

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

Table 1. Summary of crystal data for 3.

Formula	C ₅₇ H ₁₀₄ Ir ₂ N ₂ P ₄
Formula weight	1325.70
Crystal system	Triclinic
Space group	PT
Color of crystal	Orange
Crystal dimensions, mm	0.5 x 0.5 x 0.5
a, Å	14.428(10)
b, Å	14.639(5)
c, Å	16.702(11)
α	71.780(10)
β	75.590(10)
γ	68.950(10)
V, Å ³	3090(3)
Z	2
μ , cm ⁻¹	44.40
Transmission Coeff. min, max	0.001, 0.008
Т, К	293(2)
λ , Å (Mo K α radiation)	0.71073
2θ range, ^o	3 - 40
Independent reflections	5744
Unique data with $I > 2\sigma(I)$	5471
Parameters refined	614
Goodness of fit ^a	1.073
$\rho_{calc}, g/cm^3$	1.425
Scan type	ω
R ^b , %	4.85
Rw ^c , %	11.88

a) GOF = $[w\Sigma(|F_0| - |F_c|)^2 / (N_0 - N_v)]^{1/2}$

- b) $R = \sum |F_0| |F_c| / \sum F_0$
- c) $R_{W} = [w\Sigma (|F_{0}| |F_{c}|)^{2} / \Sigma wF_{0}^{2}]^{1/2}$

1

¥.,

Table 2. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å² x 10^3] for 3. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	У	z	U(eq)
Ir(1)	132(1)	4257(1)	2531(1)	76(1)
Ir(2)	-2636(1)	2694(1)	4378(1)	74(1)
N(1)	-951(7)	3658(7)	3240(6)	77(2)
N(2)	-1576(7)	3290(7)	3651(6)	76(2)
P(11)	1521(2)	2831(2)	2588(2)	79(1)
P(12)	-840(2)	5921(2)	2171(2)	84(1)
C(11)	2366(8)	3206(9)	1605(7)	92(3)
C(12)	83(9)	6592(8)	1969(8)	95(3)
C(13)	1244(9)	4861(9)	1799(7)	87(3)
C(14)	1095(9)	5939(9)	1637(8)	95(3)
C(15)	1820(10)	6387(10)	1164(8)	104(4)
C(16)	2769(11)	5767(11)	824(9)	110(4)
C(17)	2934(10)	4720(10)	971(8)	107(4)
C(18)	2182(9)	4316(9)	1435(7)	89(3)
P(21)	-3141(2)	2292(2)	3356(2)	79(1)
P(22)	-2524(2)	2825(2)	5692(2)	78(1)
C(21)	-4437(8)	2302(9)	3844(7)	93(3)
C(22)	-2996(9)	1795(9)	6433(7)	93(3)
C(23)	-3718(8)	2077(8)	5135(7)	83(3)
C(24)	-4473(8)	1926(9)	4789(8)	88(3)
C(25)	-5179(9)	1476(10)	5273(8)	100(4)
C(26)	-5187(9)	1132(9)	6167(8)	96(3)
C(27)	-4472(8)	1219(9)	6537(8)	91(3)
C(28)	-3763(8)	1679(9)	6032(8)	90(3)
C(31)	1406(7)	1653(8)	2471(7)	79(3)
C(32)	666(9)	1999(9)	1846(8)	97(3)
C(33)	2387(9)	942(9)	2111(8)	106(4)
C(34)	958(9)	1061(8)	3312(7)	93(3)
C(35)	2280(8)	2538(9)	3448(7)	88(3)
C(36)	1602(10)	2423(11)	4306(8)	116(4)
C(37)	3197(9)	1576(10)	3484(9)	112(4)
C(38)	2671(10)	3434(10)	3328(9)	114(4)
C(39)	-1294(9)	6312(8)	1118(8)	95(3)
C(40)	-1981(11)	7391(10)	862(9)	125(5)
C(41)	-1880(12)	5625(10)	1133(9)	124(5)
C(42)	-355(11)	6136(10)	417(8)	115(4)
C(43)	-1857(9)	6491(8)	2994(8)	94(3)
C(43)	-1439(10)	6006(10)	3826(8)	109(4)
C(45)	-2071(11)	7627(10)	2845(10)	126(5)
C(45)	-2840(9)	6272(10)	3085(9)	110(4)
C(40)	-2487(8)	958(8)	3245(7)	87(3)
C(47)	-2687(11)	241(9)	4112(8)	116(4)
C(40)	-1342(9)	809(10)	3042(9)	111(4)
C(50)	-2813/10)	698(10)	2541(8)	107(4)
C(51)	-3294(8)	3192(8)	2289(7)	87(3)
C(52)	-2299(0)	3129(9)	1678(7)	95(3)
C(52)	-2233(3)	A2A1 (9)	2447(8)	104(4)
C(53)	-4061(10)	3099/111	1834/81	115(4)
U(34)	-400T(TO)	2222(11)		

