

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

Crystallographic Details

Data Collection

A colorless prismatic crystal of $C_{31}H_{22}O_2Te$ having approximate dimensions of 0.60 x 0.50 x 0.30 mm was mounted on a glass fiber. All measurements were made on an Enraf-Nonius CAD4-FR diffractometer with graphite monochromated Mo-KALPHA radiation. Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using the setting angles of 25 carefully centered reflections in the range 12.00 < 2THETA < 21.00° corresponded to a primitive triclinic cell with dimensions:

a	=	10.590(2)	Å	ALPHA =	85.54(1) ⁰
b	=	10.910(2)	Å	BETA =	78.76(1) ⁰
С	=	11.843(1)	Å	GAMMA =	64.35(1)
v	=	1209.8(3) Å	3		

For Z = 2 and F.W. = 554.11, the calculated density is 1.52 g/cm^3 . Based on a statistical analysis of intensity distribution, and the successful solution and refinement of thestructure, the space group was determined to be:

P1 (#2)

The data were collected at a temperature of 296 ± 1 K using the OMEGA-2THETA scan technique to a maximum 2THETA value of 49.9° .Omega scans of several intense reflections, made prior to data collection, had an average width at half-height of 0.27° with a take-off angle of 2.8° . Scans of $(0.80 \pm 0.52 \tan \text{THETA})^{\circ}$ were made at a speed of $2.0-20.0^{\circ}/\text{min}$ (in omega). Movingcrystal moving counter background measurements were made by scanning an additional 25 above and below the scan range. The counter aperture consisted of a variable horizontal slit with a width ranging from 2.5 to 2.7 mm and a vertical slit set to 4.0 mm. The diameter of the incident beam collimator was 0.8 mm and the crystal to detector distance was 21 cm. For intense reflections an attenuator was automatically inserted in front of the detector.

Data Reduction

A total of 4492 reflections was collected. The intensities of three representative reflection were measured after every 120 minutes of X-ray exposure time. Over the course of data collection, the standards decreased by 1.0%. A linear correction factor was applied to the data to account for this phenomenon.

The linear absorption coefficient, MU, for Mo-KALPHA radiation is 12.6 $\rm cm^{-1}$. An empirical absorption correction based on azimuthal scans of several reflections was applied which resulted in transmission factors ranging from 0.84 to 1.00. The data were corrected for Lorentz and polarization effects. A correction for secondary extinction was applied (coefficient = 3.15050e-07).

Structure Solution and Refinement

The structure was solved by direct methods¹ and expanded using Fourier techniques². The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement³ was based on 4155 observed reflections (I > 3.00sigma(I)) and 308 variable parameters and converged (largest parameter shift was 0.02 times its esd) with unweighted and weighted agreement factors of:

R = SIGMA ||Fo| - |Fc|| / SIGMA |Fo| = 0.025 $R_{W} = [(SIGMA w (|Fo| - |Fc|)^2 / SIGMA w Fo^2)]^{1/2} = 0.029$

The standard deviation of an observation of unit weight⁴ was 4.25. The weighting scheme was based on counting statistics. Plots of SIGMA w (|Fo| - |Fc|)² versus |Fo|, reflection order in data collection, sin THETA/LAMBDA and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.78 and -0.47 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for DELTAf⁺ and DELTAf⁺ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbel⁸. All calculations were performed using the teXsan⁹ crystallographic software package of

Molecular Structure Corporation.

References

- <u>SIR92</u>: Altomare, A., Burla, M.C., Camalli, M., Cascarano, M., Giacovazzo,
 C., Guagliardi, A., Polidori, G. (1994). J. Appl. Cryst., in preparation.
- (2) <u>DIRDIF94</u>: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., de Gelder, R., Israel, R. and Smits, J.M.M.(1994). The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- (3) Least-Squares:

Function minimized: $Sw(|F_0| - |F_C|)^2$ where $w = 1/[sigma^2(F_0)] = [sigma^2_C(F_0) + p^2F_0^2/4]^{-1}$ $sigma_C(F_0) = e.s.d.$ based on counting statistics p = p-factor

(4) Standard deviation of an observation of unit weight:

 $[Sw(|F_{O}| - |F_{C}|)^{2} / (N_{O} - N_{V})]^{1/2}$ where: N_{O} = number of observations N_{V} = number of variables

- (5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).
- (6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).
- (7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).
- (8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).
- (9) <u>teXsan</u>: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1992).

A. Crystal Data

Empirical Formula

Formula Weight

Crystal Color, Habit

Crystal Dimensions

Crystal System

Lattice Type

No. of Reflections Used for Unit Cell Determination (2THETA range)

Omega Scan Peak Width at Half-height

Lattice Parameters

Space Group

Z value

Dcalc

F000

MU (MOKALPHA)

С₃₁H₂₂O₂Te

554.11

colorless, prismatic

0.60 X 0.50 X 0.30 mm

triclinic

Primitive

 $25 (12.0 - 21.0^{\circ})$

0.27⁰

a = 10.590(2)Å b = 10.910(2)Å c = 11.843(1)Å ALPHA = $85.54(1)^{\circ}$ BETA = $78.76(1)^{\circ}$ GAMMA = $64.35(1)^{\circ}$ V = 1209.8(3)Å³

P1 (#2)

2

 1.521 g/cm^3

552.00

 12.56 cm^{-1}

B. Intensity Measurements

Diffractometer

Radiation

Attenuator Take-off Angle Enraf-Nonius CAD4-FR MoKALPHA (LAMBDA = 0.71069 Å) graphite monochromated Zr foil (factor = 13.40) 2.8°

Detector Aperture

Crystal to Detector Distance

Temperature

Scan Type

Scan Rate

Scan Width

2THETA_{max}

No. of Reflections Measured

Corrections

2.5 - 2.7 mm horizontal

4.0 mm vertical 21 mm

296.0 K

OMEGA-2THETA

2.0-20.0°/min (in OMEGA)

 $(0.80 + 0.52 \text{ tan THETA})^{\circ}$

49.9⁰

Total: 4492

Lorentz-polarization

Absorption

(trans. factors: 0.84 - 1.00)

Decay (1.0% decrease)

Secondary Extinction

(coefficient: 3.15050e-07)

