

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1997 American Chemical Society

s1161a C18 H17 C1 N2 Pd

******** Complex 1a *********

SUPPLEMENTARY MATERIAL

BELONGING TO THE PAPER

Insertion of Allenes into Palladium-Carbon Bonds of Complexes

Containing Bidentate Nitrogen Ligands. Mechanism and Structural

Studies.

bу

J.G.P. Delis, J.H. Groen, K. Vrieze & P.W.N.M. van Leeuwen

Contents

- Table S1 Crystal Data and Details of the Structure Determination for: s1161a C18 H17 C1 N2 Pd
- Table S2 Final Coordinates and Equivalent Isotropic Thermal Parameters of the non-Hydrogen atoms for: s1161a C18 H17 Cl N2 Pd
- Table S3 Hydrogen Atom Positions and Isotropic Thermal Parameters for: s1161a C18 H17 Cl N2 Pd
- Table S4 (An)isotropic Thermal Parameters for: s1161a C18 H17 C1 N2 Pd
- Table S5 Bond Distances (Angstrom) for: s1161a C18 H17 Cl N2 Pd
- Table S6 Bond Angles (Degrees) for: s1161a C18 H17 C1 N2 Pd
- Table S7 Torsion Angles (Degrees) for: s1161a C18 H17 Cl N2 Pd

Table S1 - Crystal Data and Details of the Structure Determination for: s1161a C18 H17 C1 N2 Pd

Crystal Data

Formula Weight 403.22 Crystal System Triclinic Space group P-1 (No. 2) a, b, c [Angstrom] 9.2427(13) 11.211(2) 15.966(8) alpha, beta, gamma [deg] 88.19(3) 88.76(3) 89.728(12) V [Ang**3] 1653.2(9) Z 4 D(calc) [g/cm**3] 1.620 F(000) [Electrons] 808 Mu(MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x Data Collection 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
Crystal System Triclinic Space group P-1 (No. 2) a, b, c [Angstrom] 9.2427(13) 11.211(2) 15.966(8) alpha, beta, gamma [deg] 88.19(3) 88.76(3) 89.728(12) V [Ang**3] 1653.2(9) 1653.2(9) 2 4 D(calc) [g/cm**3] 1.620 1.620 808 Mu(MoKa) [/cm] 12.8 12.8 Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5 1.3, 27.5
Space group P-1 (No. 2) a, b, c [Angstrom] 9.2427(13) 11.211(2) 15.966(8) alpha, beta, gamma [deg] 88.19(3) 88.76(3) 89.728(12) V [Ang**3] 1653.2(9) Z 4 D(calc) [g/cm**3] 1.620 F(000) [Electrons] 808 Mu (MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x Data Collection 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
a, b, c [Angstrom] 9.2427(13) 11.211(2) 15.966(8) alpha, beta, gamma [deg] 88.19(3) 88.76(3) 89.728(12) V [Ang**3] 1653.2(9) Z 4 D(calc) [g/cm**3] 1.620 F(000) [Electrons] 808 Mu(MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection Temperature (K) 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
alpha, beta, gamma [deg] 88.19(3) 88.76(3) 89.728(12) V [Ang**3] 1653.2(9) Z 4 D(calc) [g/cm**3] 1.620 F(000) [Electrons] 808 Mu(MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection Temperature (K) 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
V [Ang**3] 1653.2(9) Z 4 D(calc) [g/cm**3] 1.620 F(000) [Electrons] 808 Mu(MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection Temperature (K) 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
Z 4 D(calc) [g/cm**3] 1.620 F(000) [Electrons] 808 Mu(MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
D(calc) [g/cm**3] 1.620 F(000) [Electrons] 808 Mu(MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection Temperature (K) 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
F(000) [Electrons] 808 Mu (MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection Data Collection Temperature (K) 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
Mu (MoKa) [/cm] 12.8 Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
Crystal Size [mm] 0.08 x 0.20 x 0.30 Data Collection Temperature (K) 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
Data Collection Temperature (K) 150 Radiation [Angstrom] MoKa (with monochromator) 0.71073 Theta Min-Max [Deg] 1.3, 27.5
Temperature (K)150Radiation [Angstrom]MoKa (with monochromator)0.71073Theta Min-Max [Deg]1.3, 27.5
Radiation [Angstrom]MoKa (with monochromator)0.71073Theta Min-Max [Deg]1.3, 27.5
Theta Min-Max [Deg] 1.3, 27.5
Scan type, Scan, [Deg] Omega/2Theta, 0.84 + 0.35 Tan(Theta)
Hor. and vert. aperture [mm] 3.03 4.00
Reference Reflection(s) -2, 2, 1 ; -2, -2, 5 ; -1, -3, 2
Dataset -12: 12 ; -14: 14 ; -13: 20
Tot., Uniq. Data, R(int) 9113, 7582, 0.0382
Observed data [I > 2.0 sigma(I)] 5495
DIFABS transmission range 0.676, 1.000
Refinement 7574 399
NIEL, Npar 7574, 555
R_{1} WR, S U.U.32, U.1002, 1.14
W = 1/[S 2 (FO 2)] + (0.0202F) 2 + 24.250F] WHELE F = (FO 2 + 2FC 2)/3 Move and Dv. Chift (Error
$Min and Max read done [o/hng^3] = 1.21 1.59$

Table S2 - Final Coordinates and Equivalent Isotropic Thermal Parameters of the non-Hydrogen atoms for: s1161a C18 H17 Cl N2 Pd

Atom	x	У	Z 	U(eq) [Ang^2]
pd(1)	0.55769(7)	0.86840(6)	0.18487(4)	0.0205(2)
Cl(1)	0.6792(2)	0.8072(2)	0.06133(13)	0.0255(6)
N(11)	0.3525(7)	0.8529(6)	0.1302(4)	0.019(2)
N(12)	0.1086(8)	0.7669(6)	0.3184(5)	0.024(2)
C(11)	0.3182(9)	0.9246(8)	0.0640(5)	0.021(2)
C(12)	0.1864(9)	0.9220(8)	0.0257(5)	0.023(3)
C(13)	0.0846(9)	0.8401(8)	0.0545(6)	0.026(3)
C(14)	0.1164(10)	0.7696(9)	0.1236(6)	0.029(3)
C(15)	0.2512(9)	0.7743(8)	0.1579(5)	0.020(2)
C(16)	0.2911(9)	0.6883(7)	0.2265(6)	0.022(3)
C(17)	0.3987(10)	0.6066(9)	0.2122(6)	0.033(3)
C(18)	0.4326(12)	0.5170(9)	0.2720(7)	0.043(4)
C(19)	0.3530(12)	0.5075(9)	0.3463(7)	0.040(3)
C(110)	0.2449(10)	0.5909(8)	0.3641(6)	0.027(3)
C (111)	0.1623(10)	0.5882(9)	0.4395(6)	0.030(3)
C(112)	0.0581(10)	0.6710(8)	0.4535(6)	0.030(3)
C(113)	0.0390(10)	0.7591(8)	0.3895(6)	0.028(3)
C(114)	0.2137(9)	0.6826(8)	0.3034(5)	0.022(2)
C (115)	0.6246(11)	0.8763(9)	0.3103(6)	0.030(3)
C(116)	0.7370(11)	0.9101(9)	0.2553(6)	0.033(3)
C (117)	0.4971(12)	0.9437(10)	0.2991(6)	0.040(4)
C(118)	0.6276(11)	0.7636(9)	0.3636(6)	0.036(3)
Pd(2)	1.08967(7)	0.18381(6)	0.29535(4)	0.0216(2)
Cl(2)	1.2252(2)	0.2157(2)	0.41718(14)	0.0279(7)
N(21)	0.8892(7)	0.1719(6)	0.3627(4)	0.0176(19)
N(22)	0.6499(8)	0.2365(7)	0.1833(5)	0.024(2)

