9)
C(14)	-C(17)	-C(18)	-0(5)	-147.5(9)
C(14)	-C(17)	-C(18)	-0(6)	34.0(12)
C(20)	-C(17)	-C(18)	-0(5)	37.3(15)
C(20)	-C(17)	-C(18)	-0(6)	-141.2(9)
C(14)	-C(17)	-C(20)	-Pđ(1)	4.6(11)
C(14)	-C(17)	-C(20)	-C(21)	176.6(8)
C(18)	-C(17)	-C(20)	-Pd(1)	-179.9(8)
C(18)	-C(17)	-C(20)	-C(21)	-7.9(14)
Pđ(1)	-C(20)	-C(21)	-0(7)	-110.3(7)
Pd(1)	-C(20)	-C(21)	-O(8)	66.9(11)
C(17)	-C(20)	-C(21)	-0(7)	78.0(11)
C(17)	-C(20)	-C(21)	-0(8)	-104.8(11)

	- 1	2	
_			

Table S7 - Torsion Angles (Degrees)(continued)for:s1225bC22 H20 N2 O8 Pd

•

C(1)	-N(1)	-C(5)	-C(6)	178.7(7)
Pd(1)	-N(2)	-C(6)	-C(5)	-4.0(10)
Pd(1)	-N(2)	-C(6)	-C(7)	178.1(7)
C(10)	-N(2)	-C(6)	-C(5)	174.8(7)
C(10)	-N(2)	-C(6)	-C(7)	-3.1(13)
Pd(1)	-N(2)	-C(10)	-C(9)	-177.8(6)
C(6)	-N(2)	-C(10)	-C(9)	3.5(12)
N(1)	-C(1)	-C(2)	-C(3)	-1.2(13)
C(1)	-C(2)	-C(3)	-C(4)	-2.0(12)
C(2)	-C(3)	-C(4)	-C(5)	3.8(12)
C(3)	-C(4)	-C(5)	-N(1)	-2.7(12)
C(3)	-C(4)	-C(5)	-C(6)	178.2(8)
N(1)	-C(5)	-C(6)	-N(2)	1.4(11)
N(1)	-C(5)	-C(6)	-C(7)	179.3(8)
C(4)	-C(5)	-C(6)	-N (2)	-179.5(8)
C(4)	-C(5)	-C(6)	-C(7)	-1.6(14)
N(2)	-C(6)	-C(7)	-C(8)	0.5(14)
C(5)	-C(6)	-C(7)	-C(8)	-177.3(8)
C(6)	-C(7)	-C(8)	-C(9)	1.8(14)
C(7)	-C(8)	-C(9)	-C(10)	-1.5(14)
C(8)	-C(9)	-C(10)	-N(2)	-1.2(13)
0(1)	-C(12)	-C(13)	-Pd(1)	-117.0(7)
0(1)	-C(12)	-C(13)	-C(14)	71.9(11)
0(2)	-C(12)	-C(13)	-Pd(1)	60.1(11)
0(2)	-C(12)	-C(13)	-C(14)	-111.0(10)
Pđ(1)	-C(13)	-C(14)	-C(15)	-179.0(7)
Pd(1)	-C(13)	-C(14)	-C(17)	-1.8(10)
C(12)	-C(13)	-C(14)	-C(15)	-7.6(13)
C(12)	-C(13)	-C(14)	-C(17)	169.6(8)

- 2 - Compound 7

Table S1 -	Crysta	al Data	and I	Details	of t	he :	Stru	icture	Determinati	on
	for:	s1142a	C40) H24 N	12 08	3 Pđ	2.	2 (C6 1	H14)	

Crystal	Data
---------	------

Empirical Formula	C40 H24 N12 O8 Pd2 . 2(C6 H14)
Formula Weight	1185.90
Crystal System	Orthorhombic
Space group	Fddd (No. 70)
a, b, c [Angstrom] 17.738	1(13) 22.2113(14) 27.600(2)
V [Ang**3]	10874.0(13)
Z	8
D(calc) [g/cm**3]	1.449
F(000) [Electrons]	4832
Mu(MoKa) [/cm]	7.2
Crystal Size [mm]	$0.50 \times 0.28 \times 0.25$
Data Collect	ion
Temperature (K)	150
Radiation [Angstrom] MoKa (with monochromator) 0.71073
Theta Min-Max [Deg]	1.6, 27.5
Scan type	Omega/2Theta
Scan, [Deg]	0.96 + 0.35 Tan(Theta)
Hor. and vert. aperture [mm]	3.46 4.00
Reference Reflection(s)	-2, 0, 10 ; -8, 2, 2 ; 8, 2, 2
Dataset	-23: 0 ; -27: 28 ; 0: 35
Tot., Uniq. Data	5715, 3129
R(int) = 0.0442 R(sigma) = 0.06	03 Friedel opposites merged
Refinemer	1t
Nref, Npar	3129, 143
wR2, R1, S 0.0719, 0.0318	[for 2265 F > 4 sigma(F)], 0.94
w 1/[\s^2^(fo^2^)+(0).0331P)^2^], P=(Fo^2^+2Fc^2^)/3
Max. and Av. Shift/Error	0.000, 0.000
Min. and Max. resd. dens. [e/Ang^3]	-0.33, 0.53