continued Table 2

¥.

-				
C(55)	-1237(8)	2496(8)	5993(7)	80(3)
C(56)	-817(9)	3381(9)	5621(8)	100(4)
C(57)	-576(8)	1644(9)	5565(7)	94(3)
C(58)	-1193(9)	2086(10)	6943(7)	101(4)
C(59)	-3406(8)	3984(9)	6025(7)	89(3)
C(60)	-3256(9)	4905(9)	5336(8)	105(4)
C(61)	-3324(9)	4061(10)	6892(8)	106(4)
C(62)	-4504(8)	3997(10)	6066(8)	107(4)
C(63)	6262(30)	1369(33)	-875(24)	347(26)
C(64)	6266(34)	565(28)	-104(29)	313(22)
C(65)	5984(31)	950(46)	586(28)	450(49)
C(66)	4962(31)	1588(43)	484(30)	415(46)
C(67)	5021(27)	2510(31)	-235(40)	428(49)
C(68)	5266(29)	2106(36)	-1005(21)	368(29)
C(70)	128(32)	-217(33)	838(15)	332(24)
C(71)	-873(24)	-47(38)	552(23)	371(29)
C(72)	348(36)	617(31)	209(24)	423(37)

Table 3. Bond lengths [Å] and angles $[\circ]$ for 3.