Table S2 - Final Coordinates and Equivalent Isotropic Thermal Parameters of the non-Hydrogen atoms (continued) for: s1161a C18 H17 C1 N2 Fd

Atom	x	у	z	U(eq) [Ang^2]
C(21)	0.8743(10)	0.0880(8)	0.4246(5)	0.025(3)
C(22)	0.7475(11)	0.0655(8)	0.4675(6)	0.031(3)
C(23)	0.6270(11)	0.1327(9)	0.4480(6)	0.035(3)
C(24)	0.6404(10)	0.2198(8)	0.3858(6)	0.027(3)
C(25)	0.7728(9)	0.2384(7)	0.3450(5)	0.020(2)
C(26)	0.7936(8)	0.3391(7)	0.2812(5)	0.017(2)
C(27)	0.8717(10)	0.4369(8)	0.3018(5)	0.024(3)
C(28)	0.8805(10)	0.5377(8)	0.2469(6)	0.026(3)
C(29)	0.8132(9)	0.5376(7)	0.1722(6)	0.025(3)
C(210)	0.7358(9)	0.4373(8)	0.1479(5)	0.022(3)
C(211)	0.6669(10)	0.4326(9)	0.0700(6)	0.030(3)
C(212)	0.5937(10)	0.3328(9)	0.0507(6)	0.030(3)
C(213)	0.5876(10)	0.2365(8)	0.1104(6)	0.028(3)
C(214)	0.7251(9)	0.3358(7)	0.2031(5)	0.020(2)
C(215)	1.1446(10)	0.2080(9)	0.1657(6)	0.031(3)
C(216)	1.2652(10)	0.1715(11)	0.2127(6)	0.039(3)
C(217)	1.0243(11)	0.1315(9)	0.1751(5)	0.033(3)
C(218)	1.1328(13)	0.3321(10)	0.1261(7)	0.043(4)

U(eq) = 1/3 of the trace of the orthogonalized U

١

.

- 5 -

Jable S3 - Hydrogen Atom Positions and Isotropic ThermalParametersfor: sll61aC18 H17 C1 N2 Pd

Atom	x	У	z	U(iso) [Ang^2]
H(11)	0.3873(9)	0.9785(8)	0.0432(5)	0.0250
H(12)	0.1664(9)	0.9745(8)	-0.0188(5)	0.0280
H(13)	-0.0033(9)	0.8329(8)	0.0278(6)	0.0300
H(14)	0.0466(10)	0.7185(9)	0.1472(6)	0.0340
H(17)	0.4506(10)	0.6106(9)	0.1616(6)	0.0390
H(18)	0.5083(12)	0.4641(9)	0.2617(7)	0.0510
H(19)	0.3717(12)	0.4453(9)	0.3846(7)	0.0480
H(111)	0.1796(10)	0.5288(9)	0.4801(6)	0.0360
H(112)	0.0022(10)	0.6699(8)	0.5026(6)	0.0360
H(113)	-0.0306(10)	0.8173(8)	0.3995(6)	0.0340
H(161)	0.8188(11)	0.8558(9)	0.2520(6)	0.0400
H(162)	0.7647(11)	0.9934(9)	0.2549(6)	0.0400
H(171)	0.5062(12)	1.0296(10)	0.3020(6)	0.0470
H(172)	0.4100(12)	0.9125(10)	0.3266(6)	0.0470
H(181)	0.688(6)	0.706(2)	0.337(2)	0.0540
H(182)	0.666(7)	0.7803(16)	0.4174(17)	0.0540
H(183)	0.5312(15)	0.733(4)	0.371(4)	0.0540
H(21)	0.9552(10)	0.0428(8)	0.4389(5)	0.0310
H(22)	0.7425(11)	0.0057(8)	0.5091(6)	0.0380
H(23)	0.5391(11)	0.1196(9)	0.4761(6)	0.0420
H(24)	0.5608(10)	0.2663(8)	0.3711(6)	0.0330
H(27)	0.9195(10)	0.4368(8)	0.3525(5)	0.0290
H(28)	0.9324(10)	0.6043(8)	0.2619(6)	0.0310
H(29)	0.8184(9)	0.6048(7)	0.1366(6)	0.0300
H(211)	0.6717(10)	0.4974(9)	0.0322(6)	0.0370
H(212)	0.5486(10)	0.3277(9)	-0.0006(6)	0.0360

Table S3 - Hydrogen Atom Positions and Isotropic Thermal Parameters (continued) for: slibla Cl8 H1/ Cl N2 Pd

Atom	x	У	z	U(iso) [Ang^2]
H(213)	0.5360(10)	0.1690(8)	0.0969(6)	0.0330
H(261)	1.3410(10)	0.2301(11)	0.2180(6)	0.0470
H(262)	1.3018(10)	0.0917(11)	0.2030(6)	0.0470
H(271)	1.0403(11)	0.0486(9)	0.1619(5)	0.0390
H(272)	0.9325(11)	0.1630(9)	0.1559(5)	0.0390
H(281)	1.167(8)	0.3309(18)	0.0689(16)	0.0650
H(282)	1.191(7)	0.3863(17)	0.157(3)	0.0650
H(283)	1.0336(17)	0.358(3)	0.128(4)	0.0650