- 3 -

Table S2 - Final Coordinates and Equivalent Isotropic Thermal Parameters of the non-Hydrogen atoms for: s1142a C40 H24 N12 O8 Pd2 . 2(C6 H14)

Atom	x 	У	Z	U(eq) [Ang^2]
Pd(1)	0.25965(1)	1/8	1/8	0.0175(1)
0(1)	0.00193(12)	-0.07902(9)	0.05283(7)	0.0377(7)
0(2)	0.03453(12)	-0.05702(8)	0.12912(7)	0.0369(6)
N(1)	0.18313(11)	0.07456(9)	0.08200(7)	0.0178(6)
N(2)	0.3992(2)	-0.00725(12)	0.13320(9)	0.0437(12)
N(3)	0.4034(2)	0.12833(15)	0.01839(10)	0.0530(12)
C(1)	0.1951(2)	0.07975(12)	0.03381(9)	0.0237(8)
C(2)	0.1543(2)	0.04727(13)	0.00036(9)	0.0280(8)
C(3)	0.1014(2)	0.00633(12)	0.01676(9)	0.0263(8)
C(4)	0.0887(2)	0.00040(11)	0.06645(9)	0.0215(7)
C(5)	0.1302(2)	0.03610(10)	0.09815(8)	0.0173(6)
C(6)	0.0362(2)	-0.04927(11)	0.08116(10)	0.0255(7)
C(7)	-0.0096(2)	-0.1074(2)	0.14630(14)	0.0537(12)
C(8)	0.3675(2)	0.10131(12)	0.10674(9)	0.0279(8)
C(9)	0.3858(2)	0.04065(14)	0.12118(11)	0.0325(9)
C(10)	0.3886(2)	0.11633(13)	0.05752(11)	0.0341(11)

U(eq) = 1/3 of the trace of the orthogonalized U

Table S4 - (An)isotropicThermal Parametersfor:s1142aC40 H24 N12 O8 Pd22 (C6 H14)

Atom	U(1,1) or 1	U U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
Pd(1)	0.0179(1)	0.0178(1)	0.0168(1)	0.0028(1)	0	
0(1)	0.0424(12)	0.0356(11)	0.0350(11)	-0.0066(9)	-0.0117(10)	-0.0134(10
0(2)	0.0491(12)	0.0338(10)	0.0277(10)	0.0057(9)	-0.0090(10)	-0.0239(10
N(1)	0.0218(10)	0.0152(9)	0.0163(10)	0.0009(8)	-0.0001(8)	0.0022(8
N(2)	0.053(2)	0.040(2)	0.038(2)	0.0117(12)	0.0049(12)	0.0155(12
N(3)	0.057(2)	0.057(2)	0.045(2)	0.020(2)	0.0212(14)	0.019(2
C(1)	0.0269(14)	0.0243(13)	0.0200(12)	0.0026(10)	0.0057(11)	0.0039(11
C(2)	0.0381(15)	0.0319(14)	0.0140(11)	-0.0048(11)	0.0000(11)	0.0075(13
C(3)	0.0334(15)	0.0259(13)	0.0195(12)	-0.0094(11)	-0.0053(11)	0.0050(11
C(4)	0.0254(13)	0.0188(11)	0.0203(12)	-0.0010(10)	-0.0029(11)	0.0032(11
C(5)	0.0191(11)	0.0142(10)	0.0185(11)	-0.0003(9)	-0.0040(11)	0.0067(11
C(6)	0.0283(13)	0.0178(11)	0.0303(14)	-0.0018(11)	-0.0053(12)	0.0018(12
C(7)	0.060(2)	0.045(2)	0.056(2)	0.019(2)	-0.011(2)	-0.034(2
C(8)	0.0197(13)	0.0325(14)	0.0316(13)	0.0124(12)	0.0036(11)	0.0029(1;
C(9)	0.0273(14)	0.040(2)	0.0303(14)	0.0088(13)	0.0037(14)	0.0086(12
C(10)	0.032(2)	0.0303(15)	0.040(2)	0.0124(13)	0.0057(12)	0.0081(1;