٩

*

Ir(1) - N(1)	2.007(11)	Ir(1)-C(13)	2.053(12)
Ir(1) - P(12)	2.305(3)	Ir(1) - P(11)	2.312(3)
Ir(2) - N(2)	1.987(11)	Ir(2) - C(23)	2.041(12)
Ir(2) - P(22)	2.311(3)	Ir(2) - P(21)	2.312(3)
N(1) - N(2)	1.176(13)	P(11) - C(11)	1.845(11)
P(11) - C(31)	1.862(11)	P(11)-C(35)	1.873(11)
P(12) - C(12)	1.833(11)	P(12)-C(39)	1.877(12)
P(12) - C(43)	1.890(12)	C(11)-C(18)	1.49(2)
C(12) - C(14)	1.51(2)	C(13) - C(18)	1.40(2)
C(13) - C(14)	1.46(2)	C(14) - C(15)	1.38(2)
C(15) - C(16)	1.44(2)	C(16) - C(17)	1.41(2)
C(17) - C(18)	1.37(2)	P(21) - C(21)	1.841(11)
P(21) - C(51)	1.866(12)	P(21) - C(47)	1.885(11)
P(22) - C(22)	1.850(12)	P(22)-C(59)	1.869(12)
P(22) - C(55)	1.898(10)	C(21) - C(24)	1.49(2)
C(22) - C(28)	1.51(2)	C(23)-C(28)	1.42(2)
C(23) - C(24)	1.46(2)	C(24)-C(25)	1.36(2)
C(25) - C(26)	1.42(2)	C(26)-C(27)	1.39(2)
C(27) - C(28)	1.39(2)	C(31) - C(32)	1.52(2)
C(31) - C(34)	1.526(14)	C(31) - C(33)	1.53(2)
C(35) - C(36)	1.52(2)	C(35) - C(37)	1.54(2)
C(35) - C(38)	1.55(2)	C(39) - C(41)	1.52(2)
C(39) - C(40)	1.52(2)	C(39) - C(42)	1.56(2)
C(43) - C(44)	1.51(2)	C(43) - C(45)	1.53(2)
C(43) - C(46)	1.53(2)	C(47) - C(48)	1.53(2)
C(47) - C(49)	1.55(2)	C(47) - C(50)	1.56(2)
C(51) - C(53)	1.52(2)	C(51) - C(52)	1.53(2)
C(51) - C(54)	1.55(2)	C(55) - C(56)	1.52(2)
C(55) - C(58)	1.52(2)	C(55) - C(57)	1.53(2)
C(59) - C(60)	1.52(2)	C(59) - C(61)	1.52(2)
C(59) - C(62)	1.56(2)	C(63) - C(64)	1.45(3)
C(63) - C(68)	1.47(4)	C(64) - C(65)	1.35(3)
C(65) - C(66)	1.45(4)	C(66) - C(67)	1.51(4)
C(67) - C(68)	1.49(4)	C(70) - C(72)	1.42(3)
C(70) - C(71)	1.55(3)	C(71) - C(72) # 1	1.62(3)
C(72) - C(71) #1	1.62(3)		
N(1) - Ir(1) - C(13)	179.6(4)	N(1) - Ir(1) - P(12)	98.6(2)
C(13) - Ir(1) - P(12)	81.7(3)	N(1) - Ir(1) - P(11)	101.1(2)
C(13) - Ir(1) - P(11)	78.6(3)	P(12) - Ir(1) - P(11)	160.22(10)
N(2) - Ir(2) - C(23)	179.5(4)	N(2) - Ir(2) - P(22)	99.8(3)
C(23) - Ir(2) - P(22)	79.7(3)	N(2) - Ir(2) - P(21)	99.8(3)
C(23) - Ir(2) - P(21)	80.7(3)	P(22) - Ir(2) - P(21)	160.40(10)
N(2) - N(1) - Ir(1)	178.7(9)	N(1) - N(2) - Ir(2)	177.9(9)
C(11) = P(11) = C(31)	102.7(5)	C(11) - P(11) - C(35)	102.9(5)
C(31) = P(11) = C(35)	110.7(5)	C(11) - P(11) - Ir(1)	102.5(4)
C(31) - P(11) - Tr(1)	119.3(3)	C(35) - P(11) - Ir(1)	115.8(4)
C(12) = P(12) = C(39)	103.5(6)	C(12) - P(12) - C(43)	103.4(5)
C(39) - P(12) - C(43)	111.0(6)	C(12) - P(12) - Ir(1)	101.9(4)
C(39) - P(12) - Tr(1)	114.2(4)	C(43) - P(12) - Ir(1)	120.2(4)
C(18) - C(11) - P(11)	107.6(8)	C(14) - C(12) - P(12)	108.4(8)
C(18) - C(13) - C(14)	114.5(10) $C(18) - C(13) - Ir(1)$	125.4(9)
C(14) = C(13) = T = (1)	120 1/01	C(15) - C(14) - C(13)	122.9(11)
C(14) = C(13) = 12(1)	110 2/11	C(13) = C(14) = C(12)	117.9(10)
C(15) = C(14) = C(12)	110 0(10	(13) = O(14) = O(12)	119 5/11
C(IA)-C(ID)-C(ID)	170.2(15) C(T))-C(T0)-C(T3)	

ł

۶.