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

			- 8 -			
Table S	4 - (An)isotr for: s11	opic Ther 61a C18	mal Paramet H17 Cl N2 P	ers (contin d	ued)	
Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
C(21)	0.029(5)	0.023(4)	0.024(5)	0.003(4)	-0.004(4)	0.002(
C(22)	0.044(6)	0.022(5)	0.028(5)	0.010(4)	-0.004(4)	-0.008(
C(23)	0.033(5)	0.040(6)	0.032(5)	-0.005(4)	0.011(4)	-0.011(
C(24)	0.023(5)	0.017(4)	0.041(5)	0.001(4)	0.006(4)	-0.002 (
C(25)	0.023(4)	0.022(4)	0.016(4)	-0.004(3)	0.001(3)	-0.004
C(26)	0.016(4)	0.020(4)	0.015(4)	-0.002(3)	0.003(3)	0.004
C(27)	0.029(5)	0.021(4)	0.023(4)	0.002(3)	-0.004(4)	-0.007
C(28)	0.028(5)	0.017(4)	0.032(5)	-0.002(4)	-0.003(4)	-0.013
C(29)	0.027(5)	0.015(4)	0.034(5)	0.006(4)	0.000(4)	-0.004
C(210)	0.017(4)	0.032(5)	0.018(4)	0.004(3)	0.003(3)	0.002
C(211)	0.023(5)	0.039(6)	0.029(5)	0.003(4)	0.002(4)	0.002
C(212)	0.023(5)	0.048(6)	0.020(4)	0.001(4)	-0.002(4)	-0.002
C(213)	0.025(5)	0.028(5)	0.031(5)	-0.012(4)	0.003(4)	-0.008
C(214)	0.014(4)	0.020(4)	0.027(4)	-0.005(3)	0.002(3)	0.002
C(215)	0.029(5)	0.045(6)	0.019(4)	-0.001(4)	0.011(4)	0.010
C(216)	0.022(5)	0.059(7)	0.036(6)	-0.016(5)	0.011(4)	0.012
C(217)	0.037(5)	0.043(6)	0.019(4)	-0.019(4)	-0.002(4)	0.013
C(218)	0.048(7)	0.051(7)	0.028(5)	0.009(5)	0.012(5)	0.005

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table S4 - (An)isotropic Thermal Parameters for: s1161a C18 H17 C1 N2 Pd

Atom	U(1,1) or U	U U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
Pd(1)	0.0196(3)	0.0195(3)	0.0224(4)	0.0009(3)	-0.0041(3)	-0.0030(3)
Cl(1)	0.0214(10)	0.0305(11)	0.0242(11)	0.0059(9)	0.0021(8)	-0.0028(8)
N(11)	0.015(3)	0.021(4)	0.023(4)	-0.009(3)	-0.001(3)	-0.002(3)
N(12)	0.022(4)	0.019(4)	0.031(4)	-0.005(3)	0.000(3)	0.001(3)
C(11)	0.021(4)	0.025(4)	0.016(4)	0.001(3)	0.001(3)	-0.004(3)
C(12)	0.026(5)	0.023(4)	0.021(4)	0.003(3)	-0.003(3)	0.002(3)
C(13)	0.015(4)	0.035(5)	0.027(5)	-0.006(4)	-0.002(3)	-0.005(4)
C(14)	0.025(5)	0.033(5)	0.028(5)	-0.001(4)	0.000(4)	-0.003(4)
C(15)	0.018(4)	0.024(4)	0.017(4)	-0.005(3)	0.007(3)	-0.003(3)
C(16)	0.019(4)	0.013(4)	0.034(5)	-0.001(3)	0.003(3)	-0.005(3)
C(17)	0.033(5)	0.031(5)	0.033(5)	0.008(4)	0.014(4)	0.006(4)
C(18)	0.044(6)	0.033(6)	0.049(7)	0.015(5)	0.025(5)	0.017(5)
C(19)	0.043(6)	0.033(5)	0.042(6)	0.020(5)	0.014(5)	0.013(5)
C(110)	0.024(5)	0.022(4)	0.036(5)	0.005(4)	0.003(4)	-0.006(4)
C(111)	0.034(5)	0.030(5)	0.026(5)	0.004(4)	0.000(4)	0.002(4)
C(112)	0.030(5)	0.031(5)	0.029(5)	-0.011(4)	0.007(4)	-0.007(4)
C(113)	0.024(5)	0.027(5)	0.034(5)	-0.015(4)	0.001(4)	-0.002(4)
C(11 4)	0.020(4)	0.020(4)	0.027(4)	0.000(3)	-0.001(3)	-0.003(3)
C(115)	0.033(5)	0.032(5)	0.027(5)	-0.011(4)	-0.008(4)	0.003(4)
C(116)	0.036(6)	0.030(5)	0.035(5)	-0.004(4)	-0.009(4)	-0.008(4)
C(117)	0.038(6)	0.048(7)	0.034(6)	-0.011(5)	-0.012(5)	0.008(5)
C(118)	0.035(6)	0.046(6)	0.027(5)	0.005(4)	-0.006(4)	0.009(5)

 Pd(2)
 0.0203(3)
 0.0239(4)
 0.0205(3)
 -0.0016(3)
 0.0008(3)
 0.0041(3)

 C1(2)
 0.0261(11)
 0.0328(12)
 0.0246(11)
 0.0042(9)
 -0.0035(9)
 -0.0013(9)

 N(21)
 0.025(4)
 0.016(3)
 0.012(3)
 -0.002(3)
 -0.001(3)
 0.000(3)

 N(22)
 0.022(4)
 0.026(4)
 0.024(4)
 -0.003(3)
 0.003(3)
 -0.006(3)

Table S5 - Bond Distances (Angstrom) (continued) for: s1161a C18 H17 Cl N2 Pd

C(26)	-C(214)	1.412(11)	C(24)	-Н(24)	0.930(13)
C(27)	-C(28)	1.410(13)	C(27)	-н(27)	0.931(12)
C(28)	-C(29)	1.357(13)	C(28)	-H(28)	0.930(13)
C(29)	-C(210)	1.405(12)	C(29)	-H(29)	0.930(12)
C(210)	-C(211)	1.412(12)	C(211)	-H(211)	0.930(14)
C(210)	-C(214)	1.420(12)	C(212)	-Н(212)	0.931(13)
C(211)	-C(212)	1.357(14)	C(213)	-Н(213)	0.930(13)
C(212)	-C(213)	1.418(14)	C(216)	-H(261)	0.970(15)
C(215)	-C(216)	1.409(13)	C(216)	-Н(262)	0.971(17)
C(215)	-C(217)	1.410(14)	C(217)	-н(271)	0.969(14)
C(215)	-C(218)	1.514(15)	C(217)	-н(272)	0.970(14)
C(21)	-H(21)	0.930(13)	C(218)	-н(281)	0.96(4)
C(22)	-Н(22)	0.929(13)	C(218)	-н(282)	0.97(5)
C(23)	-н(23)	0.930(14)	C(218)	-H(283)	0.96(2)

