

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1996 American Chemical Society

Table 1. Crystal data for 2,6-Mes^{*}PhH.

Identification code	bs10 L
Empirical formula	^C 42 ^H 62
Formula weight	566.92
Crystal size	0.4 x 0.3 x 0.25 mm
Crystal habit	blocks
Crystal color	colorless
Crystal system	triclinic
Space group	РĪ
Unit cell dimensions	$a = 6.260(2) \text{ \AA} \qquad \alpha = 78.98(5)^{\circ}$ $b = 10.557(4) \text{ \AA} \qquad \beta = 84.08(5)^{\circ}$ $c = 28.79(2) \text{ \AA} \qquad \gamma = 75.79(3)^{\circ}$
Volume	1808(2) Å ³
Z	2
Density (calculated)	1.042 Mg·m ³
Absorption coefficient	0.422 mm^{-1}
F(000)	628
Absorption correction ¹	XABS2
Max. and min. transmission	0.92 and 0.87

 Parkin, S. R., Moezzi, B. Hope, H. (1995). XABS2: an empirical absorption correction program. J. Appl. Cryst., 28, 53-56.

1964-1

** . . **.

Table 2. Data collection for 2,6	-Mes*PhH.	
Diffractometer	Syntex P2	L964-2
Temperature	143(2) K	
Radiation source	normal-focus sealed tube	
Wavelength	1.54178 Å (CuKα)	
Monochromator	graphite	
heta range for data collection	1.57 to 57.04°	
Scan type	20-0	
Index ranges	$-6 \le h \le 6$, $-11 \le k \le 11$, $0 \le$	$\ell \leq 31$
Reflections collected	5424	
Independent reflections	4883 (R _{int} - 0.065)	
Observed [I>2o(I)] reflections	2902	
Standard reflections	2 (measured every 198 reflect	ions)
Percent decay of standards	stable	

٩.,

ł

. 4

6964-3 Table 3. Solution and refinement of 2,6-Mes*PhH. SHELXTL 5 (Sheldrick, 1995) System for solution Structure solution direct SHELXTL 5 (Sheldrick, 1995) System for refinement Full-matrix least-squares on F^2 Refinement method Pricting model, fired thermai parameter Hydrogen atoms Extinction correction none 4882 / 6 / 428 Data / restraints / parameters Goodness-of-fit on F^2 0.921 R1 = 0.0831, wR2 = 0.1998Final R indices $[I>2\sigma(I)]$ $w^{-1} - \sigma^2 (Fo^2) + (0.1278P)^2 + 3.35P$, Weighting scheme where $P = (Fo^2 + 2Fc^2)/3$ R1 = 0.1407, wR2 = 0.2553R indices (all data) 0.464 and -0.343 eÅ^{-3} Largest diff. peak and hole

2

*

The second second

1) R1 = $\sum ||Fo-Fc||/\sum |Fo||$ wR2 = $[\sum [w(Fo^2-Fc^2)^2]/\sum [w(Fo^2)^2]]^{\frac{1}{2}}$ 2) Goodness-of-Fit = $[\sum [w(Fo^2-Fc^2)^2]/(M-N)]^{\frac{1}{2}}$ where M is the number of reflections and N is the number of parameters refined. Table 5. Bond lengths [Å] for 2,6-Mes*PhH.

2964-4

	the state of the s		
C(1)-C(6)	1.391(6)	C(1)-C(2)	1.401(6)
C(2)-C(3)	1.385(7)	C(2)-C(25)	1.517(6)
C(3)-C(4)	1.375(7)	C(4)-C(5)	1.383(7)
C(5)-C(6)	1.389(7)	C(6)-C(7)	1.525(7)
C(7)-C(12)	1.412(7)	C(7)-C(8)	1.429(7)
C(8)-C(9)	1.405(7)	C(8)-C(17)	1.557(7)
C(9)-C(10)	1.366(7)	C(10) - C(11)	1.376(7)
C(10)-C(21)	1.531(7)	C(11)-C(12)	1.409(7)
C(12)-C(13)	1.566(7)	C(13)-C(16)	1.511(7)
C(13)-C(15)	1.529(7)	C(13)-C(14)	1.556(8)
C(17) - C(18)	1.534(8)	C(17)-C(19)	1.541(7)
C(17) - C(20)	1.539(8)	C(21)-C(22X)	1.432(11)
C(21) - C(24)	1.465(12)	C(21) - C(22)	1.488(11)
C(21) - C(23X)	1.548(12)	C(21)-C(24X)	1.665(11)
C(21)-C(23)	1.675(11)	C(25)-C(30)	1.418(6)
C(25)-C(26)	1.439(6)	C(26)-C(27)	1.393(6)
C(26) - C(35)	1.553(6)	C(27)-C(28)	1.374(6)
C(28) - C(29)	1.382(6)	C(28)-C(39)	1.533(6)
C(29) - C(30)	1.404(6)	C(30) - C(31)	1.561(6)
C(31) - C(34)	1.528(7)	C(31) - C(33)	1.538(6)
C(31) - C(32)	1.539(7)	C(35)-C(38)	1.532(7)
C(35) - C(36)	1.538(7)	C(35) - C(37)	1.541(7)
C(39) - C(41)	1.529(7)	C(39) - C(42)	1.532(7)
			• • •

Table 6. Bond angles [⁰] for 2,6-Mes*PhH.

1964-5

٦

:

:3

C(6)-C(1)-C(2)	123.6(5)	C(3)-C(2)-C(1)	115.9(4)
C(3)-C(2)-C(25)	118.8(4)	C(1)-C(2)-C(25)	125.2(4)
C(4) - C(3) - C(2)	122.0(4)	C(3)-C(4)-C(5)	120.8(5)
C(4) - C(5) - C(6)	119.8(5)	C(5)-C(6)-C(1)	117.9(4)
C(5) - C(6) - C(7)	123.4(4)	C(1)-C(6)-C(7)	118.7(4)
C(12) - C(7) - C(8)	119.7(4)	C(12)-C(7)-C(6)	120.5(4)
C(8) - C(7) - C(6)	119.6(4)	C(9) - C(8) - C(7)	117.3(5)
C(9) - C(8) - C(17)	113.0(4)	C(7) - C(8) - C(17)	129.7(5)
C(10) - C(9) - C(8)	124.4(5)	C(9) - C(10) - C(11)	116.4(5)
C(9) - C(10) - C(21)	121.9(5)	C(11)-C(10)-C(21)	121.7(5)
C(10)-C(11)-C(12)	124.2(5)	C(11)-C(12)-C(7)	117.5(5)
C(11) - C(12) - C(13)	113.8(4)	C(7)-C(12)-C(13)	128.7(4)
C(16)-C(13)-C(15)	106.9(5)	C(16)-C(13)-C(14)	107.0(4)
C(15)-C(13)-C(14)	108.6(5)	C(16)-C(13)-C(12)	118.3(4)
C(15)-C(13)-C(12)	108.2(4)	C(14)-C(13)-C(12)	107.5(4)
C(18) - C(17) - C(19)	105.6(5)	C(18)-C(17)-C(20)	108.8(5)
C(19) - C(17) - C(20)	109.0(5)	C(18) - C(17) - C(8)	116.9(4)
C(19) - C(17) - C(8)	107.3(4)	C(20) - C(17) - C(8)	108.9(5)
C(24) - C(21) - C(22)	117.1(8)	C(22X) - C(21) - C(10)	112.2(6)
C(24) - C(21) - C(10)	111.3(6)	C(22) - C(21) - C(10)	110.2(6)
C(22X) - C(21) - C(23X)	117.0(8)	C(10) - C(21) - C(23X)	109.2(6)
C(22X) - C(21) - C(24X)	105.9(7)	C(10) - C(21) - C(24X)	110.5(6)
C(23X) - C(21) - C(24X)	101.2(7)	C(24) - C(21) - C(23)	105.2(8)
C(22) - C(21) - C(23)	102.6(7)	C(10) - C(21) - C(23)	109.8(6)
C(30) - C(25) - C(26)	119.3(4)	C(30) - C(25) - C(2)	120.3(4)
C(26) - C(25) - C(2)	120.1(4)	C(27) - C(26) - C(25)	117.5(4)
C(27) - C(26) - C(35)	116.8(4)	C(25) - C(26) - C(35)	125.6(4)
C(28) - C(27) - C(26)	124.6(4)	C(27) - C(28) - C(29)	116.6(4)
C(27) - C(28) - C(39)	120.6(4)	C(29) - C(28) - C(39)	122.8(4)
C(28) - C(29) - C(30)	123.7(4)	C(29) - C(30) - C(25)	118.2(4)
C(29) - C(30) - C(31)	116.0(4)	C(25) - C(30) - C(31)	125.7(4)
C(34) - C(31) - C(33)	105.0(4)	C(34) - C(31) - C(32)	110.4(4)
C(33) - C(31) - C(32)	105.4(4)	C(34) - C(31) - C(30)	112.7(4)
C(33) - C(31) - C(30)	112.6(4)	C(32) - C(31) - C(30)	110.3(4)
C(38) - C(35) - C(36)	105.6(4)	C(38) - C(35) - C(37)	110.4(4)
C(36) - C(35) - C(37)	105.2(4)	C(38) - C(35) - C(26)	109.9(4)
C(36) - C(35) - C(26)	112.7(4)	C(37) - C(35) - C(26)	112.8(4)
C(41) - C(39) - C(42)	107.9(5)	C(41) - C(39) - C(28)	110.4(4)
C(42) - C(39) - C(28)	112.1(4)	C(41) - C(39) - C(40)	109.6(4)
C(42) - C(39) - C(40)	108.0(4)	C(28) - C(39) - C(40)	108.7(4)

Table 7. Anisotropic displacement parameters $[Å^2 \times 10^3]$ for 2,6-Mes*PhH.

L964-6

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [(ha^{*})²U₁₁ + ... + 2hka^{*}b^{*}U₁₂]

	U11	U22	U33	U23	U13	U12
C(1)	17(3)	22(2)	29(3)	-8(2)	2(2)	-3(2)
C(2)	23(3)	18(2)	25(2)	-8(2)	0(2)	-2(2)
C(3)	28(3)	27(3)	25(3)	-4(2)	0(2)	-6(2)
C(4)	18(3)	39(3)	37(3)	-6(2)	1(2)	-9(2)
C(5)	25(3)	30(3)	29(3)	-1(2)	-5(2)	-3(2)
C(6)	20(3)	24(2)	27(3)	-8(2)	3(2)	-2(2)
C(7)	15(3)	35(3)	30(3)	-3(2)	-5(2)	-5(2)
C(8)	41(3)	37(3)	27(3)	-2(2)	-6(2)	-11(3)
C(9)	45(4)	37(3)	32(3)	0(2)	-9(3)	-15(3)
C(10)	34(3)	48(3)	26(3)	3(2)	-6(2)	-17(3)
C(11)	26(3)	45(3)	25(3)	-5(2)	0(2)	-7(2)
C(12)	18(3)	35(3)	31(3)	-8(2)	-6(2)	-5(2)
C(13)	34(3)	32(3)	30(3)	-7(2)	-6(2)	-9(2)
C(14)	65(5)	51(4)	53(4)	-7(3)	5(3)	-6(3)
C(15)	83(5)	52(4)	44(3)	-10(3)	-19(3)	-23(4)
C(16)	50(4)	42(3)	55(4)	-15(3)	-3(3)	-19(3)
C(17)	47(4)	35(3)	34(3)	1(2)	-/(3)	-3(3)
C(18)	65(4)	32(3)	40(3)	-13(2)	-1(3)	4(3)
C(19)	93(6)	36(3)	51(4)	-10(3)	-15(4)	5(3)
C(20)	88(5)	47(3)	42(3)	-9(3)	-9(3)	-29(4)
C(21)	51(4)	54(4)	29(3)	3(3)	-4(3)	-23(3)
C(22)	63(9)	42(8)	32(6)	-9(5)	0(0) 05(7)	-9(0)
C(23)	95(12)	49(8)	38(7)	-9(6)	25(7)	-37(8)
C(24)	38(8)	55(9)	59(8)	6(7)	4(0)	-20(7)
C(22X)	40(/)	61(8)	38(6)	-4(6)	10(5)	-22(0)
C(23X)	40(8)	61(9)	49(7)	-9(6)	10(6)	-23(0)
G(24X)	63(9)	28(8)	37(0)	-13(3)	1(2)	-18(0)
G(25)	20(3)	23(2)	20(3)	-2(2)	L(Z)	-3(2)
U(20)	19(3)	20(2)	24(2)	-7(2)	3(2)	-7(2)
G(27)	22(3)	23(3)	20(3)	-0(2)	5(2)	-9(2)
C(20)	10(3)	29(3)	27(3)	-3(2)	0(2)	-3(2)
C(29)	23(3)	27(3)	29(3)	-4(2)	1(2)	-5(2)
C(30)	27(3)	22(2)	$\frac{2}{34(3)}$	-5(2)	0(2)	-7(2)
C(32)	51(4)	22(2)	39(3)	-16(2)	3(3)	-6(3)
C(32)	56(4)	24(3)	46(3)	-8(2)	-16(3)	-3(3)
C(34)	41(4)	$\frac{24(3)}{34(3)}$	40(3)	-13(2)	-3(3)	-9(3)
C(35)	29(3)	28(3)	26(3)	-6(2)	1(2)	-9(2)
C(36)	48(4)	35(3)	40(3)	-15(2)	-5(3)	2(3)
C(37)	31(3)	31(3)	40(3)	-9(2)	3(2)	0(2)
C(38)	38(3)	23(3)	42(3)	-8(2)	0(3)	-10(2)
C(39)	32(3)	31(3)	29(3)	-3(2)	-9(2)	-4(2)
C(40)	45(4)	39(3)	29(3)	-5(2)	-8(3)	-5(3)
C(41)	39(3)	52(3)	39(3)	1(3)	-18(3)	-15(3)
C(42)	49(4)	40(3)	38(3)	-2(2)	-11(3)	0(3)

Table 8. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$) for 2,6-Mes*PhH.