continued Table 3

-

C(18) - C(17) - C(16)	119.2(12) C(17)-C(18)-C(13)	125.0(11)
C(17) - C(18) - C(11)	119.1(11) C(13) - C(18) - C(11)	115.8(10)
C(21) - P(21) - C(51)	103.4(5) C(21)-P(21)-C(47)	104.1(5)
C(51) = P(21) = C(47)	110.7(5) C(21)-P(21)-Ir(2)	101.4(4)
C(51) - P(21) - Ir(2)	120.2(3) C(47)-P(21)-Ir(2)	114.4(4)
C(31) = C(21) = C(59)	103.7(5) C(22)-P(22)-C(55)	102.1(5)
C(22) = C(22) = C(55)	110.9(5) C(22)-P(22)-Ir(2)	102.1(4)
C(59) = P(22) = Tr(2)	115.8(4) C(55)-P(22)-Ir(2)	119.3(4)
C(34) = C(21) = P(21)	108.4(8) C(28)-C(22)-P(22)	107.6(3)
C(24) = C(23) = C(24)	113.5(10) C(28) - C(23) - Ir(2)	123.8(8)
C(24) - C(23) - Ir(2)	122.5(8) C(25)-C(24)-C(23)	124.0(11)
C(25) - C(24) - C(21)	120.4(10) C(23) - C(24) - C(21)	115.6(10)
C(24) - C(25) - C(26)	118.6(11) C(27)-C(26)-C(25)	120.7(11)
C(28) - C(27) - C(26)	119.7(11) C(27) - C(28) - C(23)	123.5(11)
C(27) - C(28) - C(22)	120.0(11) C(23)-C(28)-C(22)	116.5(10)
C(32) - C(31) - C(34)	107.4(9) C(32)-C(31)-C(33)	107.8(9)
C(34) - C(31) - C(33)	108.9(9) C(32)-C(31)-P(11)	105.6(7)
C(34) - C(31) - P(11)	111.7(7) C(33)-C(31)-P(11)	115.0(3)
C(36) - C(35) - C(37)	108.2(10) C(36)-C(35)-C(38)	107.5(10)
C(37) - C(35) - C(38)	107.6(9) C(36)-C(35)-P(11)	108.3(8)
C(37) - C(35) - P(11)	115.1(8) C(38)-C(35)-P(11)	109.4(3)
C(41) - C(39) - C(40)	106.4(11) C(41)-C(39)-C(42)	107.5(11)
C(40) - C(39) - C(42)	109.4(10) C(41)-C(39)-P(12)	108.8(8)
C(40) - C(39) - P(12)	116.7(9) C(42)-C(39)-P(12)	107.8(8)
C(44) - C(43) - C(45)	106.1(11) C(44)-C(43)-C(46)	109.3(10)
C(45) - C(43) - C(46)	109.2(10) C(44)-C(43)-P(12)	105.1(8)
C(45) - C(43) - P(12)	113.8(9) C(46)-C(43)-P(12)	112.9(9)
C(48) - C(47) - C(49)	107.3(10) C(48)-C(47)-C(50)	110.2(10)
C(49) - C(47) - C(50)	109.5(10) C(48)-C(47)-P(21)	107.9(8)
C(49) - C(47) - P(21)	107.5(7) C(50)-C(47)-P(21)	114.2(8)
C(53) - C(51) - C(52)	108.1(10) C(53)-C(51)-C(54)	106.1(10)
C(52) - C(51) - C(54)	108.7(9) C(53)-C(51)-P(21)	106.1(8)
C(52) - C(51) - P(21)	113.0(7) C(54)-C(51)-P(21)	114.5(8)
C(56) - C(55) - C(58)	111.3(9) C(56)-C(55)-C(57)	108.1(9)
C(58)-C(55)-C(57)	107.0(9) C(56)-C(55)-P(22)	111.0(7)
C(58) - C(55) - P(22)	114.6(8) C(57)-C(55)-P(22)	104.3(7)
C(60) - C(59) - C(61)	110.4(10) C(60)-C(59)-C(62)	106.7(10)
C(61) - C(59) - C(62)	107.3(9) C(60)-C(59)-P(22)	108.6(8)
C(61) - C(59) - P(22)	115.2(8) C(62)-C(59)-P(22)	108.2(8)
C(64) - C(63) - C(68)	115(3) C(65)-C(64)-C(63)	110(4)
C(64)-C(65)-C(66)	102(3) C(65)-C(66)-C(67)	108(4)
C(68)-C(67)-C(66)	102(3) C 3)-C(68)-C(67)	100(3)
C(72)-C(70)-C(71)	95(3) C(70)-C(71)-C(72)#1	95(3)
C(70)-C(72)-C(71)#1	97(2)	