C. Structure Solution and Refinement

Structure Solution

Refinement Function Minimized

Least Squares Weights

p-factor Anomalous Dispersion No. Observations (I>3.00sigma(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map Direct Methods (SIR92)

Full-matrix least-squares SIGMA w $(|Fo| - |Fc|)^2$

1/2sigma(Fo) = 4Fo $^2/sigma^2$ (Fo 2)

0.0000 All non-hydrogen atoms 4155 308 13.49 0.025 ; 0.029 4.25 0.02 0.78 e⁻/Å³ -0.47 e⁻/Å³

Table	1	Atomia	coordinator	nnđ	D · /D
Table	-H- +	ACOULC	coordinates	and	^D iso ^{/ D} eq

atom	x	v	Z	Bog	
Te(1)	0.22548(2)	0 44537(2)	0 83573 (2)	2894(5)	
0(1)	0.3906(3)	0 2240(3)	0 7437 (2)	1 57(6)	
0(2)	0.5594(3)	0.2601(3)	0.7407(2)	A 71 (7)	
C(1)	0.0382(A)	0.6207/31	0.7500(2)	第・7上(7) フ 10/ワ)	
C(2)	0.0290(4)	0.0297(3)	0.0/03(3)		
C(2)		0.7520(4)	0.9144(3)	4.00(0)	
		0.0033(4)	0.9340(4)	2.2(1)	
		0.8518(4)	0.9241(4)	5.4(1)	
C(3)		0.7296(4)	0.8921(3)	4-60(9)	
C(0)		0.6175(4)	0.8684(3)	3.36(7)	
C(I)	-0.0665(4)	0.4824(4)	0.8359(3)	3.30(7)	
C(8)	-0.1775(4)	0.4453(4)	0.8332(3)	4.15(9)	
C(9)	-0.1491(4)	0.3150(5)	0.8050(3)	4.55(10)	
C(10)	-0.0115(4)	0.2184(4)	0.7759(4)	4.61(10)	
C(11)	0.1021(4)	0.2507(4)	0.7773(3)	3.87(8)	
C(12)	0.0731(3)	0.3802(3)	0.8085(3)	3.11(7)	
C(13)	0.2737(3)	0.5157(3)	0.6669(3)	3.18(7)	
C(14)	0.2460(4)	0.4613(4)	0.5779(3)	4.20(9)	
C(15)	0.2667(5)	0.5099(5)	0.4660(3)	5.2(1)	
C(16)	0.3161(5)	0.6081(5)	0.4455(3)	5.3(1)	
C(17)	0.3443(4)	0.6607(4)	0.5343(3)	4.49(9)	
C(18)	0.3238(4)	0.6158(3)	0.6486(3)	$3_{3}3(7)$	
C(19)	0.3525(4)	0.6793(3)	0.7413(3)	3 25(7)	
C(20)	0.4234(3)	0 6009(3)	0 8279(3)	3,17(7)	
C(21)	$0 \ 4377(4)$	0.6639(4)	0 9193(3)	3 7/(9)	
C(22)	0 3974 (5)	0.0033(4)	0.0006(4)		
C(22)	0.30/4(3)	0.00000(4)	0.3220(4)	4.00(9)	
C(2J)	0.3243(3)	0.0000(4)		J.Z(1)	
C(24)	0.5055(5)	0.8199(4)	0.7458(3)	4.54(9)	
C(25)	0.51/2(4)	0.1938(3)	0.7484(3)	3.19(7)	
C(26)	0.6285(4)	0.06/6(4)	0.6803(3)	3.78(8)	
C(27)	0.5884(5)	-0.0135(5)	0.6268(5)	7.6(2)	
C(28)	0.6899(8)	-0.1278(7)	0.5662(7)	11.1(2)	
C(29)	0.8311(7)	-0.1631(6)	0.5569(6)	9.0(2)	
C(30)	0.8731(5)	-0.0844(6)	0.6082(5)	7.5(1)	
C(31)	0.7725(5)	0.0306(4)	0.6707(4)	5.5(1)	
H(1)	0.1236	0.7608	0.9228	4.8721	
H(2)	-0.1099	0.9594	0.9602	6.2362	
H(3)	-0.3266	0.9390	0.9410	6.5206	
H(4)	-0.3135	0.7211	0.8853	5.4947	
н(5)	-0.2863	0.5200	0.8533	4.9458	
H(6)	-0.2361	0.2885	0.8058	5.4517	
H(7)	0.0085	0.1176	0.7521	5.5192	
H(8)	0.2106	0.1754	0.7543	4.6328	
H(9)	0.2090	0.3823	0.5949	5.0009	
H(10)	0.2437	0.4702	0.3959	6.2711	
H(11)	0.3323	0.6449	0.3591	6.3509	
H(12)	0.3836	0.7378	0.5163	5.3501	
H(13)	0.4670	0.4915	0.8235	3.7813	
H(14)	0.4885	0.6030	0.9881	4 4585	
H(15)	0.3976	0.8521	0.9938	5 4733	
H(16)	0.2885	0 9895	0.8361	6 2404	
H(17)	0.2538	0 8822	0.6784	5 3832	
H(18)	0 4772	0 0118	0.6321	9 1596	
H(19)	0 6564	_0 1911	0 5761	12 5220	· '.
H(20)	0 9086	_0 2510	0.5201	10 0076	
H(21)	0.9000	_0 1111	0.5001	10.30/0 0 11 <i>61</i>	
H(22)	0.2047	-0.1111 A A017	0.001/	2°TT04	
** (22 <i>1</i>		0.0311	U.ITQT	0.0434	
Beq =	8/3 P1"(U <u>11</u> (aa*) ²	$+ U_{22}(bb^*)^2$	+ U33(cc*)4 +	$2U_{12}$ (aa*bb*) cos	GAMMA +

 $2U_{13}$ (aa*cc*) cos BETA + $2U_{23}$ (bb*cc*) cos ALPHA)