L964-7

	x	у	z	U(eq)
H(1)	2059(8)	5111(4)	2446(2)	27
H(3A)	-2579(8)	4041(4)	3387(2)	33
H(4A)	-5089(8)	4733(5)	2816(2)	37
H(5A)	-4096(8)	5674(5)	2057(2)	35
H(9A)	1262(9)	8737(5)	1084(2)	45
H(11A)	2562(8)	5222(5)	707(2)	38
H(14A)	3987(21)	3220(28)	1084(8)	88
H(14B)	3160(12)	1996(9)	1373(15)	88
H(14C)	3808(25)	2998(33)	1639(8)	88
H(15A)	614(42)	4012(39)	628(2)	86
H(15B)	-1737(24)	4163(34)	889(7)	86
H(15C)	-187(65)	2750(7)	889(7)	86
H(16A)	-77(42)	3194(32)	2055(2)	70
H(16B)	-342(49)	2177(9)	1746(8)	70
H(16C)	-2108(12)	3520(25)	1741(7)	70
H(18A)	-3791(35)	7944(35)	2191(3)	71
H(18B)	-3194(50)	9027(11)	2425(8)	71
H(18C)	-1788(18)	7562(27)	2515(6)	71
H(19A)	-3720(41)	9406(16)	1433(13)	94
H(19B)	-1621(22)	9940(31)	1234(7)	94
H(19C)	-3036(63)	10454(17)	1671(6)	94
H(20A)	1632(42)	9417(37)	1/3/(2)	85
H(20B)	1749(39)	8366(11)	2204(12)	85
H(20C)	1/0(12)	9776(27)	2190(12)	85
H(22A)	958(46)	8084(69)	-32(14)	70
H(22B)	2444(126)	66/3(14)	-/1(16)	70
H(22C)	3249(80)	/944(/6)	-319(4)	70
H(23A)	1916(30)	9072(10)	340(33)	00
H(23B)	4278(129)	9489(25)	91(19)	00
H(230)	4010(148)	7206(13)	1/0(17)	75
H(24A)	6066(20)	7290(00) 5078(01)	49(17)	75
H(24D)	6004(24)	7007(73)	704(15)	75
H(240)	1000(77)	8301(28)	-15(23)	69
H(22D)	3003(36)	8864(55)	-203(13)	69
H(22E)	1619(110)	9357(31)	231(10)	69
H(22F)	6384(69)	7077(31)	758(21)	73
H(23F)	5257(21)	8594(47)	703(24)	73
H(23F)	6610(57)	8012(75)	271(5)	73
H(2/D)	5615(103)	5664(38)	264(11)	 79
H(2/F)	5357(114)	6706(21)	-206(15)	79
H(2/F)	3433(25)	6009(54)	-3(24)	79
H(27A)	3279(8)	4892(4)	4282(2)	30

34 3

•:

ę

©1996 American Chemical Society Organometallics V15 Page 958 Schiemenz Supplemental Page 8

						· .
H(29A)	4901(8)	1343(5)	3917(2)	34	1011-8	17
H(32A)	5424(21)	1992(34)	2710(2)	62	2964-0	
H(32B)	3141(34)	2783(17)	2514(5)	62		
H(32C)	3977(52)	1271(19)	2487(5)	62		
H(33A)	5601(18)	236(9)	3412(12)	64		
H(33B)	4130(52)	-407(9)	3162(6)	64		
H(33C)	3435(35)	-98(16)	3675(6)	64		•
H(34A)	-313(20)	2177(15)	2909(9)	56		
H(34B)	-279(21)	1308(32)	3416(2)	56		
H(34C)	606(9)	637(19)	2971(11)	56		
H(36A)	2671(10)	6874(30)	4079(8)	62		
H(36B)	490(50)	6581(24)	4348(3)	62		
H(36C)	432(51)	7929(8)	4002(6)	62		
H(37A)	-2213(8)	6476(30)	3342(5)	53		
H(37B)	-2460(9)	7569(9)	3656(11)	53		
H(37C)	-2406(10)	6099(23)	3896(7)	53		
H(38A)	3223(14)	7026(27)	3228(5)	50		
H(38B)	943(37)	8046(7)	3160(7)	50		
H(38C)	1474(48)	6770(22)	2926(2)	50		
H(40A)	3146(35)	2114(28)	5056(6)	57		
H(40B)	3519(44)	3522(6)	5068(6)	57		÷.
H(40C)	5104(12)	2250(31)	5326(2)	57		
H(41A)	6632(9)	4301(8)	4589(12)	63		
H(41B)	8353(37)	3351(27)	4301(6)	63		
H(41C)	8287(40)	3080(22)	4857(7)	63		
H(42A)	6039(11)	545(7)	4619(13)	66		
H(42B)	7858(49)	816(13)	4898(7)	66		
H(42C)	8054(43)	1040(8)	4342(7)	66		

• .

.

. Ч

.

•

Table 1	Crystal	data	for	2,6-Tripp2PhLi(Et ₂ O).
---------	---------	------	-----	------------------------------------

RCOG
8300
C ₄₀ H ₅₉ LiO
562.81
0.5 x 0.4 x 0.4 mm
colorless
blocks
P2 ₁ /n
monoclinic
a = 8.765(3) Å
b = 17.178(8) Å
c = 24.267(14) Å
β = 93.84(4)°
3646(3) Å ³
4
1.025 Mg*m ⁻³
0.433 mm ⁻¹
1240
XABS2
0.87 and 0.84

L964-9

1) Parkin, S. R., Moezzi, B., Hope, H. (1995). J. Appl. Cryst., 28, 53-56. XABS2: an empirical absorption correction program.

Table 2. Data collection for 2,6-Tripp2PhLI(Et2O).

L964-10

Diffractometer	Syntex P2 ₁
Temperature	130(2) K
Radiation source	normal-focus sealed tube
Wavelength	1.54178 Å (CuKα)
Monochromator	graphite
20-range, data collection	3.15 to 57.05°
Scan type	20-0
Index ranges	-9≤h≤9, 0≤k≤18,0 ≤l≤26
Reflections collected	5517
Independent reflections	4929 (R(int) = 0.037)
Standard reflections	2 (measured every 198 reflections)
Stability of standards	stable

Table 3. Solution and refinement of 2,6-Tripp2PhLi(Et₂O).