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z

×

Table 4. Anisotropic displacement parameters $[\text{\AA}^2 \times 10^3]$ for 3.

The anisotropic displacement factor exponent takes the form: $-2p^{2} [(ha^{*})_{-11}^{2}U_{11} + ... + 2hka^{*b^{*}U}_{12}]$

	Ull	U22	U33	U23	U13	U12
	73(1)	76(1)	81(1)	-17(1)	-13(1)	-28(1)
Tr(2)	70(1)	84(1)	77(1)	-23(1)	-12(1)	-29(1)
N(1)	73(6)	81(6)	72(6)	-17(5)	-27(5)	-9(5)
N(2)	72(6)	80(6)	74(6)	-10(5)	-28(5)	-18(5)
P(11)	70(2)	80(2)	84(2)	-17(1)	-11(1)	-24(1)
P(12)	87(2)	72(2)	94(2)	-14(2)	-19(2)	-28(1)
C(11)	78(7)	104(9)	94(8)	-23(7)	-8(6)	-31(6)
C(12)	101(9)	80(7)	109(9)	-19(6)	-17(7)	-36(7)
C(13)	88(8)	85(8)	86(7)	-10(6)	-21(7)	-28(7)
C(14)	87(8)	101(9)	104(8)	-26(7)	-14(7)	-36(7)
C(15)	109(10)	101(9)	107(9)	-12(7)	-7(8)	-56(8)
C(16)	105(10)	122(11)	108(10)	-12(8)	-5(8)	-64(9)
C(17)	99(9)	93(9)	117(10)	-13(7)	1(8)	-39(8)
C(18)	91(8)	87(8)	90(8)	-21(6)	-8(7)	-32(7)
P(21)	75(2)	90(2)	83(2)	-28(2)	-15(1)	-32(1)
P(22)	73(2)	92(2)	75(2)	-25(1)	-12(1)	-30(1)
C(21)	90(8)	106(8)	93(9)	-40(7)	-8(6)	-34(6)
C(22)	97(8)	114(9)	71(7)	-25(6)	-8(6)	-37(7)
C(23)	88(8)	92(7)	65(7)	-21(6)	-21(6)	-17(6)
C(24)	75(7)	97(8)	103(9)	-37(7)	-8(7)	-34(6)
C(25)	81(8)	142(10)	100(10)	-35(8)	-18(7)	-56(8)
C(26)	88(8)	105(9)	103(10)	-25(7)	3(7)	-50(7)
C(27)	77(7)	100(8)	101(8)	-19(6)	2(7)	-48(6)
C(28)	71(7)	104(8)	108(10)	-36(7)	-14(6)	-31(6)
C(31)	73(6)	83(7)	80(7)	-21(6)	-17(6)	-19(6)
C(32)	94(8)	101(8)	103(9)	-34(7)	-7(7)	-36(7)
C(33)	105(9)	101(9)	109(9)	-35(7)	-14(7)	-22(7)
C(34)	101(8)	88(7)	96(8)	-19(6)	-24(7)	-34(6)
C(35)	70(7)	97(8)	102(9)	-28(6)	-16(6)	-26(6)
C(36)	99(9)	154(12)	100(9)	-28(8)	-23(8)	-45(9)
C(37)	91(9)	121(10)	124(10)	-24(8)	-34(8)	-24(8)
C(38)	110(9)	131(11)	114(10)	-32(8)	-35(8)	-40(8)
C(39)	101(8)	70(7)	107(9)	-2(6)	-40(7)	-18(6)
C(40)	141(12)	106(10)	114(10)	-3(8)	-35(9)	-32(9)
C(41)	165(13)	120(10)	106(10)	6(8)	-58(9)	-/1(10)
C(42)	141(12)	118(10)	92(9)	-16(7)	-34(9)	-44(9)
C(43)	95(8)	81(8)	112(9)	-30(7)	-14(7)	-29(6)
C(44)	106(9)	121(10)	117(10)	-57(9)	13(8)	-49(8)
C(45)	115(10)	111(10)	147(12)	-37(9)	-4(9)	-3/(8)
C(46)	85(8)	109(9)	134(11)	-29(8)	-16(7)	-29(7)
C(47)	92(8)	87(7)	98(8)	-25(6)	-22(6)	-38(6)
C(48)	135(11)	91(8)	116(10)	-12(8)	-20(9)	-30(8) -37/7
C(49)	104(9)	93(8)	141(11)	-38(8)	-1/(8)	-2/(/)
C(50)	117(10)	103(9)	124(10)	-45(8)	-29(8)	-38(7)
C(51)	88(7)	93(8)	93(8)	-38(6)	-2/(6)	-23(0)
C(52)	112(9)	96(8)	87(8)	-25(6)	-20(7)	-37(/)
C(53)	104(9)	107(9)	102(9)	-17(7)	-33(7)	-28(7)
C(54)	112(10)	138(11)	101(9)	-18(8)	-34(8)	-42(8)