Table 2. Anisotropic Displacement Parameters

atom	U11	U22	U 33	v_{12}	U13	U23
Te(1)	0.0344(1)	0.0450(1)	0.0320(1)	-0.01951(10)	-0.00438(8)	0.00200(8)
0(1)	0.040(1)	0.059(2)	0.075(2)	-0.020(1)	-0.008(1)	-0.012(1)
0(2)	0.051(2)	0.060(2)	0.072(2)	-0.024(1)	-0.011(1)	-0.016(1)
C(1)	0.042(2)	0.047(2)	0.028(2)	-0.018(2)	0.000(1)	0.000(1)
C(2)	0.053(2)	0.057(2)	0.042(2)	-0.025(2)	0.005(2)	-0.008(2)
C(3)	0.070(3)	0.055(2)	0.063(3)	-0.021(2)	0.007(2)	-0.015(2)
C(4)	0.055(3)	0.055(2)	0.074(3)	-0.005(2)	0.001(2)	-0.010(2)
C(5)	0.043(2)	0.062(2)	0.060(2)	-0.014(2)	-0.005(2)	-0.002(2)
C(6)	0.039(2)	0.051(2)	0.032(2)	-0.015(2)	-0.004(1)	0.001(1)
C(7)	0.038(2)	0.058(2)	0.030(2)	-0.021(2)	-0.007(1)	0.005(1)
C(8)	0.037(2)	0.076(3)	0.046(2)	-0.024(2)	-0.009(2)	-0.003(2)
C(9)	0.053(2)	0.080(3)	0.057(2)	-0.041(2)	-0.016(2)	0.001(2)
C(10)	0.059(3)	0.065(3)	0.065(3)	-0.038(2)	-0.015(2)	-0.002(2)
C(11)	0.046(2)	0.049(2)	0.055(2)	-0.023(2)	-0.010(2)	0.001(2)
C(12)	0.036(2)	0.050(2)	0.036(2)	-0.022(2)	-0.007(1)	0.006(1)
C(13)	0.039(2)	0.046(2)	0.032(2)	-0.016(2)	-0.003(1)	0.001(1)
C(14)	0.062(2)	0.066(2)	0.036(2)	-0.033(2)	-0.004(2)	-0.004(2)
C(15)	0.081(3)	0.088(3)	0.035(2)	-0.040(3)	-0.010(2)	-0.003(2)
C(16)	0.078(3)	0.090(3)	0.034(2)	-0.041(3)	-0.005(2)	0.011(2)
C(17)	0.062(2)	0.067(2)	0.043(2)	-0.032(2)	-0.005(2)	0.012(2)
C(18)	0.039(2)	0.046(2)	0.036(2)	-0.016(2)	-0.003(1)	0.006(1)
C(19)	0.039(2)	0.042(2)	0.040(2)	-0.018(2)	0.001(1)	0.003(1)
C(20)	0.034(2)	0.039(2)	0.046(2)	-0.016(1)	-0.002(1)	-0.001(1)
C(21)	0.044(2)	0.047(2)	0.053(2)	-0.020(2)	-0.009(2)	-0.003(2)
C(22)	0.063(3)	0.047(2)	0.066(3)	-0.024(2)	-0.009(2)	-0.012(2)
C(23)	0.083(3)	0.039(2)	0.074(3)	-0.023(2)	-0.011(2)	-0.001(2)
C(24)	0.067(3)	0.043(2)	0.057(2)	-0.020(2)	-0.012(2)	0.011(2)
C(25)	0.044(2)	0.036(2)	0.047(2)	-0.020(2)	-0.014(2)	0.004(1)
C(26)	0.046(2)	0.045(2)	0.052(2)	-0.019(2)	-0.007(2)	-0.002(2)
C(27)	0.067(3)	0.091(4)	0.134(5)	-0.029(3)	-0.012(3)	-0.057(3)
C(28)	0.102(5)	0.114(5)	0.197(8)	-0.026(4)	-0.016(5)	-0.102(5)
C(29)	0.093(5)	0.095(4)	0.124(5)	-0.008(4)	0.000(4)	-0.059(4)
C(30)	0.051(3)	0.087(4)	0.120(5)	-0.007(3)	0.005(3)	-0.026(3)
C(31)	0.047(2)	0.065(3)	0.094(3)	-0.018(2)	-0.009(2)	-0.016(2)

The general temperature factor expression: $\exp(-2PI^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table 3.	Bond Length	ns (A)		a	
atom	atom	distance	atom	atom	distance
Te(1)	0(1)	2.469(3)	Te(1)	C(1)	2.131(3)
Te(1)	C(12)	2.110(3)	Te(1)	C(13)	2.133(3)
0(1)	C(25)	1.246(4)	0(2)	C(25)	1.232(4)
C(1)	C(2)	1.387(5)	Ċ(1)	C(6)	1.403(5)
C(2)	C(3)	1.391(6)	C(3)	C(4)	1.384(6)
C(4)	C(5)	1.379(6)	C(5)	C(6)	1.391(5)
C(6)	C(7)	1.468(5)	C(7)	C(8)	1.406(5)
C(7)	C(12)	1.406(4)	C(8)	C(9)	1.374(6)
C(9)	C(10)	1.372(6)	C(10)	C(11)	1.396(5)
C(11)	C(12)	1.374(5)	C(13)	C(14)	1.385(5)
C(13)	C(18)	1.393(5)	C(14)	C(15)	1.402(5)
C(15)	C(16)	1.369(6)	C(16)	C(17)	1.375(6)
C(17)	C(18)	1.411(4)	C(18)	C(19)	1.486(5)
C(19)	C(20)	1.398(4)	C(19)	C(24)	1.395(5)
C(20)	C(21)	1.393(5)	C(21)	C(22)	1.378(5)
C(22)	C(23)	1.368(6)	C(23)	C(24)	1.381(6)
C(25)	C(26)	1.527(5)	C(26)	C(27)	1.372(6)
C(26)	C(31)	1.382(5)	C(27)	C(28)	1.379(7)
C(28)	C(29)	1.357(9)	C(29)	C(30)	1.349(8)
C(30)	C(31)	1.391(6)	Te(1)	0(2)	3.182(3)