L964-11

System for solution	SHELXTL 5 (Sheldrick, 1995)
Structure solution	direct
System for refinement	SHELXTL 5 (Sheldrick, 1995)
Hydrogen atoms	riding model, fixed thermal parameters
Data/ restraints/ parameters	4928 / 0 / 520
Final R indices (1) [I>2o(I)]	R1 = 0.0618,
	wR2 = 0.1381
Reflections observed	3598
R indices (all data)	R1 = 0.0898,
	wR2 = 0.1574
Goodness-of-fit (2) on F ²	1.022
Largest diff. peak and hole	0.302 and -0.338 eÅ ⁻³

1) $R1 = \sum ||Fo| - |Fc|| / \sum |Fo|$

 $wR2 = [\sum[w(Fo^2-Fc^2)^2]/\sum[w(Fo^2)^2]]^{1/2}$

2) Goodness-of-Fit = $[\Sigma[w(Fo^2-Fc^2)^2]/(M-N)]^{1/2}$ where M is the number of reflections and N is the number of parameters refined.

Table 5. Bond lengths [Å] for 2,6-Tripp2PhLi(Et2O).

	-
O(1)-C(37)	1.416(5)
O(1)-C(39)	1.430(5)
O(1)-Li(1)	1.850(7)
Li(1)-C(1)	2.017(7)
Li(1)-H(14A)	2.60(5)
Li(1)-H(38C)	2.73(5)
Li(1)-H(40C)	2.76(7)
Li(1)-H(38B)	2.77(6)
Li(1)-H(40B)	2.81(5)
Li(1)-C(37)	2.866(8)
Li(1)-C(39)	2.885(8)
Li(1)-H(32A)	2.92(4)
Li(1)-C(38)	2.933(9)
Li(1)-C(40)	2.949(10)
C(1)-C(6)	1.408(4)
C(1)-C(2)	1.416(4)
C(2)-C(3)	1.394(4)
C(2)-C(22)	1.502(4)
C(3)-C(4)	1.378(4)
C(4)-C(5)	1.378(4)
C(5)-C(6)	1.397(4)
C(6)-C(7)	1.509(4)
C(7)-C(8)	1.409(4)
C(7)-C(12)	1.414(4)
C(8)-C(9)	1.390(4)
C(8)-C(16)	1.528(4)
C(9)-C(10)	1.387(4)
C(10)-C(11)	1.384(4)
C(10)-C(19)	1.518(4)
C(11)-C(12)	1.391(4)
C(12)-C(13)	1.523(4)
C(13)-C(15)	1.523(4)
C(13)-C(14)	1.529(5)
C(16)-C(17)	1.519(4)
C(16)-C(18)	1.524(4)
C(19)-C(21)	1.521(5)
C(19)-C(20)	1.527(5)

L964-12

C(22)-C(23)	1.407(4)
C(22)-C(27)	1.408(4)
C(23)-C(24)	1.392(4)
C(23)-C(31)	1.524(4)
C(24)-C(25)	1.389(5)
C(25)-C(26)	1.384(5)
C(25)-C(34)	1.519(5)
C(26)-C(27)	1.388(4)
C(27)-C(28)	1.518(4)
C(28)-C(30)	1.508(6)
C(28)-C(29)	1.517(6)
C(31)-C(33)	1.518(4)
C(31)-C(32)	1.530(5)
C(34)-C(35)	1.413(6)
C(34)-C(36)	1.414(6)
C(37)-C(38)	1.481(7)
C(39)-C(40)	1.441(7)

Table 6. Bond angles [°] for 2,6-Tripp₂PhLi(Et₂O).

114.9(3)
122.1(3)
122.6(3)
171.9(5)
79.7(10)
92.2(10)
66.2(11)
110.8(12)
70.1(14)
63(2)
120(2)
103(2)
130(2)
63.7(12)
118.2(13)
102(2)
33(2)
115(2)
66.2(11)

L964-13

C(1)-Li(1)-H(40B)	111.3(11)
H(14A)-Li(1)-H(40B)	68.5(14)
H(38C)-Li(1)-H(40B)	120.7(14)
H(40C)-Li(1)-H(40B)	35(2)
H(38B)-Li(1)-H(40B)	130(2)
O(1)-Li(1)-C(37)	24.7(2)
C(1)-Li(1)-C(37)	152.9(4)
H(14A)-Li(1)-C(37)	78.2(10)
H(38C)-Li(1)-C(37)	42.1(11)
H(40C)-Li(1)-C(37)	88(2)
H(38B)-Li(1)-C (37)	42.0(12)
H(40B)-Li(1)-C(37)	88.9(10)
O(1)-Li(1)-C(39)	24.7(2)
C(1)-Li(1)-C(39)	154.4(4)
H(14A)-Li(1)-C(39)	80.3(10)
H(38C)-Li(1)-C(39)	89.7(11)
H(40C)-Li(1)-C(39)	41(2)
H(38B)-Li(1)-C(39)	87.3(12)
H(40B)-Li(1)-C(39)	43.2(11)
C(37)-Li(1)-C(39)	49.3(2)
O(1)-Li(1)-H(32A)	89.0(8)
C(1)-Li(1)-H(32A)	99.1(8)
H(14A)-Li(1)-H(32A)	168.6(13)
H(38C)-Li(1)-H(32A)	105.3(13)
H(40C)-Li(1)-H(32A)	72(2)
H(38B)-Li(1)-H(32A)	72.5(14)
H(40B)-Li(1)-H(32A)	107.1(13)
C(37)-Li(1)-H(32A)	91.4(8)
C(39)-Li(1)-H(32A)	89.5(8)
O(1)-Li(1)-C(38)	54.1(2)
C(1)-Li(1)-C(38)	124.9(3)
H(14A)-Li(1)-C(38)	83.4(10)
H(38C)-Li(1)-C(38)	18.7(11)
H(40C)-Li(1)-C(38)	115(2)
H(38B)-Li(1)-C(38)	19.4(12)
H(40B)-Li(1)-C(38)	117.5(10)
C(37)-Li(1)-C(38)	29.6(2)
C(39)-Li(1)-C(38)	78.8(2)

L964-14

.

4 .

H(32A)-Li(1)-C(38)	89.9(8)
O(1)-Li(1)-C(40)	53.3(2)
C(1)-Li(1)-C(40)	126.7(4)
H(14A)-Li(1)-C (40)	83.8(10)
H(38C)-Li(1)-C (40)	117.2(11)
H(40C)-Li(1)-C(40)	20(2)
H(38B)-Li(1)-C (40)	114.5(12)
H(40B)-Li(1)-C (40)	20.8(11)
C(37)-Li(1)-C(40)	77.9(2)
C(39)-Li(1)-C(40)	28.6(2)
H(32A)-Li(1)-C(40)	89.5(8)
C(38)-Li(1)-C(40)	107.4(2)
C(6)-C(1)-C(2)	115.1(2)
C(6)-C(1)-Li(1)	123.6(3)
C(2)-C(1)-Li(1)	121.2(3)
C(3)-C(2)-C(1)	122.6(3)
C(3)-C(2)-C(22)	119.4(2)
C(1)-C(2)-C(22)	118.0(2)
C(3)-C(2)-Li(1)	157.5(2)
C(1)-C(2)-Li(1)	35.0(2)
C(22)-C(2)-Li(1)	83.0(2)
C(4)-C(3)-C(2)	119.9(3)
C(3)-C(4)-C(5)	119.8(3)
C(4)-C(5)-C(6)	120.2(3)
C(5)-C(6)-C(1)	122.3(2)
C(5)-C(6)-C(7)	118.5(2)
C(1)-C(6)-C(7)	119.2(2)
C(5)-C(6)-Li(1)	155.8(2)
C(1)-C(6)-Li(1)	33.6(2)
C(7)-C(6)-Li(1)	85.6(2)
C(8)-C(7)-C(12)	118.6(2)
C(8)-C(7)-C(6)	120.9(2)
C(12)-C(7)-C(6)	120.5(2)
C(9)-C(8)-C(7)	119.8(3)
C(9)-C(8)-C(16)	119.5(2)
C(7)-C(8)-C(16)	120.6(2)
C(10)-C(9)-C(8)	122.1(3)
C(11)-C(10)-C(9)	117.5(3)

L964-15

•

.