continued Table 4

Ł

٤

	-					
C(55)	75(7)	80(7)	90(8)	-17(6)	-19(6)	-29(6)
C(56)	88(8)	119(9)	114(9)	-43(8)	-21(7)	-41(7)
C(57)	78(7)	106(9)	91(8)	-6(7)	-20(6)	-31(7)
C(58)	102(8)	119(9)	84(8)	-17(7)	-29(6)	-33(7)
C(59)	91(8)	106(8)	77(7)	-22(6)	-19(6)	-34(6)
C(60)	101(9)	88(8)	123(10)	-29(8)	-22(7)	-19(7)
C(61)	100(9)	134(10)	106(9)	-58(8)	-19(7)	-34(8)
C(62)	89(8)	132(10)	109(9)	-52(8)	-12(7)	-28(7)
C(63)	321(48)	334(48)	310(48)	-203(42)	164(42)	-49(39)
C(64)	372(59)	279(44)	301(49)	-70(40)	-137(48)	-62(40)
C(65)	267(43)	855(140)	374(59)	-432(82)	-71(42)	-88(65)
C(65)	306(52)	581(106)	498(82)	-387(85)	235(58)	-280(70)
C(50)	151(28)	310(51)	889(160)	-364 (80)	35(51)	-39(28)
	335/54)	329(50)	264(39)	-111(35)	88(36)	47(41)
C(00)	555(54) A7A(6A)	473(63)	128(20)	0(28)	-102(30)	-262(54)
C(70)	4/4(04)	473(03)	321(45)	-329(57)	85(33)	-217(48)
C(71)	260(37)	0/4(00)	321(43)	-215(43)	83(54)	-414(68)
C(72)	/0/(105)	420(30)	202(41)	213(43)		

-

L

ş

.

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($\text{\AA}^2 \ x \ 10^3$) for 3.