Table 4	. Bond Ar	ngles(⁰)					. (
atom	atom	atom	angle	atom	atom	atom	angle
0(1)	Te(1)	C(1)	159.9(1)	0(1)	Te(1)	C(12)	81.7(1)
0(1)	Te(1)	C(13)	81.4(1)	C(1)	Te(1)	C(12)	80.9(1)
C(1)	Te(1)	C(13)	91.5(1)	C(12)	Te(1)	C(13)	99.3(1)
C(2)	C(1)	C(6)	119.8(3)	C(1)	C(2)	C(3)	119.9(4)
C(2)	C(3)	C(4)	120.1(4)	C(3)	C(4)	C(5)	120.4(4)
C(4)	C(5)	C(6)	120.1(4)	C(1)	C(6)	C(5)	119.6(3)
C(1)	C(6)	C(7)	115.9(3)	C(5)	C(6)	C(7)	124.5(3)
C(6)	C(7)	C(8)	124.9(3)	C(6)	C(7)	C(12)	118.3(3)
C(8)	C(7)	C(12)	116.7(3)	C(7)	C(8)	C(9)	120.9(3)
C(8)	C(9)	C(10)	120.9(3)	C(9)	C(10)	C(11)	120.2(4)
C(10)	C(11)	C(12)	118.7(3)	C(7)	C(12)	C(11)	122.5(3)
C(14)	C(13)	C(18)	122.1(3)	C(13)	C(14)	C(15)	119.0(4)
C(14)	C(15)	C(16)	120.0(4)	C(15)	C(16)	C(17)	120.5(3)
C(16)	C(17)	C(18)	121.5(4)	C(13)	C(18)	C(17)	116.8(3)
C(13)	C(18)	C(19)	124.2(3)	C(17)	C(18)	C(19)	119.0(3)
C(18)	C(19)	C(20)	121.3(3)	C(18)	C(19)	C(24)	120.5(3)
C(20)	C(19)	C(24)	118.2(3)	C(19)	C(20)	C(21)	120.1(3)
C(20)	C(21)	C(22)	120.2(3)	C(21)	C(22)	C(23)	120.2(4)
C(22)	C(23)	C(24)	120.2(4)	C(19)	C(24)	C(23)	121.0(4)
0(1)	C(25)	0(2)	125.7(3)	0(1)	C(25)	C(26)	116.1(3)
0(2)	C(25)	C(26)	118.0(3)	C(25)	C(26)	C(27)	120.9(4)
C(25)	C(26)	C(31)	121.5(3)	C(27)	C(26)	C(31)	117.6(4)
C(26)	C(27)	C(28)	120.4(5)	C(27)	C(28)	C(29)	121.6(6)
C(28)	C(29)	C(30)	119.1(5)	C(29)	C(30)	C(31)	120.2(5)
C(26)	C(31)	C(30)	121.1(4)	Te(1)	0(2)	C(25)	77.9(2)
0(1)	C(25)	0(2)	125.7(3)				

.

Table	5. TOI	csion or	Conror	mation Angle	S				e e la A
(1)	(2)	(3)	(4)	angle	(1)	(2)	(3)	(4)	angle
0(1)	C(25)	C(26)	C(27)	-6.0(6)	C(13)	C(18)	C(19)	C(20)	43.9(5)
0(1)	C(25)	C(26)	C(31)	174.3(4)	C(13)	C(18)	C(19)	C(24)	-134.3(4)
0(2)	C(25)	C(26)	C(27)	177.5(4)	C(14)	C(13)	C(18)	C(17)	0.5(5)
0(2)	C(25)	C(26)	C(31)	-2.2(6)	C(14)	C(13)	C(18)	C(19)	178.8(3)
C(1)	C(2)	C(3)	C(4)	1.6(6)	C(14)	C(15)	C(16)	C(17)	-0.7(7)
C(1)	C(6)	C(5)	C(4)	-0.2(6)	C(15)	C(14)	C(13)	C(18)	-1.1(6)
C(1)	C(6)	C(7)	C(8)	173.7(3)	C(15)	C(16)	C(17)	C(18)	0.1(7)
C(1)	C(6)	C(7)	C(12)	-4.3(4)	C(16)	C(17)	C(18)	C(19)	-178.4(4)
C(2)	C(1)	C(6)	C(5)	2.1(5)	Č(17)	C(18)	C(19)	C(20)	-137.8(4)
C(2)	C(1)	C(6)	C(7)	-177.0(3)	C(17)	C(18)	C(19)	C(24)	43.9(5)
C(2)	C(3)	C(4)	C(5)	0.3(7)	C(18)	C(19)	C(20)	C(21)	-174.3(3)
C(3)	C(2)	C(1)	C(6)	-2.8(5)	C(18)	C(19)	C(24)	C(23)	176.2(4)
C(3)	C(4)	C(5)	C(6)	-0.9(7)	C(19)	C(20)	C(21)	C(22)	-2.7(5)
C(4)	C(5)	C(6)	C(7)	178.8(4)	C(19)	C(24)	C(23)	C(22)	-1.2(7)
C(5)	C(6)	C(7)	C(8)	-5.3(5)	C(20)	C(19)	C(24)	C(23)	-2.0(6)
C(5)	C(6)	C(7)	C(12)	176.7(3)	C(20)	C(21)	C(22)	C(23)	-0.7(6)
C(6)	C(7)	C(8)	C(9)	-178.0(3)	C(21)	C(20)	C(19)	C(24)	4.0(5)
C(6)	C(7)	C(12)	C(11)	179.9(3)	C(21)	C(22)	C(23)	C(24)	2.6(7)
C(7)	C(8)	C(9)	C(10)	-1.6(6)	C(25)	C(26)	C(27)	C(28)	-179.6(6)
C(7)	C(12)	C(11)	C(10)	-1.9(5)	C(25)	C(26)	C(31)	C(30)	-179.8(4)
C(8)	C(7)	C(12)	C(11)	1.8(5)	C(26)	C(27)	C(28)	C(29)	0(1)
C(8)	C(9)	C(10)	C(11)	1.5(6)	C(26)	C(31)	C(30)	C(29)	-0.9(9)
C(9)	C(8)	C(7)	C(12)	0.0(5)	C(27)	C(26)	C(31)	C(30)	0.5(8)
C(9)	C(10)	C(11)	C(12)	0.2(6)	C(27)	C(28)	C(29)	(30)	0(1)
C(13)	C(14)	C(15)	C(16)	1.2(7)	C(28)	C(27)	C(26)	C(31)	0.1(9)
C(13)	C(18)	C(17)	C(16)	0.0(6)	C(28)	C(29)	C(30)	C(31)	1(1)

The sign is positive if when looking from atom 2 to atom 3 a clockwise motion of atom 1 would superimpose it on atom 4.