C(11)-C(10)-C(19)	121.7(3)
C(9)-C(10)-C(19)	120.7(3)
C(10)-C(11)-C(12)	122.8(3)
C(11)-C(12)-C(7)	119.1(3)
C(11)-C(12)-C(13)	118.6(3)
C(7)-C(12)-C(13)	122.3(2)
C(15)-C(13)-C(12)	111.8(3)
C(15)-C(13)-C(14)	110.4(3)
C(12)-C(13)-C(14)	110.9(3)
C(17)-C(16)-C(18)	110.7(3)
C(17)-C(16)-C(8)	113.6(2)
C(18)-C(16)-C(8)	110.1(2)
C(10)-C(19)-C(21)	111.5(3)
C(10)-C(19)-C(20)	111.4(3)
C(21)-C(19)-C(20)	110.4(3)
C(23)-C(22)-C(27)	118.9(3)
C(23)-C(22)-C(2)	119.7(2)
C(27)-C(22)-C(2)	121.3(3)
C(24)-C(23)-C(22)	119.1(3)
C(24)-C(23)-C(31)	119.2(3)
C(22)-C(23)-C(31)	121.6(2)
C(25)-C(24)-C(23)	122.8(3)
C(26)-C(25)-C(24)	117.1(3)
C(26)-C(25)-C(34)	121.1(3)
C(24)-C(25)-C(34)	121.8(3)
C(25)-C(26)-C(27)	122.6(3)
C(26)-C(27)-C(22)	119.6(3)
C(26)-C(27)-C(28)	118.9(3)
C(22)-C(27)-C(28)	121.5(3)
C(30)-C(28)-C(29)	110.3(5)
C(30)-C(28)-C(27)	112.4(3)
C(29)-C(28)-C(27)	111.7(3)
C(33)-C(31)-C(23)	110.2(2)
C(33)-C(31)-C(32)	111.3(3)
C(23)-C(31)-C(32)	112.5(3)
C(35)-C(34)-C(36)	123.0(4)
C(35)-C(34)-C(25)	115.1(3)
C(36)-C(34)-C(25)	116.0(3)

1964-16

•

O(1)-C(37)-C(38)	110.5(4)
O(1)-C(37)-Li(1)	33.1(2)
C(38)-C(37)-Li(1)	77.7(3)
C(37)-C(38)-Li(1)	72.7(3)
O(1)-C(39)-C(40)	110.8(4)
O(1)-C(39)-Li(1)	32.7(2)
C(40)-C(39)-Li(1)	78.2(3)
C(39)-C(40)-Li(1)	73.2(3)

L964-17

L964-18

11

Table 7. Anisotropic displacement parameters $[Å^2 \times 10^3]$ for 2,6-Tripp₂PhLi(Et₂O). The anisotropic displacement factor exponent takes the form: $-2(\pi)^2[h^2a^{2*}U_{11} + ... + 2hka*b*U_{12}]$.

•	U11	U22	U33	U23	U13	U12
O(1)	28(1)	44(2)	69(2)	9(1)	12(1)	12(1)
Li(1)	38(4)	55(4)	104(6)	-14(4)	6(4)	18(3)
C(1)	16(2)	22(2)	20(2)	0(1)	-1(1)	-2(1)
C(2)	16(2)	23(2)	20(1)	1(1)	1(1)	-2(1)
C(3)	20(2)	33(2)	21(2)	5(1)	-4(1)	4(1)
C(4)	15(2)	36(2)	29(2)	1(1)	2(1)	9(2)
C(5)	20(2)	31(2)	19(2)	-3(1)	4(1)	1(1)
C(6)	15(2)	17(1)	21(2)	2(1)	0(1)	-3(1)
C(7)	15(2)	22(2)	20(1)	-1(1)	3(1)	2(1)
C(8)	16(2)	21(2)	23(2)	-1(1)	-2(1)	-1(1)
C(9)	26(2)	23(2)	25(2)	-3(1)	-7(1)	-3(1)
C(10)	25(2)	25(2)	22(2)	2(1)	-4(1)	3(1)
C(11)	29(2)	17(2)	25(2)	3(1)	-1(1)	1(1)
C(12)	24(2)	22(2)	20(2)	-2(1)	1(1)	-2(1)
C(13)	31(2)	24(2)	25(2)	1(1)	-6(1)	-5(1)
C(14)	51(3)	34(2)	41(2)	-14(2)	8(2)	-10(2)
C(15)	40(2)	28(2)	36(2)	0(2)	0(2)	-10(2)
C(16)	27(2)	21(2)	26(2)	5(1)	-9(1)	-2(1)
C(17)	45(2)	22(2)	34(2)	1(2)	-8(2)	0(2)
C(18)	43(2)	31(2)	46(2)	10(2)	7(2)	-1(2)
C(19)	40(2)	27(2)	28(2)	2(1)	-11(2)	3(2)
C(20)	57(3)	55(2)	40(2)	9(2)	-13(2)	23(2)
C(21)	73(3)	49(2)	24(2)	7(2)	-1(2)	11(2)
C(22)	20(2)	23(2)	18(1)	5(1)	1(1)	2(1)
C(23)	24(2)	28(2)	24(2)	4(1)	4(1)	2(1)
C(24)	37(2)	38(2)	34(2)	5(2)	16(2)	-8(2)
C(25)	62(3)	34(2)	28(2)	-2(2)	19(2)	-8(2)
C(26)	52(2)	28(2)	23(2)	-3(1)	5(2)	-4(2)
C(27)	32(2)	27(2)	21(2)	5(1)	2(1)	0(1)
C(28)	38(2)	30(2)	22(2)	0(1)	2(1)	-8(2)
C(29)	61(4)	128(5)	75(4)	55(4)	-33(3)	-54(4)
C(30)	70(4)	38(3)	147(6)	25(3)	43(4)	-14(3)

©1996 American Chemical Society Organometallics V15 Page 958 Schiemenz Supplemental Page 19