			·····	
	x	У	z	U(eq)
11/117	2062 (9)	2842791	1678(7)	98/12)
п(IIA) Ч(118)	3062(8)	2042(9)	1120(7)	98(12)
H(12b)	-112(9)	7232(8)	1552(8)	98(12)
H(12R)	-112(9)	6727(8)	1332(8)	98(12)
H(12D)	1607(10)	7079(10)	2492(0)	103(15)
H(15A)	3270(11)	6053(11)	508(9)	103(15)
H(10A)	35/6(11)	4310(10)	756(9)	103(15)
H(1/A)	_/203/2/	4310(10)	3704(3)	98(12)
H(21A)	-4095(0)	2902(9)	3/04(7)	90(12)
H(215)	-4039(0)	1170(9)	5526(7)	90(12)
H(22A)	-2440(7)	1050(9)	6078(7)	98(12)
H(22D)	-5642(9)	1207(10)	6970(7) 5000(9)	103(12)
n(25A)	-5045(9)	1397(10)	5022(8)	103(15)
H(20A)	-3677(9)	040(7)	7122/91	103(15)
п(2/A) ц(22))	=4400(0)	1402(10)	1702(32)	109(4)
H(32A)	536(36)	1423(10)	1/92(32)	109(4)
H(32B)	940(22)	2339(44)	1299(11)	109(4)
H(32C)	40(19)	2453(39)	2053(2)	109(4)
H(33A)	2243(11)	414(30)	1987(40)	109(4)
H(33B)	2839(21)	052(40)	2524(19)	109(4)
H(33C)	2692(27)	1317(14)	1598(25)	109(4)
H(34A)	759(40)	556(33)	3204(9)	109(4)
H(34B)	381(30)	1514(12)	3570(21)	109(4)
H(34C)	1450(18)	741(40)	3009(17)	109(4)
H(30A)	1301(18)	2348(51)	4/45(10)	109(4)
H(36B)	1000(40)	1030(29)	4420(20)	109(4)
H(36C)	1022(20)	3011(23)	4294(10)	109(4)
H(3/A)	3546(30)	1491(29)	3935(29)	109(4)
H(3/B)	3641(26)	1000(12)	2950(17)	109(4)
H(3/C)	2973(10)	1000(12)	3569(43)	109(4)
H(38A)	29/1(46)	3332(27)	3015(21)	109(4)
H(38B)	2121(13)	4050(12)	32/3(43)	109(4)
H(38C)	3164(37)	34/0(32)	2023(25)	109(4)
H(40A)	-2169(41)	7504(18)	- 318(22)	109(4)
H(40B)	-1632(20)	7856(10)	023(41)	109(4)
H(40C)	-2573(25)	7493(10)	1203(24) E60(11)	109(4)
H(41A)	-2006(45)	5/32(30)	300(11) 1609(33)	109(4)
H(415)	-2507(24)	3770(34)	1222(41)	109(4)
H(41C)	-1496(23)	4933(10)	103(41)	109(4)
H(42A)	-555(13)	C409(00)	-97(15)	109(4)
H(42B)	11/(24)	5466(23)	207(21)	109(4)
H(42C)	-40(30)	6000(30)	307(31) 4271(12)	109(4)
n(44A)	-1303(24)	0200(3/)	42/1(12) 2767/185	109(4)
n(445)	-813(26)	513U(43)	3/0/(15)	109(4)
H(44C)	-1331(47)	5291(12)	3307(23)	109(4)
H(45A)	-2517(41)	7848(13) 7076(10)	332/(21)	109(4)
H(45B)	-23/8(46)	/3/0(IU)	2341(23) 2775(43)	109(4)
H(45C)	-1452(13)	///0(11)	2//5(43)	109(4)
H(46A)	-3298(20)	6501(45)	3558(26)	109(4)
H(46B)	-2709(11)	5558(11)	3181(43)	109(4)

continued Table 5

.