- 9 -	
-------	--

Table S5 - Bond Distances (Angstrom)for:\$1161aC18H17C1N2Pd

Pd(1)	-Cl(1)	2.367(2)	C(14)	-H(14)	0.930(14)
Pd(1)	-N(11)	2.115(7)	C(17)	-H(17)	0.931(13)
Pd(1)	-C(115)	2.113(10)	C(18)	-H(18)	0.930(15)
Pd(1)	-C(116)	2.086(10)	C(19)	-н(19)	0.931(15)
Pd(1)	-C(117)	2.098(10)	C(111)	-H(111)	0.930(14)
N(11)	-C(11)	1.350(11)	C(112)	-H(112)	0.929(13)
N(11)	-C(15)	1.347(11)	C(113)	-H(113)	0.929(13)
N(12)	-C(113)	1.293(12)	C(116)	-H(161)	0.970(14)
N(12)	-C(114)	1.375(11)	C(116)	-H(162)	0.969(14)
C(11)	-C(12)	1.376(12)	C(117)	-H(171)	0.970(16)
C(12)	-C(13)	1.379(12)	C(117)	-H(172)	0.970(15)
C(13)	-C(14)	1.373(13)	C(118)	-H(181)	0.96(4)
C(14)	-C(15)	1.374(12)	C(118)	-H(182)	0.96(4)
C(15)	-C(16)	1.487(12)	C(118)	-H(183)	0.96(2)
C(16)	-C(17)	1.369(13)	Pd(2)	-C1(2)	2.374(3)
C(16)	-C(114)	1.407(12)	Pd(2)	-N(21)	2.125(7)
C(17)	-C(18)	1.403(15)	Pd(2)	-C(215)	2.130(10)
C(18)	-C(19)	1.384(16)	Pd(2)	-C(216)	2.076(9)
C(19)	-C(110)	1.396(14)	Pd(2)	-C(217)	2.126(8)
C(110)	-C(111)	1.411(13)	N(21)	-C(21)	1.348(11)
C(110)	-C(114)	1.423(13)	N(21)	-C(25)	1.336(10)
C(111)	-C(112)	1.354(13)	N(22)	-C(213)	1.310(12)
C(112)	-C(113)	1.412(13)	N(22)	-C(214)	1.364(11)
C(115)	-C(116)	1.392(14)	C(21)	-C(22)	1.365(13)
C(115)	-C(117)	1.408(15)	C(22)	~C(23)	1.377(14)
C(115)	-C(118)	1.501(14)	C(23)	-C(24)	1.375(14)
C(11)	-H(11)	0.930(12)	C(24)	-C(25)	1.387(12)
C(12)	-H(12)	0.929(12)	C(25)	-C(26)	1.507(11)
C (13)	-H(13)	0.931(12)	C(26)	-C(27)	1.368(12)

			- 11 -	-							~ 12 -	-			
Table	S6 - Bond for	d Angles : s1161a	(Degrees) C18 H17 Cl	N2 Pd				Table S	6 - Bon for	d Angles : s1161a	(Degrees) C18 H17 Cl	(continu N2 Pd	ued)		
Cl(1)	-Pd(1)	-N(11)	92.22(18)	C(111)	-C(110)	-C(114)	117.7(8)	C(110)	-C(111)	-H(111)	119.6(11)	C(215)	-Pd(2)	-C(216)	39.1(
Cl(1)	-Pđ(1)	-C(115)	131.9(3)	C(110)	-C(111)	-C(112)	120.8(9)	C(112)	-C(111)	-H(111)	119.6(11)	C(215)	-Pd(2)	-C(217)	38.7(
Cl(1)	-Pd(1)	-C(116)	99.1(3)	C(111)	-C(112)	-C(113)	116.4(9)	C(111)	-C(112)	-H(112)	121.8(11)	C(216)	-Pd(2)	-C(217)	68.6(
Cl(1)	-Pd(1)	-C(117)	166.2(3)	N(12)	-C(113)	-C(112)	126.6(8)	C(113)	-C(112)	-H(112)	121.8(11)	Pd(2)	-N(21)	-C(21)	118.6(
N(11)	-Pd(1)	-C(115)	132.9(3)	N(12)	-C(114)	-C(16)	118.8(8)	N(12)	-C(113)	-H(113)	116.8(11)	Pd(2)	-N(21)	-C(25)	124.2(
N(11)	-Pd(1)	-C(116)	167.6(3)	N(12)	-C(114)	-C(110)	121.1(8)	C(112)	-C(113)	-H(113)	116.7(11)	C(21)	-N(21)	-C(25)	117.0(
N(11)	-Pd(1)	-C(117)	100.1(3)	C(16)	-C(114)	-C(110)	120.1(8)	Pd(1)	-C(116)	-H(161)	116.4(10)	C(213)	-N(22)	-C(214)	117.8(
C(115)	-Pd(1)	-C(116)	38.7(4)	Pd(1)	-C(115)	-C(116)	69.6(6)	Pd(1)	-C(116)	-H(162)	116.5(10)	N(21)	-C(21)	-C(22)	123.9(
C(115)	-Pd(1)	-C(117)	39.1(4)	Pd(1)	-C(115)	-C(117)	69.9(6)	C(115)	-C(116)	-H(161)	116.4(11)	C(21)	-C(22)	-C(23)	118.9(
C(116)	-Pd(1)	-C(117)	68.1(4)	Pd(1)	-C(115)	-C(118)	119.1(7)	C(115)	-C(116)	-н(162)	116.4(11)	C(22)	-C(23)	-C(24)	118.1(
Pd(1)	-N(11)	-C(11)	119.6(5)	C(116)	-C(115)	-C(117)	113.6(9)	H(161)	-C(116)	-H(162)	113.4(13)	C(23)	-C(24)	-C(25)	120.0(
Pd(1)	-N(11)	-C(15)	123.5(5)	C(116)	-C(115)	-C(118)	123.0(9)	Pd(1)	-C(117)	-H(171)	116.5(9)	N(21)	-C(25)	-C(24)	122.0(
C(11)	-N(11)	-C(15)	116.9(7)	C(117)	-C(115)	-C(118)	122.2(9)	Pd(1)	-C(117)	-H(172)	116.5(10)	N(21)	-C(25)	-C(26)	116.7(
C(113)	-N(12)	-C(114)	117.4(8)	Pd(1)	-C(116)	-C(115)	71.7(6)	C(115)	-C(117)	-H(171)	116.5(12)	C(24)	-C(25)	-C(26)	121.2(
N(11)	-C(11)	-C(12)	123.4(8)	Pd(1)	-C(117)	-C(115)	71.1(6)	C(115)	-C(117)	-H(172)	116.5(12)	C(25)	-C(26)	-C(27)	119.3(
C(11)	-C(12)	-C(13)	118.8(8)	N(11)	-C(11)	-H(11)	118.3(9)	H(171)	-C(117)	-H(172)	113.5(14)	C(25)	-C(26)	-C(214)	120.2(
C(12)	-C(13)	-C(14)	118.2(8)	C(12)	-C(11)	-H(11)	118.3(10)	C(115)	-C(118)	-H(181)	109(2)	C(27)	-C(26)	-C(214)	120.4(
C(13)	-C(14)	-C(15)	120.1(9)	C(11)	-C(12)	-H(12)	120.5(10)	C(115)	-C(118)	-H(182)	109.4(15)	C(26)	-C(27)	-C(28)	120.6(
N(11)	-C(15)	-C(14)	122.3(8)	C(13)	-C(12)	-H(12)	120.6(10)	C(115)	-C(118)	-H(183)	110(3)	C(27)	-C(28)	-C(29)	120.0(
N(11)	-C(15)	-C(16)	117.6(7)	C(12)	-C(13)	-H(13)	120.8(11)	H(181)	-C(118)	-H(182)	109(4)	C(28)	-C(29)	-C(210)	120.9(
C(14)	-C(15)	-C(16)	120.0(8)	C(14)	-C(13)	-H(13)	120.9(11)	H(181)	-C(118)	-H(183)	110(4)	C(29)	-C(210)	-C(211)	122.7(
C(15)	-C(16)	-C(17)	119.1(8)	C(13)	-C(14)	-H(14)	120.0(11)	H(182)	-C(118)	-Н(183)	109(5)	C(29)	-C(210)	-C(214)	119.5(
C(15)	-C(16)	-C(114)	121.7(7)	C(15)	-C(14)	-H(14)	119.9(11)	C1(2)	-Pđ(2)	-N(21)	93.71(18)	C(211)	-C(210)	-C(214)	117.8(
C(17)	-C(16)	-C(114)	119.0(8)	C(16)	-C(17)	-H(17)	119.2(11)	C1(2)	-Pd(2)	-C(215)	131.2(3)	C(210)	-C(211)	-C(212)	119.5(
C(16)	-C(17)	-C(18)	121.6(9)	C(18)	-C(17)	-H(17)	119.2(11)	C1(2)	-Pd(2)	-C(216)	96.7(3)	C(211)	-C(212)	-C(213)	118.5(
C(17)	-C(18)	-C(19)	119.8(10)	C(17)	-C(18)	-H(18)	120.1(13)	C1(2)	-Pd(2)	-C(217)	163.6(3)	N(22)	-C(213)	-C(212)	124.2(
C(18)	-C(19)	-C(110)	120.3(10)	C(19)	-C(18)	-H(18)	120.1(13)	N(21)	-Pd(2)	-C(215)	133.1(3)	N(22)	-C(214)	-C(26)	119.4(
C(19)	-C(110)	-C(111)	123.2(9)	C(18)	-C(19)	-H(19)	119.9(13)	N(21)	-Pd(2)	-C(216)	168.0(3)	N(22)	-C(214)	-C(210)	122.1(
C(19)	-C(110)	-C(114)	119.1(9)	C(110)	-C(19)	-H(19)	119.9(13)	N(21)	-Pd(2)	-C(217)	100.3(3)	C(26)	-C(214)	-C(210)	118.5(