1964-19

C(31)	26(2)	34(2)	26(2)	3(1)	5(1)	-8(2)
C(32)	32(2)	51(3)	49(2)	8(2)	-3(2)	-11(2)
C(33)	44(2)	34(2)	35(2)	-4(2)	2(2)	-6(2)
C(34)	136(5)	39(2)	53(3)	-10(2)	62(3)	-13(3)
C(35)	146(5)	79(3)	72(3)	12(3)	74(3)	46(4)
C(36)	160(5)	66(3)	52(3)	1(2)	64(3)	-9(3)
C(37)	69(3)	124(5)	72(3)	0(3)	10(3)	56(3)
C(38)	47(3)	91(4)	75(3)	2(3)	6(3)	24(3)
C(39)	44(3)	78(3)	78(3)	6(3)	0(2)	30(2)
C(40)	52(3)	95(5)	100(4)	-28(4)	1(3)	15(3)

L964-20)

Table 8. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$) for 2,6-Tripp₂PhLi(Et₂O).

	x	у	Z	U(eq)
H(3)	605(33)	3210(16)	1027(12)	24(8)
H(4)	-327(38)	3399(18)	1907(12)	31(9)
H(5)	1007(33)	2911(16)	2693(12)	26(8)
H(9)	5824(35)	2677(17)	3858(12)	30(8)
H(11)	4218(30)	514(17)	3522(10)	18(7)
H(13)	2011	1012	2294	32
H(14A)	4378(53)	454(26)	2066(18)	85(15)
H(14B)	3090(40)	-221(21)	2073(14)	49(10)
H(14C)	4321(47)	-135(24)	2590(17)	68(13)
H(15A)	2019(39)	-104(20)	3170(13)	42(10)
H(15B)	785(36)	-69(19)	2669(12)	34(9)
H(15C)	831(44)	619(23)	3122(15)	60(12)
H(16)	3823	3619	2730	30
H(17A)	4704(34)	4610(19)	3325(12)	33(8)
H(17B)	5593(39)	3946(18)	3713(13)	33(9)
H(17C)	3812(41)	3959(19)	3714(14)	44(10)
H(18A)	6032(9)	3238(8)	2340(4)	43(10)
H(18B)	7001(5)	3374(10)	2898(3)	29(8)
H(18C)	6274(12)	4084(2)	2571(7)	43(10)
H(19)	6533(38)	1713(19)	4483(13)	41(9)
H(20A)	7444(22)	460(9)	4596(3)	77
H(20B)	7612(19)	709(5)	3982(8)	77
H(20C)	6291(5)	145(4)	4127(10)	77
H(21A)	5176(5)	931(14)	5084(3)	73
H(21B)	4036(18)	666(10)	4595(5)	73
H(21C)	4046(18)	1534(5)	4795(8)	73
H(24)	5716(39)	3202(19)	-13(13)	37(9)
H(26)	2839(37)	1438(19)	-382(13)	38(9)
H(28)	881	1565	874	36
H(29A)	-6(61)	1453(31)	-260(22)	106(20)
H(29B)	-464(86)	2160(46)	118(30)	186(34)
H(29C)	-1052(52)	1239(25)	193(16)	70(13)
H(30A)	802(45)	245(22)	595(14)	51(11)

L964-21

H(30B)	2255(63)	632(31)	874(22)	106(22)
H(30C)	2046(75)	445(35)	142(27)	146(26)
H(31)	4501	3576	1328	35
H(32A)	7030(44)	3055(24)	1228(15)	63(12)
H(32B)	7061(41)	3982(21)	1353(14)	49(10)
H(32C)	7196(40)	3666(19)	748(15)	44(10)
H(33A)	3390(4)	4437(5)	682(8)	56
H(33B)	4911(20)	4475(6)	378(4)	56
H(33C)	4854(21)	4818(2)	975(4)	56
H(34)	3798(95)	2037(46)	-1204(32)	217(34)
H(35A)	4834(20)	1070(3)	-850(15)	144
H(35B)	6512(22)	1377(9)	-744(13)	144
H(35C)	5709(44)	1403(8)	-1341(3)	144
H(36A)	6523(21)	3025(12)	-906(10)	135
H(36B)	4844(20)	3306(6)	-1054(14)	135
H(36C)	5688(42)	2795(7)	-1474(4)	135
H(37A)	7241	110	1302	106
H(37B)	8280	740	1045	106
H(38A)	6127(65)	395(34)	430(24)	125(22)
H(38B)	6098(66)	1336(35)	630(23)	123(23)
H(38C)	5107(62)	670(28)	859(20)	94(18)
H(39A)	9213	1234	1958	80
H(39B)	8312	537	2201	80
H(40A)	8537(80)	1463(38)	2870(27)	148(27)
H(40B)	6835(62)	1397(27)	2714(19)	92(16)
H(40C)	7820(86)	2100(47)	2411(30)	182(35)

Table 1. Crystal data for 2,6-Tripp2PhCu(SMe2).

L964-22

2

÷

14

.

Identification code	bs19
Empirical formula	C ₃₈ H ₅₅ CuS
Formula weight	607.42
Crystal size	$0.40 \times 0.40 \times 0.25 \text{ mm}$
Crystal habit	blocks
Crystal color	colorless
Crystal system	orthorhombic
Space group	P212121
Unit cell dimensions	$a = 8.7740(10) \text{ \AA} \alpha = 90^{\circ}$ $b = 15.974(4) \text{ \AA} \beta = 90^{\circ}$ $c = 24.860(6) \text{ \AA} \gamma = 90^{\circ}$
Volume	3484.3(13) Å ³
Z	4
Density (calculated)	1.158 Mg·m ³
Absorption coefficient	1.595 mm^{-1}
F(000)	1312
Absorption correction ¹	XABS2
Max. and min. transmission	0.72 and 0.55

1) Parkin, S. R., Moezzi, B. Hope, H. (1995). XABS2: an empirical absorption correction program. J. Appl. Cryst., 28, 53-56.

Table 2. Data collection for 2,6-Tripp2PhCu(SMe2). Syntex P2, Diffractometer 143(2) K Temperature normal-focus sealed tube Radiation source 1.54178 Å (CuKα) Wavelength Monochromator graphite 3.29 to 57.04° θ range for data collection 20-0 Scan type $0 \le h \le 9, \ 0 \le k \le 17, \ 0 \le \ell \le 27$ Index ranges 2716 Reflections collected 2688 ($R_{int} = 0.0299$) Independent reflections Observed $[I>2\sigma(I)]$ reflections 2385 2 (measured every 198 reflections) Standard reflections Percent decay of standards stable

L964-23

2.2

L964-24 Table 3. Solution and refinement of 2,6-Tripp2PhCu(SMe2). SHELXTL 5 (Sheldrick, 1995) System for solution direct Structure solution SHELXTL 5 (Sheldrick, 1995) System for refinement Full-matrix least-squares on F^2 Refinement method riding model, fixed thermal parameters Hydrogen atoms Extinction correction none 2682 / 0 / 360 Data / restraints / parameters Goodness-of-fit on F^2 1.053 R1 = 0.0495, wR2 = 0.1226Final R indices $[I>2\sigma(I)]$ $w^{-1} = \sigma^2 (Fo^2) + (0.0692P)^2 + 4.96P$ Weighting scheme where $P = (Fo^2 + 2Fc^2)/3$ R1 = 0.0592, wR2 = 0.1429R indices (all data) Absolute structure parameter 0.42(5)0.318 and -0.550 eÅ^{-3} Largest diff. peak and hole

- 1) R1 = $\sum ||Fo-Fc|| / \sum |Fo|$ wR2 = $[\sum [w(Fo^2-Fc^2)^2] / \sum [w(Fo^2)^2]]^{\frac{1}{2}}$
- 2) Goodness-of-Fit = $\left[\sum \left[w(Fo^2 Fc^2)^2\right]/(M-N)\right]^{\frac{1}{2}}$ where M is the number of reflections

and N is the number of parameters refined.