Crystallographic Details

Data Collection

A colorless rod crystal of $C_{26}H_{20}O_2$ Te having approximate dimensions of 1.00 x 0.80 x 0.80 mm was mounted on a glass fiber. All measurements were made on an Enraf-Nonius CAD4-FR with graphite monochromated Mo-KALPHA radiation.Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using the setting angles of 25 carefully centered reflections in the range 12.00 < 2THETA < 21.00° corresponded to an I-centered tetragonal cell (laue class: 4/m) with dimensions:

> a = 30.731(1) Å c = 10.189(1) Å $V = 9622.4(8) Å^3$

For Z = 16 and F.W. = 492.04, the calculated density is 1.36 g/cm^3 . Based on the systematic absences of:

hkl: $h+k+1 \pm 2n$ hk0: $h \pm 2n$ 001: $1 \pm 4n$

and the successful solution and refinement of thestructure, the space group was determined to be:

I41/a (#88)

The data were collected at a temperature of 296 ± 1 K using the OMEGA scan technique to a maximum 2THETA value of 49.9° .Omega scans of several intense reflections, made prior to data collection, had an average width at half-height of 0.26° with a take-off angle of 2.8° . Scans of (0.50 + 0.40 tan THETA)^o were made at a speed of $2-20^{\circ}$ /min (in omega). Moving-crystal moving counter background measurements were made by scanning an additional 25 above and below the scan range. The counter aperture consisted of a variable horizontal slit with a width ranging from 1.3 to 1.9 mm and a vertical slit set to 4.0 mm. The diameter of the incident beam collimator was 1.2 mm and the crystal to detector distance was 21 cm. For intense reflections an attenuator was automatically inserted in front of the detector (attenuator factor = 13.4).

Data Reduction

A total of 4010 reflections was collected. The intensities of three representative reflection were measured after every 120 minutes of X-ray exposure time. Over the course of data collection, the standards decreased by 2.4%. A linear correction factor was applied to the data to account for this phenomenon. The linear absorption coefficient, MU, for Mo-KALPHA radiation is 12.5 cm^{-1} . An empirical absorption correction using the program DIFABS¹ was applied which resulted in transmission factors ranging from 0.92 to 1.00. The data were corrected for Lorentz and polarization effects.

State of the

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques³. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement⁴ (on F) was based on 3013 observed reflections (I > 3.00sigma(I)) and 262 variable parameters and converged with unweighted and weighted agreement factors of:

R = SIGMA ||Fo| - |Fc|| / SIGMA |Fo| = 0.027 $R_{W} = [(SIGMA w (|Fo| - |Fc|)^2 / SIGMA w Fo^2)]^{1/2} = 0.034$

The standard deviation of an observation of unit weight⁵ was 2.82. The weighting scheme was based on counting statistics. Plots of SIGMA w (|Fo| - |Fc|)² versus |Fo|, reflection order in data collection, sin THETA/LAMBDA and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.48 and -0.27 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for DELTAf[†] and DELTAf^{*} were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbel⁹. All calculations were performed using the teXsan¹⁰ crystallographic software package of Molecular Structure Corporation.

References

- (1) <u>DIFABS</u>: Walker, N. & Stuart, Acta Cryst. A39, 158-166 (1983). An empirical absorption correction program.
- (2) <u>SIR92</u>: Altomare, A., Burla, M.C., Camalli, M., Cascarano, M., Giacovazzo,
 C., Guagliardi, A., Polidori, G. (1994). J. Appl. Cryst., in preparation.
- (3) <u>DIRDIF94</u>: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., de Gelder, R., Israel, R. and Smits, J.M.M.(1994). The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- (4) Least-Squares:

Function minimized: $Sw(|F_0| - |F_C|)^2$ where $w = 1/[sigma^2(F_0)] = [sigma^2_C(F_0) + p^2F_0^2/4]^{-1}$ $sigma_C(F_0) = e.s.d.$ based on counting statistics p = p-factor

(5) Standard deviation of an observation of unit weight:

 $[Sw(|F_{O}| - |F_{C}|)^{2} / (N_{O} - N_{V})]^{1/2}$ where: N_O = number of observations N_V = number of variables

- (6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).
- (7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).
- (8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).
- (9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).
- (10) <u>teXsan</u>: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1992).

DETAILS EXPERIMENTAL

A. Crystal Data

Empirical Formula	C26H200
Formula Weight	492.04
Crystal Color, Habit	colorle
Crystal Dimensions	0.80 X
Crystal System	tetrage
Lattice Type	I-cente
No. of Reflections Used for Unit Cell Determination (2THETA range)	25 (12
Omega Scan Peak Width at Half-height	0.300
Lattice Parameters	a = 30
	c = 10
	V = 962
Space Group	14 ₁ /a
Z value	16
D _{calc}	1.358 g
F000	3904.00
MU (Mokalpha)	12.53

B. Intensity Measurements

Diffractometer

Radiation

Attenuator Take-off Angle

Detector Aperture

Crystal to Detector Distance

Temperature

0₂Te ess, rod 0.80 X 1.00 mm onal ered

 $2.0 - 21.0^{\circ}$)

0.731(1)Å 0.189(1) Å 22.4(8) $Å^3$

(#88)

 g/cm^3

0

 12.53 cm^{-1}

CAD4-FR

MoKALPHA (LAMBDA = 0.71069 Å) graphite monochromated

Zr foil (factor = 13.40) 2.80

1.3 - 1.9 mm horizontal

4.0 mm vertical

21 mm

296.0 K

Scan Type

Scan Rate

Scan Width

2THETAmax

No. of Reflections Measured

Corrections

OMEGA

2.0-20.0°/min (in OMEGA)

(0.50 + 0.40 tan THETA)^O

49.9°

Total: 4010

Lorentz-polarization

Absorption (trans. factors: 0.92 - 1.00)