~ 12 -

- 11 -

- 14 -

Table S7 - Torsion Angles (Degrees) for: s1161a C18 H17 Cl N2 Pd

Cl(1)	-Pd(1)	-N(11)	-C(11)	-64.3(6)
Cl(1)	-Pd(1)	-N(11)	-C(15)	115.8(6)
C(115)	-Pd(1)	-N(11)	-C(11)	133.9(6)
C(115)	-Pd(1)	-N(11)	-C(15)	-46.0(8)
C(117)	-Pd(1)	-N(11)	-C(11)	109.5(7)
C(117)	-Pd(1)	-N(11)	-C(15)	-70.4(7)
Cl(1)	-Pd(1)	-C(115)	-C(116)	38.4(7)
Cl(1)	-Pd(1)	-C(115)	-C(117)	164.7(5)
Cl(1)	-Pd(1)	-C(115)	-C(118)	-78.9(8)
N(11)	-Pd(1)	-C(115)	-C(116)	-166.4(5)
N(11)	-Pd(1)	-C(115)	-C(117)	-40.1(8)
N(11)	-Pd(1)	-C(115)	-C(118)	76.3(9)
C(116)	-Pd(1)	-C(115)	-C(117)	126.2(9)
C(116)	-Pd(1)	~C(115)	-C(118)	-117.3(10)
C(117)	-Pd(1)	-C(115)	-C(116)	-126.2(9)
C(117)	-Pd(1)	-C(115)	-C(118)	116.5(10)
Cl(1)	~Pd(1)	-C(116)	-C(115)	-152.1(5)
C(117)	-Pd(1)	-C(116)	-C(115)	33.2(6)
N(11)	-Pd(1)	-C(117)	-C(115)	151.4(6)
C(116)	-Pd(1)	-C(117)	-C(115)	-32.9(6)
Pd(1)	-N(11)	-C(11)	-C(12)	-178.8(7)
C(15)	-N(11)	-C(11)	-C(12)	1.2(12)
Pd(1)	-N(11)	-C(15)	-C(14)	177.1(7)
Pd(1)	-N(11)	-C(15)	-C(16)	-4.7(10)
C(11)	-N(11)	-C(15)	-C(14)	-2.8(12)
C(11)	-N(11)	-C(15)	-C(16)	175.4(7)
C(114)	-N(12)	-C(113)	-C(112)	-1.1(14)
C(113)	-N(12)	-C(114)	-C(16)	179.8(8)
C(113)	-N(12)	-C(114)	-C(110)	-0.3(14)

.