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table S3	- 1	Hydrogen	Atom	Posit	ions	and	Is	otro	pj	ic The	ermal
		Paramete:	rs								
		for: s1	142a	C40	H24	N12 (80	Pđ2	•	2 (C6	H14)

Atom	x	У	Z	U(iso) [Ang^2]
н(1)	0.2329(2)	0.10670(12)	0.02265(9)	0.0280
н(2)	0.1623(2)	0.05290(13)	-0.03337(9)	0.0340
н(3)	0.0739(2)	-0.01763(12)	-0.00564(9)	0.0320
H(7A)	-0.0036(11)	-0.1113(7)	0.1815(2)	0.0800
н(7в)	0.0077(9)	-0.1444(2)	0.1305(7)	0.0800
H(7C)	-0.0629(3)	-0.1007(5)	0.1386(8)	0.0800

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

			- 7 -				
Table S	56 - Bond for:	1 Angles : s1142a	(Degrees) C40 H24 N12	08 Pd2	. 2(C6	H14)	
N(1)	-Pd(1)	-C(8)	108.92(9)	0(2)	-C(6)	-C(4)	112.1(2
N(1)	-Pd(1)	-N(1)b	100.50(7)	Pd(1)	-C(8)	-C(9)	112.5(2
N(1)	-Pd(1)	-C(8)b	150.56(9)	Pd(1)	-C(8)	-C(10)	114.4(2
N(1)b	-Pd(1)	-C(8)	150.56(9)	Pd(1)	-C(8)	-C(8)b	69.15(19
C(8)	-Pd(1)	-C(8)b	41.70(11)	C(9)	-C(8)	-C(10)	114.6(3
N(1)b	-Pd(1)	-C(8)b	108.92(9)	C(8)b	-C(8)	-C(9)	118.9(2
C(6)	-0(2)	-C(7)	115.9(2)	C(8)b	-C(8)	-C(10)	118.9(2
Pd(1)	-N(1)	-c(1)	113.87(18)	N(2)	-C(9)	-C(8)	178.7(4
Pd(1)	-N(1)	-C(5)	126.59(16)	N(3)	-C(10)	-C(8)	178.3(4
C(1)	-N(1)	-C(5)	119.3(2)	N(1)	-C(1)	-H(1)	118.9(3
N(1)	-C(1)	-C(2)	122.2(3)	C(2)	-C(1)	-H(1)	118.9(3
C(1)	-C(2)	-C(3)	118.8(2)	C(1)	-C(2)	-H(2)	120.6(4
C(2)	-C(3)	-C(4)	119.5(3)	C(3)	-C(2)	-H(2)	120.6(3
C(3)	-C(4)	-C(5)	118.6(3)	C(2)	-C(3)	-H(3)	120.2(3
C(3)	-C(4)	-C(6)	115.8(2)	C(4)	-C(3)	-H(3)	120.2(3
C(5)	-C(4)	-C(6)	125.3(2)	0(2)	-C(7)	-H(7A)	109.5(11
N(1)	-C(5)	-C(4)	121.5(2)	0(2)	-C(7)	-H(7B)	109.5(9
N(1)	-C(5)	-C(5)c	114.5(2)	0(2)	-C(7)	-H(7C)	109.5(
C(4)	-C(5)	-C(5)c	124.0(3)	H(7A)	-C(7)	-H(7B)	109.4(1
0(1)	-C(6)	-0(2)	124.6(3)	H(7A)	-C(7)	-H(7C)	109.4(1)
0(1)	-C(6)	-C(4)	123.2(3)	н(7в)	-C(7)	-H(7C)	109.4(14

- 6 -

Table S5 - Bond Distances (Angstrom) for: s1142a C40 H24 N12 O8 Pd2 . 2(C6 H14)