Decay (2.4 % decrease)

C. Structure Solution and Refinement

Structure Solution

Refinement Function Minimized

Least Squares Weights

p-factor Anomalous Dispersion No. Observations (I>3.00sigma(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map Direct Methods (SIR92)

Full-matrix least-squares SIGMA w $(|Fo| - |Fc|)^2$

1/2sigma(Fo) = $4Fo^2/sigma^2(Fo^2)$

0.0000 All non-hydrogen atoms 3013 262 11.50 0.027 ; 0.034 2.82 0.48 e⁻/Å³ -0.27 e⁻/Å³ Table 1. Atomic coordinates and Biso/Beq

atom	x	У .	Z	Beq
Te(1)	0.02146(1)	0.06042(1)	0.01681(3)	3.122(7)
0(1)	0.0464(1)	0.0136(1)	0.2017(3)	4.68(9)
0(2)	0.0705(1)	-0.0302(1)	0.0470(4)	5.2(1)
C(1)	0.0002(2)	0.1172(2)	-0.0890(5)	3.5(1)
C(2)	0.0034(2)	0.1240(2)	-0.2230(6)	4.6(1)
C(3)	-0.0134(2)	0.1619(2)	-0.2757(7)	6.2(2)
C(4)	-0.0330(3)	0.1923(2)	-0.1962(8)	7.0(2)
C(5)	-0.0375(2)	0.1851(2)	-0.0623(7)	5.8(2)
C(6)	-0.0205(2)	0.1470(2)	-0.0066(6)	3.8(1)
C(7)	-0.0236(2)	0.1359(2)	0.1329(5)	3.6(1)
C(8)	-0.0432(2)	0.1625(2)	0.2276(7)	4.7(1)
C(9)	-0.0450(2)	0.1491(2)	0.3558(7)	5.4(2)
C(10)	-0.0282(2)	0.1095(2)	0.3935(6)	5.1(2)
C(11)	-0.0086(2)	0.0826(2)	0.3019(5)	4.2(1)
C(12)	-0.0066(2)	0.0961(2)	0.1728(5)	3.3(1)
C(13)	0.0864(2)	0.0853(2)	0.0364(5)	3.2(1)
C(14)	0.0990(2)	0.0993(2)	0.1607(5)	4.0(1)
C(15)	0.1400(2)	0.1168(2)	0.1783(6)	4.9(1)
C(16)	0.1680(2)	0.1197(2)	0.0741(7)	5.5(2)
C(17)	0.1555(2)	0.1052(2)	-0.0490(6)	5.1(2)
C(18)	0.1144(2)	0.0878(2)	-0.0705(5)	3.7(1)
C(19)	0.1026(2)	0.0734(2)	-0.2054(5)	3.8(1)
C(20)	0.0843(2)	0.0333(2)	-0.2295(6)	4.4(1)
C(21)	0.0736(2)	0.0211(2)	-0.3570(6)	5.5(2)

tes and Biso/Beq (continued)

atom	x	У	z	Beq
C(22)	0.0810(2)	0.0487(2)	-0.4609(6)	5.8(2)
C(23)	0.0993(2)	0.0891(2)	-0.4378(6)	5.6(2)
C(24)	0.1101(2)	0.1013(2)	-0.3113(6)	5.0(2)
C(25)	0.0675(2)	-0.0185(2)	0.1611(6)	3.9(1)
C(26)	0.0901(3)	-0.0451(2)	0.2672(8)	7.9(2)
H(1)	0.0187	0.1001	-0.2854	5.4619
H(2)	-0.0110	0.1677	-0.3800	7.4588
н(3)	-0.0451	0.2222	-0.2385	8.3934
H(4)	-0.0540	0.2087	-0.0015	7.0193
H(5)	-0.0569	0.1935	0.1997	5.6357
н(б)	-0.0599	0.1699	0.4283	6.5285
H(7)	-0.0303	0.0994	0.4948	6.1061
H(8)	0.0050	0.0517	0.3309	5.0138
Н(9)	0.0770	0.0964	0.2427	4.8386
H(10)	0.1500	0.1281	0.2740	5.8523
H(11)	0.2000	0.1335	0.0878	6.6416
H(12)	0.1781	0.1074	-0.1297	6.0774
H(13)	0.0782	0.0112	-0.1492	5.2315
H(14)	0.0592	-0.0104	-0.3746	6.5977
H(15)	0.0727	0.0389	-0.5596	7.0145
H(16)	0.1052	0.1111	-0.5184	6.7343
H(17)	0.1245	0.1328	-0.2941	6.0108
H(18)	0.0686	-0.0565	0.3278	9.4302
H(19)	0.1057	-0.0691	0.2269	9.4302
H(20)	0.1105	-0.0268	0.3144	9.4302

$$\begin{split} B_{eq} &= 8/3 \ \text{PI}^2 (\text{U}_{11}(\text{aa}^*)^2 + \text{U}_{22}(\text{bb}^*)^2 + \text{U}_{33}(\text{cc}^*)^2 + 2\text{U}_{12}(\text{aa}^*\text{bb}^*)\text{cos GAMMA} + 2\text{U}_{13}(\text{aa}^*\text{cc}^*)\text{cos BETA} + 2\text{U}_{23}(\text{bb}^*\text{cc}^*)\text{cos ALPHA}) \end{split}$$