Table 5. Bond lengths [Å] for 2,6-Tripp2PhCu(SMe2).

2964-25

	·			
Cu(1) - C(1)	1.894(6)	Cu(1) - S(1)	2.177(2)	
S(1)-C(38)	1.799(8)	S(1)-C(37)	1.810(8)	
C(1) - C(2)	1.414(9)	C(1)-C(6)	1.428(9)	
C(2)-C(3)	1.394(9)	C(2)-C(22)	1.504(9)	
C(3)-C(4)	1.380(8)	C(4)-C(5)	1.383(9)	
C(5)-C(6)	1.395(9)	C(6)-C(7)	1.494(9)	
C(7)-C(8)	1.393(9)	C(7)-C(12)	1.420(9)	
C(8)-C(9)	1.396(9)	C(8)-C(16)	1.541(9)	
C(9) - C(10)	1.395(9)	C(10)-C(11)	1.380(10)	
C(10) - C(19)	1.520(9)	C(11) - C(12)	1.388(9)	
C(12) - C(13)	1.513(10)	C(13) - C(14)	1.533(11)	
C(13) - C(15)	1.533(10)	C(16) - C(17)	1.535(9)	
C(16) - C(18)	1.539(10)	C(19) - C(21)	1.517(10)	
C(19) - C(20)	1.520(11)	C(22)-C(23)	1.405(9)	
C(22)-C(27)	1.426(9)	C(23)-C(24)	1.398(9)	
C(23)-C(31)	1.516(9)	C(24)-C(25)	1.389(9)	
C(25)-C(26)	1.370(9)	C(25)-C(34)	1.516(9)	
C(26) - C(27)	1.387(9)	C(27)-C(28)	1.513(9)	
C(28)-C(29)	1.523(10)	C(28)-C(30)	1.546(9)	
C(31) - C(33)	1.530(9)	C(31) - C(32)	1.544(10)	
C(34)-C(35)	1.508(10)	C(34) - C(36)	1.513(10)	
			• •	

۰۱. •

1 1

ż

. . .

. .

Table 6. Bond angles [⁰] for 2,6-Tripp2PhCu(SMe2).

L964-26

ł

4 ¥ ¥ ¥ •

Ą

. . .

. .

'⊊ 1

<u>,</u>

C(1) - Cu(1) - S(1)	176.3(2)	C(38)-S(1)-C(37)	98.1(4)
C(38)-S(1)-Cu(1)	104.9(3)	C(37) - S(1) - Cu(1)	103.4(3)
C(2) - C(1) - C(6)	116.8(5)	C(2)-C(1)-Cu(1)	122.0(5)
C(6) - C(1) - Cu(1)	121.2(5)	C(3)-C(2)-C(1)	121.5(6)
C(3)-C(2)-C(22)	120.9(6)	C(1)-C(2)-C(22)	117.6(6)
C(4)-C(3)-C(2)	119.8(6)	C(3)-C(4)-C(5)	121.0(6)
C(4)-C(5)-C(6)	119.9(6)	C(5)-C(6)-C(1)	121.0(6)
C(5)-C(6)-C(7)	121.2(6)	C(1)-C(6)-C(7)	117.8(5)
C(8)-C(7)-C(12)	118.8(6)	C(8)-C(7)-C(6)	121.4(6)
C(12)-C(7)-C(6)	119.8(6)	C(7)-C(8)-C(9)	120.2(6)
C(7)-C(8)-C(16)	120.8(6)	C(9) - C(8) - C(16)	119.0(6)
C(10)-C(9)-C(8)	121.5(6)	C(11)-C(10)-C(9)	117.6(6)
C(11)-C(10)-C(19)	121.3(6)	C(9)-C(10)-C(19)	121.1(6)
C(10)-C(11)-C(12)	122.8(7)	C(11)-C(12)-C(7)	119.1(6)
C(11)-C(12)-C(13)	120.2(6)	C(7)-C(12)-C(13)	120.6(6)
C(12)-C(13)-C(14)	111.4(6)	C(12)-C(13)-C(15)	112.0(6)
C(14)-C(13)-C(15)	110.3(7)	C(17)-C(16)-C(18)	110.3(6)
C(17)-C(16)-C(8)	113.1(5)	C(18)-C(16)-C(8)	110.7(6)
C(21)-C(19)-C(20)	110.2(7)	C(21)-C(19)-C(10)	112.0(6)
C(20)-C(19)-C(10)	111.6(6)	C(23)-C(22)-C(27)	118.1(6)
C(23)-C(22)-C(2)	120.6(6)	C(27)-C(22)-C(2)	121.2(6)
C(24)-C(23)-C(22)	120.2(6)	C(24)-C(23)-C(31)	118.4(6)
C(22)-C(23)-C(31)	121.3(6)	C(25)-C(24)-C(23)	121.7(7)
C(26)-C(25)-C(24)	117.6(6)	C(26)-C(25)-C(34)	120.1(6)
C(24)-C(25)-C(34)	122.3(6)	C(25)-C(26)-C(27)	123.5(6)
C(26)-C(27)-C(22)	118.9(6)	C(26)-C(27)-C(28)	120.3(6)
C(22)-C(27)-C(28)	120.8(5)	C(27)-C(28)-C(29)	112.9(5)
C(27)-C(28)-C(30)	110.3(6)	C(29)-C(28)-C(30)	110.3(6)
C(23)-C(31)-C(33)	109.8(5)	C(23)-C(31)-C(32)	112.4(6)
C(33)-C(31)-C(32)	110.5(6)	C(35)-C(34)-C(36)	110.8(7)
C(35)-C(34)-C(25)	114.4(6)	C(36)-C(34)-C(25)	109.3(6)

Table 7. Anisotropic displacement parameters $[Å^2 \times 10^3]$ for 2,6-Tripp2PhCu(SMe2).