- 13 -	
--------	--

Table	S6 - Bond for	d Angles : s1161a	(Degrees) C18 H17 Cl I	(continu N2 Pd	ued)		
Pd(2)	-C(215)	-C(216)	68.4(5)	C(210)	-C(211)	-H(211)	120.2(11)
Pd(2)	-C(215)	-C(217)	70.5(5)	C(212)	-C(211)	-H(211)	120.3(11)
Pd(2)	-C(215)	-C(218)	118.4(7)	C(211)	-C(212)	-H(212)	120.7(12)
C(216)	-C(215)	-C(217)	114.2(9)	C(213)	-C(212)	-H(212)	120.8(11)
C(216)	-C(215)	-C(218)	122.1(9)	N(22)	-C(213)	-Н(213)	117.9(11)
C(217)	-C(215)	-C(218)	122.1(9)	C(212)	-C(213)	-Н(213)	117.9(11)
Pd(2)	-C(216)	-C(215)	72.5(6)	Pd(2)	-C(216)	-H(261)	116.4(10)
Pd(2)	-C(217)	-C(215)	70.8(5)	Pd(2)	-C(216)	-H(262)	116.3(10)
N(21)	-C(21)	-H(21)	118.0(10)	C(215)	-C(216)	-H(261)	116.3(12)
C(22)	-C(21)	-Н(21)	118.1(10)	C(215)	-C(216)	-H(262)	116.2(11)
C(21)	-C(22)	-H(22)	120.5(12)	H(261)	-C(216)	-H(262)	113.4(13)
C(23)	-C(22)	-H(22)	120.5(12)	Pd(2)	-C(217)	-H(271)	116.5(8)
C(22)	-C(23)	-н(23)	121.0(12)	Pd(2)	-C(217)	-Н(272)	116.5(9)
C(24)	-C(23)	-Н(23)	120.9(12)	C(215)	-C(217)	-H(271)	116.6(11)
C(23)	-C(24)	-H(24)	120.0(11)	C(215)	-C(217)	-Н(272)	116.5(11)
C(25)	-C(24)	-H(24)	120.0(11)	H(271)	-C(217)	-н(272)	113.5(13)
C(26)	-C(27)	-Н(27)	119.7(10)	C(215)	-C(218)	-H(281)	109.4(18)
C(28)	-C(27)	-н(27)	119.7(10)	C(215)	-C(218)	-H(282)	109(2)
C(27)	-C(28)	-н(28)	120.0(11)	C(215)	-C(218)	-н(283)	110(3)
C(29)	-C(28)	-H(28)	120.0(11)	H(281)	-C(218)	-H(282)	110(5)
C(28)	-C(29)	-Н(29)	119.6(10)	H(281)	-C(218)	-H(283)	110(6)
C(210)	-C(29)	-Н(29)	119.6(10)	H(282)	-C(218)	-H(283)	109(4)

Table S7 - Torsion Angles (Degrees) (continued) for: s1161a C18 H17 Cl N2 Pd

C(116)	-C(115)	-C(117)	-Pd(1)	55.6(8)
C(118)	-C(115)	-C(117)	-Pd(1)	-112.4(9)
Cl(2)	-Pd(2)	-N(21)	-C(21)	-58.1(6)
Cl(2)	-Pd(2)	-N(21)	-C(25)	125.6(6)
C(215)	-Pd(2)	-N(21)	-C(21)	137.0(6)
C(215)	-Pd(2)	-N(21)	-C(25)	-39.3(8)
C(217)	-Pd(2)	-N(21)	-C(21)	113.4(6)
C(217)	-Pd(2)	-N(21)	-C(25)	-62.9(7)
C1(2)	-Pd(2)	-C(215)	-C(216)	33.6(8)
Cl(2)	-Pd(2)	-C(215)	-C(217)	161.1(5)
Cl(2)	-Pd(2)	-C(215)	-C(218)	-82.2(8)
N(21)	-Pd(2)	-C(215)	-C(216)	-166.6(6)
N(21)	-Pd(2)	-C(215)	-C(217)	-39.1(7)
N(21)	-Pd(2)	-C(215)	-C(218)	77.6(9)
C(216)	-Pd(2)	-C(215)	-C(217)	127.5(9)
C(216)	-Pd(2)	-C(215)	-C(218)	-115.8(10)
C(217)	-Pd(2)	-C(215)	-C(216)	-127.5(9)
C(217)	-Pd(2)	-C(215)	-C(218)	116.7(10)
Cl(2)	-Pd(2)	-C(216)	-C(215)	-155.2(6)
C(217)	-Pd(2)	-C(216)	-C(215)	32.2(6)
N(21)	-Pd(2)	-C(217)	-C(215)	152.1(5)
C(216)	-Pd(2)	-C(217)	-C(215)	-32.5(6)
Pd(2)	-N(21)	-C(21)	-C(22)	-174.5(7)
C(25)	-N(21)	-C(21)	-C(22)	2.1(12)
Pd(2)	-N(21)	-C(25)	-C(24)	173.9(6)
Pd(2)	-N(21)	-C(25)	-C(26)	-8.9(10)
C(21)	-N(21)	-C(25)	-C(24)	-2.4(12)
C(21)	-N(21)	-C(25)	-C(26)	174.7(7)
C(214)	-N(22)	-C(213)	-C(212)	0.2(14)

Table S7 - Torsion Angles (Degrees) (continued) for: s1161a C18 H17 C1 N2 Pd

N(11)	-C(11)	-C(12)	-C(13)	-1.8(13)
C(11)	-C(12)	-C(13)	-C(14)	3.9(13)
C(12)	-C(13)	-C(14)	-C(15)	-5.6(14)
C(13)	-C(14)	-C(15)	-N(11)	5.2(14)
C(13)	-C(14)	-C(15)	-C(16)	-173.0(8)
N(11)	-C(15)	-C(16)	-C(17)	-63.7(11)
N(11)	-C(15)	-C(16)	-C(114)	121.4(9)
C(14)	-C(15)	-C(16)	-C(17)	114.6(10)
C(14)	-C(15)	-C(16)	-C(114)	-60.4(12)
C(15)	-C(16)	-C(17)	-C(18)	-174.5(9)
C(114)	-C(16)	-C(17)	-C(18)	0.5(14)
C(15)	-C(16)	-C(114)	-N(12)	-6.9(12)
C(15)	-C(16)	-C(114)	-C(110)	173.2(8)
C(17)	-C(16)	-C(114)	-N(12)	178.2(8)
C(17)	-C(16)	-C(114)	-C(110)	-1.7(13)
C(16)	-C(17)	-C(18)	-C(19)	2.2(15)
C(17)	-C(18)	-C(19)	-C(110)	-3.8(16)
C(18)	-C(19)	-C(110)	-C(111)	-178.4(10)
C(18)	-C(19)	-C(110)	-C(114)	2.6(15)
C(19)	-C(110)	-C(111)	-C(112)	-179.7(10)
C(114)	-C(110)	-C(111)	-C(112)	-0.6(14)
C(19)	-C(110)	-C(114)	-N(12)	-179.7(10)
C(19)	-C(110)	-C(114)	-C(16)	0.2(16)
C(111)	-C(110)	-C(114)	-N(12)	1.2(13)
C(111)	-C(110)	-C(114)	-C(16)	-178.9(9)
C(110)	-C(111)	-C(112)	-C(113)	-0.7(14)
C(111)	-C(112)	-C(113)	-N(12)	1.7(14)
C(117)	-C(115)	-C(116)	-Pd(1)	-55.7(8)
C(118)	-C(115)	-C(116)	-Pd(1)	112.1(9)