Pd(1)	-N(1)	2.123(2)	C(4)	-C(5)	1.391(4)
Pđ(1)	-C(8)	2.047(3)	C(4)	-C(6)	1.500(4)
0(1)	-C(6)	1.191(4)	C(5)	-C(5)c	1.494(3)
0(2)	-C(6)	1.335(3)	C(8)	-C(9)	1.442(4)
0(2)	-C(7)	1.446(5)	C(8)	-C(10)	1.448(4)
N(1)	-C(1)	1.352(3)	C(8)	-C(8)b	1.457(4)
N(1)	-C(5)	1.345(4)	C(1)	-H(1)	0.950(4)
N(2)	-C(9)	1.140(4)	C(2)	-H(2)	0.950(4)
N(3)	-C(10)	1.143(4)	C(3)	-н(З)	0.950(4)
C(1)	-C(2)	1.377(4)	C(7)	-H(7A)	0.981(7)
C(2)	-C(3)	1.383(4)	C(7)	-H(7B)	0.980(11)
C(3)	-C(4)	1.396(4)	C(7)	-H(7C)	0.980(8)

Table S7 - Torsion Angles (Degrees) (continued) for: s1142a C40 H24 N12 O8 Pd2 . 2(C6 H14)

C(6)	-C(4)	-C(5)	-C(5)c	-9.5(5)
C(3)	-C(4)	-C(6)	-0(1)	-6.2(5)
C(3)	-C(4)	-C(6)	-0(2)	171.9(3)
C(5)	-C(4)	-C(6)	-0(1)	-179.6(3)
C(5)	-C(4)	-C(6)	-0(2)	-1.5(4)
N(1)	-C(5)	-C(5)c	-N(1)C	91.5(3)
N(1)	-C(5)	-C(5)c	-C(4)c	-87.7(3)
C(4)	-C(5)	-C(5)c	-N(1)c	-87.7(3)
C(4)	-C(5)	-C(5)c	-C(4)c	93.2(4)
C(9)	-C(8)	-C(8)b	-Pđ(1)	-104.9(3)
C(9)	-C(8)	-C(8)b	-C(9)b	150.2(3)
C(9)	-C(8)	-C(8)b	-C(10)b	2.3(5)
C(10)	-C(8)	-C(8)b	-Pd(1)	107.2(3)
C(10)	-C(8)	-C(8)b	-C(9)b	2.3(5)
C(10)	-C(8)	-C(8)b	-C(10)b	-145.7(3)

Table S7 - Torsion Angles (Degrees) for: s1142a C40 H24 N12 O8 Pd2 . 2(C6 H14)

C(8)	-Pd(1)	-N(1)	-C(1)	-54.8(2)
C(8)	-Pd(1)	-N(1)	-C(5)	119.8(2)
N(1)b	-Pd(1)	-N(1)	-C(1)	126.26(19)
N(1)b	-Pd(1)	-N(1)	-C(5)	-59.1(2)
C(8)b	-Pd(1)	-N(1)	-C(1)	-51.7(3)
C(8)b	-Pd(1)	-N(1)	-C(5)	123.0(2)
N(1)	-Pđ(1)	-C(8)	-C(9)	-68.6(2)
N(1)	-Pd(1)	-C(8)	-C(10)	64.4(2)
N(1)	-Pd(1)	-C(8)	-C(8)b	177.66(14)
N(1)b	-Pd(1)	-C(8)	-C(9)	109.2(2)
N(1)b	-Pd(1)	-C(8)	-C(10)	-117.7(2)
C(8)b	-Pd(1)	-C(8)	-C(9)	113.7(3)
C(8)b	-Pd(1)	-C(8)	-C(10)	-113.2(3)
N(1)	-Pd(1)	-C(8)b	-C(8)	-4.5(3)
C(7)	-0(2)	-C(6)	-0(1)	3.2(4)
C(7)	-0(2)	-C(6)	-C(4)	-174.8(3)
Pđ(1)	-N(1)	-C(1)	-C(2)	175.7(2)
C(5)	-N(1)	-C(1)	-C(2)	0.6(4)
Pd(1)	-N(1)	-C(5)	-C(4)	-172.7(2)
Pd(1)	-N(1)	-C(5)	-C(5)c	8.1(3)
C(1)	-N(1)	-C(5)	-C(4)	1.6(4)
C(1)	-N(1)	-C(5)	-C(5)c	-177.6(2)
N(1)	-C(1)	-C(2)	-C(3)	-2.5(5)
C(1)	-C(2)	-C(3)	-C(4)	2.3(5)
C(2)	-C(3)	-C(4)	-C(5)	-0.2(5)
C(2)	-C(3)	-C(4)	-C(6)	-174.1(3)
C(3)	-C(4)	-C(5)	-N(1)	-1.8(4)
C(3)	-C(4)	-C(5)	-C(5)c	177.3(3)
C(6)	-C(4)	-C(5)	-N(1)	171.5(3)

.