·

F

11/460	-2120/261	6618(40)	2571(18)	109(4)
H(40C)	-3130(20)	-437(12)	4098(16)	109(4)
H(40A)	-22/3(30)	270(38)	4235(21)	109(4)
H(40B)	-3530(48)	438(32)	4546(10)	109(4)
H(40C)	-988(10)	135(19)	2977(43)	109(4)
H(49R)	-1132/13)	911(50)	3500(21)	109(4)
H(490)	-1197(11)	1287(35)	2522(24)	109(4)
H(49C)	-2465(38)	5(17)	2533(30)	109(4)
H(50R)	-2405(30)	1127(35)	1995(10)	109(4)
H(50C)	-3524(13)	802(48)	2661(24)	109(4)
H(500)	-2396(14)	3694(27)	1190(21)	109(4)
H(52B)	-2073(26)	2513(25)	1497(33)	109(4)
H(52C)	-1805(16)	3140(50)	1965(15)	109(4)
H(53A)	-3810(47)	4736(9)	1915(9)	109(4)
H(53B)	-3253(25)	4348(21)	2708(40)	109(4)
H(53C)	-4348(26)	4302(19)	2819(35)	109(4)
H(54A)	-4116(38)	3601(33)	1302(21)	109(4)
H(54R)	-4705(15)	3198(49)	2191(20)	109(4)
H(54C)	-3835(26)	2439(20)	1729(37)	109(4)
H(54C)	-137(18)	3173(16)	5724(37)	109(4)
H(56B)	-1218(30)	3923(20)	5886(30)	109(4)
H(56C)	-829(46)	3608(32)	5018(10)	109(4)
H(57A)	94(15)	1427(35)	5693(35)	109(4)
H(57B)	-562(41)	1884(17)	4959(8)	109(4)
H(57C)	-845(29)	1087(21)	5774(32)	109(4)
H(58A)	-520(14)	1934(47)	7041(8)	109(4)
H(58B)	-1389(48)	1482(29)	7147(11)	109(4)
H(58C)	-1642(38)	2582(21)	7240(8)	109(4)
H(60A)	-3743(33)	5504(9)	5476(23)	109(4)
H(60B)	-3337(49)	4859(25)	4798(11)	109(4)
H(60C)	-2592(20)	4935(28)	5299(29)	109(4)
H(61A)	-3847(32)	4639(29)	7037(20)	109(4)
H(61B)	-2681(22)	4131(50)	6870(14)	109(4)
H(61C)	-3392(49)	3461(23)	7317(10)	109(4)
H(62A)	-4963(10)	4645(19)	6124(43)	109(4)
H(62B)	-4664(19)	3482(34)	6548(26)	109(4)
H(62C)	-4562(15)	3873(51)	5553(20)	109(4)
H(63A)	6532(30)	1070(33)	-1360(24)	274(29)
H(63B)	6708(30)	1725(33)	-863(24)	274(29)
H(64A)	5808(34)	213(28)	-97(29)	274(29)
H(64B)	6935(34)	84(28)	-90(29)	274(29)
H(65A)	6406(31)	1342(46)	577(28)	274(29)
H(65B)	6001(31)	423(46)	1111(28)	274(29)
H(66A)	4612(31)	1789(43)	1008(30)	274(29)
H(66B)	4599(31)	1225(43)	351(30)	274(29)
H(67A)	4384(27)	3046(31)	-231(40)	274(29)
H(67B)	5544(27)	2762(31)	-204(40)	274(29)
H(68A)	4786(29)	1784(36)	-1007(21)	274(29)
H(68B)	5302(29)	2629(36)	-1529(21)	274(29)
H(70A)	37(32)	-148(33)	1414(15)	274(29)
H(70B)	622(32)	-858(33)	778(15)	274(29)
H(71A)	-1229(24)	662 (38)	346(23)	274(29)
H(71B)	-1312(24)	-379(38)	990(23)	274(29)
H(72A)	807(36)	855(31)	367 (24)	274(29)
H(72B)	-254(36)	1171(31)	72(24)	274(29)
	201(00)	/	. ,	

s •