Table S7 - Torsion Angles (Degrees) (continued) for: s1161a C18 H17 Cl N2 Pd

C(213)	-N(22)	-C(214)	-C(26)	179.9(10)
C(213)	-N(22)	-C(214)	-C(210)	0.6(12)
N(21)	-C(21)	-C(22)	-C(23)	-0.9(14)
C(21)	-C(22)	-C(23)	-C(24)	0(5)
C(22)	-C(23)	-C(24)	-C(25)	-0.4(15)
C(23)	-C(24)	-C(25)	-N(21)	1.7(13)
C(23)	-C(24)	-C(25)	-C(26)	-175.4(8)
N(21)	-C(25)	-C(26)	-C(27)	-70.7(10)
N(21)	-C(25)	-C(26)	-C(214)	113.5(8)
C(24)	-C(25)	-C(26)	-C(27)	106.5(10)
C(24)	-C(25)	-C(26)	-C(214)	-69.3(11)
C(25)	-C(26)	-C(27)	-C(28)	-173.4(8)
C(214)	-C(26)	-C(27)	-C(28)	2.5(13)
C(25)	-C(26)	-C(214)	-N(22)	-5.3(12)
C(25)	~C(26)	-C(214)	-C(210)	174.0(7)
C(27)	-C(26)	-C(214)	-N(22)	178.9(8)
C(27)	-C(26)	-C(214)	-C(210)	-1.8(12)
C(26)	-C(27)	-C(28)	-C(29)	-1.1(14)
C(27)	-C(28)	-C(29)	-C(210)	-0.9(14)
C(28)	-C(29)	-C(210)	-C(211)	-178.6(9)
C(28)	-C(29)	-C(210)	-C(214)	1.5(13)
C(29)	-C(210)	-C(211)	-C(212)	-179.9(10)
C(214)	-C(210)	-C(211)	-C(212)	0.0(16)
C(29)	-C(210)	-C(214)	-N(22)	179.2(8)
C(29)	-C(210)	-C(214)	-C(26)	-0.2(12)
C(211)	-C(210)	-C(214)	-N(22)	-0.7(12)
C(211)	-C(210)	-C(214)	-C(26)	179.9(12)
C(210)	-C(211)	-C(212)	-C(213)	0.7(14)
C(211)	-C(212)	-C(213)	-N(22)	-0.9(15)

.

Table S7 - Torsion Angles (Degrees) (continued) for: s1161a C18 H17 Cl N2 Pd

-55.1(8)	-Pd(2)	-C(216)	-C(215)	C(217)	
110.8(9)	-Pd(2)	-C(216)	-C(215)	C(218)	
54.0(8)	-Pd(2)	-C(217)	-C(215)	C(216)	
-112.0(9)	-Pd(2)	-C(217)	-C(215)	C(218)	

Table S8: ¹³C NMR data for the allyl complexes (8-PQ)Pd(η^3 -allyl)X.^{*a*}

	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C13	C14	C15	C16	C17	C18	R
1a	152.5	122.1	137.1	130.0	127.0	132.9	128.5	136.9	124.0	151.5	159.2	139.9	145.7	128.8	59.6	59.6	128.2	Me: 22.6
1 b	151.1	121.8	136.9	b	126.9	132.9	129.9	136.5	123.6	151.2	158.5	139.5	145.7	128.6	b	b	124.5	Me: 24.0 ^c
2a	b	121.7	136.8	129.7	126.8	132.6	128.2	136.5	123.6	151.2	b	139.6	145.6	128.6	b	b	127.5	Me: 22.4
2 b	149.5	b	135.3	b	125.3	131.2	128.3	134.8	b	149.0	b	137.8	144.2	127.1	b	b	122.7	Me: ^{<i>b</i>,<i>d</i>}
3a	151.8	122.3	137.4	130.6	126.7	132.3	128.6	137.1	124.2	152.3	159.1	139.7	145.7	128.9	58.6	58.6	118.3	Me: 26.2 ^e
3 b	151.5	122.2	137.0	130.3	126.8	132.3	b	137.2	124.1	b	b	139.9	145.8	128.9	b	b	114.5	Me: 26.0 ^f
4 a	152.0	122.3	137.5	132.4	127.0	133.9	128.8	137.3	124.4	152.5	159.4	139.7	146.0	129.1	60.3	60.3	121.3	Ph g
5a	151.9	122.5	138.0	130.9	127.1	132.4	128.2	137.7	124.4	152.0	Ь	135.5	145.5	129.0	58.9	58.9	117.5	<i>i</i> -Pr ^h
12	158.2	122.0	140.9	132.0	127.8	134.5	127.9	140.4	124.9	154.3	153.1	132.9	142.2	129.8	63.6	63.6	120.7	-
13	158.2	122.0	140.8	132.0	127.8	134.5	127.8	140.3	124.9	154.2	153.3	137.5	142.4	129.7	62.6	62.6	133.0	Me: 23.2
13	154.0	122.1	141.1	132.0	127.0	135.0	128.5	140.6	125.4	150.8	154.4	134.2	143.2	130.2	62.8	62.8	130.2	Me: 23.7
	<u>134.7</u> 4 /=	$\frac{122.7}{3}$		<u>152.5</u>	Record	led at 7	5.48 M	Hz in (at 21 °C	C: <i>b</i> : no	t obser	ved; c: 1	<i>n</i> -Buty	: 31.1,	29.3, 2	.2.7 (CH	H ₂), 14.3
5 6	<u>15</u>) 2 −N		u.	THale d	n_Rut	vl· 31 f	5 29 8	212 (CH ₂).	12.8 (C	(Ha): e:	C(0)N	1e: 195	.3: f: n	-Butyl:	32.6, 3	0.2, 22.5
۲ ⁰	//14 7 13/ ₁₂	Pd-			-113), <i>u</i>		J.) 164	5, 27.0, 5 A (C(I	ΔM_{e}	a. Ph.	130.5 ((Cantha)	129.0	(Cmoto) 133	9 (Cpar	a). Ca:	136.0: 191.9
	8	=N /11	17	(C		+.∠ (CΓ	13), 10. D 26 ().+ (<u>C</u> ()	20 1/C	אין איז. יע.) ר	$(\mathbf{O})\mathbf{M}_{\mathbf{A}}$	$\sim 0r(n0)$, 127.0	Cineta	, 1000		a/, ~y.	
	9			(<u>C</u>	$2(\mathbf{O})$ Me	(), n: l	rr: 30.0	л (СП),	20.1(C	.113), <u>C</u>		. 202.5						