Table 2. Anisotropic Displacement Parameters

atom	U ₁₁	U22	U33	U12	U13	U23
Te(1)	0.0428(2)	0.0362(2)	0.0397(2)	-0.0015(1)	-0.0010(1)	-0.0015(1)
0(1)	0.078(3)	0.053(2)	0.047(2)	0.013(2)	-0.002(2)	0.002(2)
0(2)	0.071(3)	0.067(3)	0.058(3)	0.016(2)	0.002(2)	-0.006(2)
C(1)	0.040(3)	0.045(3)	0.049(3)	-0.005(2)	-0.007(2)	0.005(3)
C(2)	0.058(3)	0.066(4)	0.049(3)	-0.003(3)	-0.005(3)	0.009(3)
C(3)	0.087(5)	0.084(5)	0.065(4)	-0.004(4)	-0.010(4)	0.028(4)
C(4)	0.107(6)	0.067(4)	0.092(6)	0.009(4)	-0.022(5)	0.031(4)
C(5)	0.078(4)	0.059(4)	0.085(5)	0.017(3)	-0.007(4)	0.007(4)
C(6)	0.043(3)	0.045(3)	0.058(3)	0.002(2)	-0.006(3)	0.004(3)
C(7)	0.035(3)	0.046(3)	0.057(3)	0.001(2)	-0.002(2)	-0.005(3)
C(8)	0.047(3)	0.055(3)	0.076(4)	0.005(3)	-0.001(3)	-0.016(3)
C(9)	0.056(4)	0.082(5)	0.069(4)	0.002(3)	0.006(3)	-0.026(4)
C(10)	0.061(4)	0.084(5)	0.048(3)	0.000(3)	0.007(3)	-0.007(3)
C(11)	0.051(3)	0.060(3)	0.048(3)	0.002(3)	0.005(3)	0.000(3)
C(12)	0.037(3)	0.045(3)	0.044(3)	-0.002(2)	0.001(2)	-0.004(2)
C(13)	0.040(3)	0.039(3)	0.044(3)	-0.003(2)	-0.003(2)	0.001(2)
C(14)	0.051(3)	0.055(3)	0.048(3)	-0.002(3)	-0.006(3)	-0.002(3)
C(15)	0.058(4)	0.069(4)	0.058(4)	-0.011(3)	-0.014(3)	-0.006(3)
C(16)	0.043(3)	0.087(5)	0.080(5)	-0.016(3)	-0.011(3)	-0.002(4)
C(17)	0.045(3)	0.079(4)	0.068(4)	-0.010(3)	0.008(3)	-0.005(3)
C(18)	0.046(3)	0.049(3)	0.047(3)	0.000(3)	0.002(2)	-0.002(2)
C(19)	0.049(3)	0.052(3)	0.045(3)	0.001(3)	0.008(2)	-0.004(3)
C(20)	0.069(4)	0.042(3)	0.054(3)	0.002(3)	0.009(3)	-0.005(3)
C(21)	0.090(5)	0.057(4)	0.062(4)	-0.008(3)	0.008(4)	-0.017(3)
C(22)	0.091(5)	0.083(5)	0.048(4)	-0.004(4)	0.003(3)	-0.012(3)
C(23)	0.090(5)	0.074(4)	0.049(4)	-0.010(4)	0.016(3)	0.003(3)
C(24)	0.078(4)	0.063(4)	0.050(3)	-0.014(3)	0.014(3)	-0.003(3)
C(25)	0.052(3)	0.040(3)	0.056(3)	0.000(3)	-0.005(3)	-0.002(3)
C(26)	0.137(7)	0.082(5)	0.080(5)	0.038(5)	-0.037(5)	-0.003(4)

The general temperature factor expression: $\exp(-2\text{PI}^2(a^{*2}\text{U}_{11}\text{h}^2 + b^{*2}\text{U}_{22}\text{k}^2 + c^{*2}\text{U}_{33}\text{l}^2 + 2a^{*}b^{*}\text{U}_{12}\text{hk} + 2a^{*}c^{*}\text{U}_{13}\text{hl} + 2b^{*}c^{*}\text{U}_{23}\text{kl}))$

Table 3.	Bond Lengtl	hs(Å)			
atom	atom	distance	atom	atom	distance
Te(1)	0(1)	2.491(4)	Te(1)	C(1)	2.152(5)
Te(1)	C(12)	2.116(5)	Te(1)	C(13)	2.146(5)
0(1)	C(25)	1.250(6)	0(2)	C(25)	1.220(6)
C(1)	C(2)	1.385(7)	C(1)	C(6)	1.396(7)
C(2)	C(3)	1.381(8)	C(3)	C(4)	1.376(10)
C(4)	C(5)	1.389(10)	C(5)	C(6)	1.403(8)
C(6)	C(7)	1.465(7)	C(7)	C(8)	1.400(7)
C(7)	C(12)	1.390(7)	C(8)	C(9)	1.370(9)
C(9)	C(10)	1.375(9)	C(10)	C(11)	1.386(8)
C(11)	C(12)	1.380(7)	C(13)	C(14)	1.392(7)
C(13)	C(18)	1.390(7)	C(14)	C(15)	1.381(7)
C(15)	C(16)	1.369(8)	C(16)	C(17)	1.385(8)
C(17)	C(18)	1.388(7)	C(18)	C(19)	1.490(7)
C(19)	C(20)	1.379(7)	C(19)	C(24)	1.396(7)
C(20)	C(21)	1.390(8)	C(21)	C(22)	1.375(9)
C(22)	C(23)	1.384(9)	C(23)	C(24)	1.382(8)
C(25)	C(26)	1.524(8)	Te(1)	0(2)	3.181(4)
Te(1)	0(2)'	3.046(4)			