L964-27

ŧ

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$(ha^*)^2 U_{11} + \ldots + 2hka^*b^* U_{12}$]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		U11	U22	U33	U23	U13	U12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu(1)	14(1)	15(1)	14(1)	1(1)	-1(1)	-4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)	16(1)	21(1)	22(1)	-1(1)	-1(1)	-6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	16(3)	12(3)	5(3)	0(3)	2(3)	2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	19(4)	3(3)	13(3)	4(3)	0(3)	6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	17(3)	7(3)	9(3)	3(3)	-2(3)	1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	13(3)	8(3)	22(3)	3(3)	4(3)	-1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	11(3)	13(3)	12(3)	1(3)	-1(3)	3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	15(4)	14(4)	9(3)	4(3)	3(3)	-1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	9(3)	16(3)	11(3)	1(3)	3(3)	-4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	13(3)	26(4)	17(3)	4(3)	-4(3)	6(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	19(4)	17(4)	15(3)	3(3)	-2(3)	3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	23(4)	14(4)	25(4)	-5(3)	1(3)	1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	15(3)	13(4)	20(4)	5(3)	-5(3)	-2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	19(4)	14(4)	24(4)	-9(3)	-7(3)	8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	30(5)	81(7)	50(5)	4(5)	9(5)	25(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	35(5)	21(4)	70(6)	14(4)	-22(5)	9(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	20(4)	22(4)	15(3)	-2(3)	-5(3)	9(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	28(4)	20(4)	32(4)	-6(3)	6(4)	3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	37(5)	29(5)	29(4)	3(4)	9(4)	11(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)	26(4)	31(4)	16(4)	2(3)	-15(3)	6(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	30(5)	76(7)	24(4)	2(5)	-10(4)	-24(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	37(5)	58(6)	15(4)	4(4)	-4(4)	-9(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	7(3)	12(4)	12(3)	-1(3)	0(3)	-2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	26(4)	8(3)	13(3)	2(3)	-5(3)	1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	19(4)	19(4)	7(3)	2(3)	3(3)	4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	19(4)	10(4)	11(3)	0(3)	-4(3)	-6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	21(4)	11(4)	14(3)	-4(3)	-1(3)	2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27)	16(3)	14(4)	3(3)	-4(3)	0(3)	-4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28)	13(3)	7(3)	15(3)	-2(3)	8(3)	2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	15(4)	32(4)	29(4)	-1(4)	2(3)	4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	21(5)	24(4)	39(5)	-10(4)	6(4)	3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	20(4)	19(4)	11(3)	0(3)	0(3)	5(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	16(4)	23(4)	30(4)	4(3)	-4(3)	1(3)
C(34)19(4)14(3)4(3)1(3)-2(3)C(35)34(5)44(5)38(5)25(4)16(4)0(5)C(36)50(5)41(5)26(4)5(4)-4(4)-12(5)	C(33)	31(4)	15(4)	29(4)	-1(3)	-2(4)	10(4)
C(35)34(5)44(5)38(5)25(4)16(4)0(5)C(36)50(5)41(5)26(4)5(4)-4(4)-12(5)	C(34)	19(4)	19(4)	14(3)	4(3)	1(3)	-2(3)
C(36) 50(5) 41(5) 26(4) 5(4) -4(4) -12(5)	C(35)	34(5)	44(5)	38(5)	25(4)	16(4)	0(5)
	C(36)	50(5)	41(5)	26(4)	5(4)	-4(4)	-12(5)

©1996 American Chemical Society Organometallics V15 Page 958 Schiemenz Supplemental Page 28

Table 8. Hydrogen coordinates ($x \, 10^4$) and isotropic displacement parameters $(Å^2 \times 10^3)$ for 2,6-Tripp2PhCu(SMe2).

	x	у	Z	U(eq)
H(3A)	451(8)	4161(4)	1612(2)	14
H(4A)	-341(7)	3602(4)	2429(3)	17
H(5A)	928(7)	3932(4)	3223(3)	17
H(9A)	6075(9)	4406(4)	4181(2)	22
H(11A)	3346(8)	6416(5)	4324(3)	25
H(13A)	1107(8)	5967(4)	3151(3)	23
H(14A)	-60(50)	5603(7)	3978(19)	80
H(14B)	-679(29)	6487(36)	3769(12)	80
H(14C)	554(29)	6452(37)	4243(10)	80
H(15A)	2727(47)	7145(5)	3094(17)	63
H(15B)	2307(62)	7399(12)	3699(7)	63
H(15C)	1029(18)	7433(10)	3240(22)	63
H(16A)	4143(8)	3519(4)	3048(3)	22
H(17A)	4332(23)	2856(20)	3901(14)	41
H(17B)	6111(38)	3076(14)	3921(14)	41
H(17C)	5476(56)	2441(8)	3476(3)	41
H(18A)	6196(19)	4276(23)	2688(13)	47
H(18B)	6711(34)	3324(9)	2773(16)	47
H(18C)	7249(19)	4029(30)	3189(4)	47
H(19A)	6393(8)	5253(5)	4940(3)	29
H(20A)	7236(52)	6612(22)	5086(10)	65
H(20B)	5958(10)	6980(9)	4692(23)	65
H(20C)	7318(48)	6424(15)	4454(15)	65
H(21A)	5167(10)	5960(34)	5637(5)	55
H(21B)	3994(45)	5324(14)	5361(14)	55
H(21C)	3898(43)	6303(24)	5230(10)	55
H(24A)	5472(9)	5223(4)	520(2)	18
H(26A)	1872(8)	6762(4)	549(3)	18
H(28A)	57(8)	5827(4)	1685(2)	14
H(29A)	-1818(16)	6534(28)	1198(4)	38
H(29B)	-1061(36)	5839(9)	819(13)	38
H(29C)	-601(24)	6803(21)	751(11)	38
H(30A)	1485(41)	6992(9)	1993(14)	42
H(30B)	-248(17)	7265(16)	1896(16)	42
H(30C)	1033(53)	7510(10)	1466(4)	42
H(31A)	4481(8)	4078(4)	1704(2)	20
H(32A)	6765(8)	4916(17)	1627(15)	34
H(32B)	7082(13)	4491(28)	1054(3)	34
H(32C)	7105(12)	3933(13)	1589(16)	34
H(33A)	3549(12)	3361(18)	953(14)	38
H(33B)	5221(42)	3015(10)	1084(11)	38
H(33C)	4971(49)	3657(11)	597(5)	38
H(34A)	4190(8)	7140(5)	24(3)	21

-

27.

L964-28

©1996 American Chemical Society Organometallics V15 Page 958 Schiemenz Supplemental Page 29

1964-29

3

. .

°,•1

.

÷

•

• ;

H(35A)	6235(19)	6687(28)	-502(13)	58′ ~
H(35B)	6139(16)	5777(7)	-234(21)	58
H(35C)	6611(10)	6568(31)	124(10)	58
H(36A)	3565(44)	6635(25)	-820(7)	58
H(36B)	2234(11)	6390(32)	-409(8)	58
H(36C)	3446(46)	5699(11)	-595(14)	58
H(37A)	9077(18)	6284(11)	2709(19)	48
H(37B)	8289(42)	5478(17)	2447(11)	48
H(37C)	7781(27)	5789(26)	3032(9)	48
H(38A)	7344(26)	7680(25)	2976(15)	56
H(38B)	6222(63)	7023(5)	3258(5)	56
H(38C)	5554(42)	7711(24)	2854(11)	56
. ,		• •		