Insertions of Allenes into Palladium-Carbon Bonds of Complexes Containing Bidentate Nitrogen Ligands. Structural and Mechanistic Studies Johannes G. P. Delis, Johannes H. Groen, Kees Vrieze, Piet W. N. M. van Leeuwen Nora Veldman, Anthony L. Spek

Compound	solvent	Т	[1,2-heptadiene]	k _{obs} *10 ²
		(K)	*10 ² (M) ^b	(s ⁻¹) ^c
(8-PQ)Pd(Me)Cl	CH_2Cl_2	303.0	2.638	0.53(1)
(1)			5.270	0.98(2)
			7.916	1.59(3)
			10.55	2.22(4)
		298.0	2.638	0.376(7)
			5.270	0.68(1)
			7.916	1.00(2)
			10.55	1.52(3)
			13.19	1.83(4)
			15.83	2.29(4)
		293.0	2.638	0.262(5)
			5.270	0.394(8)
			7.916	0.61(1)
			10.55	0.84(2)
			13.19	1.10(2)
			15.83	1.32(3)
			18.47	1.51(3)
		288.0	5.270	0.231(5)
			7.916	0.340(7)
			10.55	0.452(9)
			13.19	0.56(1)
			15.83	0.72(1)
		285.0	5.270	0.167(3)
			7.916	0.237(5)
			10.55	0.318(6)
			13.19	0.405(8)
			15.83	0.52(1)

Table S9: Observed reaction rates for the reaction of $(N \cap N)Pd(R)X$ (1-3, 6-8,10) with 1,2-heptadiene (with Esd's in Parentheses)^{*a*}.

	THF	293.0	2.638	0.225(4)
			5.270	0.373(7)
			7.916	0.54(1)
			10.55	0.69(1)
			13.19	0.86(2)
			15.83	1.04(2)
			18.47	1.27(3)
	CH ₃ CN	293.0	2.638	0.320(6)
			5.270	0.61(1)
			7.916	0.92(2)
			10.55	1.28(3)
			13.19	1.67(3)
			15.83	2.02(4)
			18.47	2.41(5)
(8-PQ)Pd(Me)Br	CH_2Cl_2	303.0	2.638	1.20(2)
(2)			5.270	2.20(4)
			7.916	3.22(6)
			10.55	4.26(8)
		298.0	2.638	0.61(1)
			5.270	1.29(2)
			7.916	1.97(4)
			10.55	2.58(5)
			13.19	3.13(6)
		293.0	2.638	0.49)1)
			5.270	0.99(2)
			7.916	1.49(3)
			10.55	1.97(4)
			13.19	2.49(5)
			15.83	2.82(6)
			18.47	3.50(7)
		288.0	2.638	0.334(6)
			5.270	0.63(1)
			7.916	0.95(2)
			10.55	1.22(2)
			13.19	1.53(3)

		283.0	2.638	0.175(3)
			5.270	0.368(7)
			7.916	0.54(1)
			10.55	0.70(1)
			13.19	0.90(2)
(8-PQ)Pd(C(O)Me)Cl	CH_2Cl_2	294.0	1.319	5.1(1)
(3)			2.638	9.4(2)
			3.957	15.4(3)
			5.270	19.1(4)
			6.589	24.1(5)
		288.0	1.319	3.81(8)
			2.638	7.2(1)
			3.957	10.6(2)
			5.270	14.5(3)
			6.589	18.9(4)
		283.0	1.319	2.71(6)
			2.638	5.0(1)
			3.957	7.5(2)
			5.270	9.9(2)
			6.589	12.5(2)
			7.916	15.0(3)
		278.0	1.319	1.92(4)
			2.638	3.61(7)
			3.957	5.2(1)
			5.270	7.3(1)
			6.589	8.5(2)
			7.916	10.3(2)
		273.0	1.319	1.34(3)
			2.638	2.71(5)
			3.957	4.31(9)
			5.270	5.5(1)
			6.589	6.8(1)
			7.916	7.8(2)

(p-An-BIAN)Pd(C(O)Me)Cl C	CH_2Cl_2	295.0	2.638	1.28(3)
(6)			5.270	2.36(5)
			7.916	3.62(7)
			10.55	4.44(9)
			13.19	6.5(1)
		288.0	2.638	0.82(2)
			5.270	1.59(3)
			7.916	2.31(5)
· · · · · · · · · · · · · · · · · · ·			10.55	3.14(6)
			13.19	4.10(8)
			15.83	4.8(1)
		283.0	2.638	0.71(1)
			5.270	1.23(2)
			7.916	1.90(4)
			10.55	2.36(5)
			13.19	3.19(6)
		278.0	2.638	0.46(1)
			5.270	0.89(2)
			7.916	1.35(3)
			10.55	1.76(4)
			13.19	2.18(4)
(p-An-BIAN)Pd(C(O)Ph)Cl C	CH_2Cl_2	305.0	5.270	0.241(5)
(7)			7.916	0.334(7)
			10.55	0.48(1)
			13.19	0.51(1)
			15.83	0.57(1)
			18.47	0.69(1)
		300.0	5.270	0.216(4)
			7.916	0.276(5)
			10.55	0.369(7)
			13.19	0.433(9)
			15.83	0.47(1)
			18.47	0.52(1)

		295.0	5.270	0.141(3)
			7.916	0.191(4)
			10.55	0.237(5)
			13.19	0.281(6)
			15.83	0.339(7)
			18.47	0.364(7)
		290.0	5.270	0.086(2)
			7.916	0.137(3)
			10.55	0.177(4)
			13.19	0.222(4)
			15.83	0.253(5)
			18.47	0.281(6)
(i-Pr-DAB)Pd(C(O)Me)Cl	CH_2Cl_2	288.0	1.319	6.7(1)
			2.638	12.0(2)
			3.958	15.8(3)
			5.270	20.7(4)
		283.0	1.319	4.50(9)
			2.638	9.3(2)
			3.957	12.3(2)
			5.270	16.0(3)
			6.589	20.6(4)
		278.0	1.319	3.25(7)
			2.638	5.9(1)
			3.957	9.4(2)
			5.270	11.6(2)
			6.589	13.9(3)
		274.0	1.319	2.46(5)
			2.638	4.8(1)
			3.957	7.4(1)
			5.270	9.1(2)
			6.589	11.5(2)
(i-Pr-PyCa)Pd(C(O)Me)Cl	CH_2Cl_2	288.0	7.916	0.266(5)
(10)			10.55	0.318(6)
			13.19	0.422(8)
			15.83	0.52(1)
			18.47	0.60(1)

a: [Pd] = 1.38 mM, b: accuracy in temperature is $0.5 \degree C$, c: the standard deviation in the k_{obs} is 2%.