rante :	4. BOIIG A	ligies(-)	1	1	1		le.
atom	atom	atom	angle	atom	atom	atom	angle
0(1)	Te(1)	C(1)	160.1(2)	0(1)	Te(1)	C(12)	81.8(2)
0(1)	Te(1)	C(13)	81.2(2)	C(1)	Te(1)	C(12)	80.3(2)
C(1)	Te(1)	C(13)	92.3(2)	C(12)	Te(1)	C(13)	97.2(2)
C(2)	C(1)	C(6)	121.6(5)	C(1)	C(2)	C(3)	119.0(6)
C(2)	C(3)	C(4)	120.5(6)	C(3)	C(4)	C(5)	121.0(6)
C(4)	C(5)	C(6)	119.5(6)	C(1)	C(6)	C(5)	118.4(5)
C(1)	C(6)	C(7)	117.4(5)	C(5)	C(6)	C(7)	124.2(5)
C(6)	C(7)	C(8)	124.2(5)	C(6)	C(7)	C(12)	117.6(5)
C(8)	C(7)	C(12)	118.2(5)	C(7)	C(8)	C(9)	119.9(6)
C(8)	C(9)	C(10)	121.1(6)	C (9)	C(10)	C(11)	120.2(6)
C(10)	C(11)	C(12)	118.8(5)	C(7)	C(12)	C(11)	121.8(5)
C(14)	C(13)	C(18)	121.5(5)	C(13)	C(14)	C(15)	119.6(5)
C(14)	C(15)	C(16)	119.8(5)	C(15)	C(16)	C(17)	120.5(5)
C(16)	C(17)	C(18)	121.2(5)	C(13)	C(18)	C(17)	117.4(5)
C(13)	C(18)	C(19)	123.8(5)	C(17)	C(18)	C(19)	118.8(5)
C(18)	C(19)	C(20)	121.9(5)	C(18)	C(19)	C(24)	119.5(5)
C(20)	C(19)	C(24)	118.6(5)	C(19)	C(20)	C(21)	120.2(5)
C(20)	C(21)	C(22)	121.0(6)	C(21)	C(22)	C(23)	119.3(6)
C(22)	C(23)	C(24)	119.9(6)	C(19)	C(24)	C(23)	121.0(5)
0(1)	C(25)	0(2)	126.0(5)	0(1)	C(25)	C(26)	115.2(5)
0(2)	C(25)	C(26)	118.8(5)	Te(1)	0(1)	C(1)	111.4(3)
0(1)	C(25)	0(2)	126.0(5)	0(2)	Te(1)	0(2)'	101.15(9)
Te(1)	0(2)	Te(1)'	78.85(9)	0(1)	Te(1)	0(2)'	105.7(1)
0(1)	Te(1)	0(2)	43.6(1)				

Table 5.

(1)	(2)	(3)	(4)	angle	(1)	(2)	(3)	(4)	angle
Te(1)	C(1)	C(7)	C(2)	2(1)	C(4)	Te(1)	C(1)	C(7)	-1.1(6)
Te(1)	C(1)	C(7)	C(20)	-176.9(7)	C(4)	Te(1)	C(1)	C(11)	-176.8(8)
Te(1)	C(1)	C(11)	C(23)	176.7(8)	C(4)	Te(1)	C(6)	C(8)	-151.5(7)
Te(1)	C(4)	C(2)	C(7)	0(1)	C(4)	Te(1)	C(6)	C(27)	27.4(7)
Te(1)	C(4)	C(2)	C(12)	179.3(6)	C(4)	C(2)	C(7)	C(20)	177.1(9)
Te(1)	C(4)	C(13	C(21)	-179.0(7)	C(4)	C(2)	C(12)	C(24)	0(1)
Te(1)	C(6)	C(8)	C(3)	0(1)	C(4)	C(13)	C(21)	C(24)	0(2)
Te(1)	C(6)	C(8)	C(28)	178.5(7)	C(6)	Te(1)	C(1)	C(7)	-97.7(6)
Te(1)	C(6)	C(27)	C(30)	-177.8(7)	C(6)	Te(1)	C(1)	C(11)	86.6(8)
C(1)	Te(1)	C(4)	C(2)	0.5(6)	C(6)	Te(1)	C(4)	C(13)	-89.5(8)
C(1)	Te(1)	C(4)	C(13)	179.6(8)	C(6)	C(8)	C(3)	C(10)	-50(1)
C(1)	Te(1)	C(6)	C(8)	-71.5(7)	C(6)	C(8)	C(3)	C(17)	130(1)
C(1)	Te(1)	C(6)	C(27)	107.4(7)	C(6)	C(8)	C(28)	C(29)	0(1)
C(1)	C(7)	C(2)	C(4)	-1(1)	C(6)	C(27)	C(30)	C(29)	-1(2)
C(1)	C(7)	C(2)	C(12)	179.8(8)	C(7)	C(1)	C(11)	C(23)	1(1)
C(1)	C(7)	C(20)	C(26)	-1(2)	C(7)	C(2)	C(4)	C(13)	-179.0(8)
C(1)	C(11)	C(23)	C(26)	0(2)	C(7)	C(2)	C(12)	C(24)	178.8(9)
C(2)	C(4)	Te(1)	C(6)	91.4(6)	C(7)	C(20)	C(26)	C(23)	2(2)
C(2)	C(4)	C(13)	C(21)	0(1)	C(8)	C(3)	C(10)	C(14)	-179.9(9)
C(2)	C(7)	C(1)	C(11)	177.5(8)	C(8)	C(3)	C(17)	C(18)	-180(1)
C(2)	C(7)	C(20)	C(26)	-179(1)	C(8)	C(6)	C(27)	C(30)	1(1)
C(2)	C(12)	C(24)	C(21)	0(2)	C(8)	C(28)	C(29)	C(30)	0(2)
C(3)	C(8)	C(6)	C(27)	-179.3(8)	C(10)	C(3)	C(8)	C(28)	131(1)
C(3)	C(8)	C(28)	C(29)	179(1)	C(10)	C(3)	C(17)	C(18)	0(2)

The sign is positive if when looking from atom 2 to atom 3 a clockwise motion of atom 1 would superimpose it on atom 4. Table 5.

Torsion or Conformation Angles (continue)

(1)	(2)	(3)	(4)	angle	(1)	(2)	(3)	(4)	angle
C(3)	C(10)	C(14)	C(15)	-1(2)	C(10)	C(14)	C(15)	C(18)	1(2)
C(3)	C(17)	C(18)	C(15)	0(2)	C(11)	C(1)	C(7)	C(20)	-1(1)
C(11)	C(23)	C(26)	C(20)	-1(2)					
C(12)	C(2)	C(4)	C(13)	0(1)					
C(12)	C(2)	C(7)	C(20)	-2(1)	T	4			
C(12)	C(24)	C(21)	C(13)	0(2)					
C(14)	C(10)	C(3)	C(17)	0(1)				•	
C(14)	C(15)	C(18)	C(17)	0(2)					
C(17)	C(3)	C(8)	C(28)	-49(1)					
C(27)	C(6)	C(8)	C(28)	0(1)				· .	
C(27)	C(30)	C(29)	C(28)	1(2)					

Table	6.	Non-bonded	Intermolecular	Contacts	out	to	3.27	Å	
-------	----	------------	----------------	----------	-----	----	------	---	--

atom	atom	distance	ADC	atom	atom	distance	ADC
Te(1)	0(2)'	3.046(4)	5				