ORGANOMETALLICS

Organometallics, 1997, 16(19), 4192-4199, DOI:10.1021/om970417m

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Supporting Information for

Synthesis and Oxygen to Iron Methyl Migration Reaction of the Heterodinuclear Methoxycarbyne Complex $Cp(CO)Fe(\mu\text{-}COCH_3)(\mu\text{-}CO)Cr(CO)(\eta^6\text{-}C_6H_6)$

Wei Luo, Raymond H. Fong, and William H. Hersh*

Variable temperature NMR dataa

cmpd (cis:trans)	¹ H	13C	solvent	T (°C)	$V_{1/2} (Hz)^b$	k^c (s ⁻¹)
6-Na+ (63:37)	х		CD ₃ CN	-50	1.9	14±2
	X			-40	1.3	55±5
	Х			-20	3.8	500±50
	х			0	3.8	4000±1000
	х			22	1.1	>5000
6-Na+ (63:37)		x	CD ₃ CN	-50	2.77	12±2
		Х		22	2.77	≥15000
7 (82:18)	х		CD ₂ Cl ₂	-20	1.5	0.6 ± 0.4
	х			-10	1.5	2±1
	х			22	1.5	25±5
7 (75:25)		х	CD ₂ Cl ₂	-20	2.9	<1
		x		22	3.37	55±5
7 ^d 59:41	х		toluene-d8	-20	1.5	2.0±0.5
55:45	X			-10	1.5	3±1
52:48	х			0	1.5	20±5
47:53	х			20	1.5	180±40
42:58	х			40	1.5	700±200

^aChemical shifts are those reported in the Experimental Section at the lowest temperature except as noted. ^bPeak width of non-exchanging peak (solvent). ^cAll rate constants are for cis to trans isomerization. ^cChemical shifts are extrapolated from the three lowest temperatures as described in the text; values used (in ppm) are as follows:

T (°C)	trans benzene	trans Cp	cis benzene	cis Cp	cis MeO	trans MeO
-20.000	4.587	4.578	4.450	4.317	4.212	4.191
-10.000	4.595	4.570	4.466	4.320	4.227	4.215
0.000	4.599	4.558	4.482	4.327	4.243	4.243
20.000	4.612	4.539	4.514	4.336	4.282	4.282
40.000	4.624	4.519	4.546	4.346	4.319	4.319