An Efficient Hydride-Assisted Isomerization of Alkenes via Rhodium Catalysis

Supporting Information

Terence C. Morrill* and Christopher A. D'Souza

Department of Chemistry, Rochester Institute of Technology, Rochester, New York 14623.

I. GENERAL

General

GC analysis was performed using Hewlett Packard 6890-5973 GC-MS system. Column: HP-1MS – Crosslinked Methyl Siloxane, (HP 19091S-936) 60 m, 250 μ m diameter, 0.25 μ m thickness, He carrier, 15.6 psi initial pressure, 1.0 mL min⁻¹ flow, MS detector.

Oven Ramp	°C/min	Next °C	Hold (min)	Run time
Initial		35	5.00	5.00
Ramp 1	5.00	40	5.00	11.00
Ramp 2	5.00	50	4.00	17.00
Ramp 3	10.00	100	8.00	30.00
Post run	10.00	250	3.00	33.00

Solvent delay: 14.20 minutes.

Materials

1-octene, *trans*-2-octene, *trans*-3-octene, *trans*-4-octene, styrene, allylbenzene, 1-heptene, RhCl₃·nH₂O, RhBr₃·nH₂O, RhCl(PPh₃)₃, [RhCl(COD)]₂ and BH₃-THF were obtained from Aldrich Chemical Co.; *cis*-2-octene from TCl America; THF and diethyl ether from Fisher Chemicals; IrCl₃·nH₂O and RuCl₃·nH₂O from Strem Chemicals.

II. EXPERIMENTAL

1. Isomerization of 1-octene using RhCl₃·nH₂O/BH₃-THF in THF.

A mixture of RhCl₃·nH₂O (10 mg, 0.048 mmol), 1-octene (0.5 mL, 3.19 mmol) and THF (10 mL) was stirred in a three-necked round bottom flask, at room temperature (24°C) for 15 minutes, in an atmosphere of dry nitrogen. The RhCl₃·nH₂O was partially soluble in the THF, imparting a reddish color to the solution. Using a syringe, BH₃-THF (0.3 mL, 0.3 mmol) was injected into the reaction flask at a very slow rate, over a period of 15 minutes. Within a few minutes the RhCl₃·nH₂O dissolved completely resulting in a pale yellow solution, which slowly turned brownish-black. The reaction was allowed to continue for an additional 2 hrs, followed by alkaline peroxide oxidation, extraction, and purification. The above procedure was adopted for the isomerization of *cis*-2-octene, *trans*-2-octene, *trans*-3-octene, *trans*-4-octene, 1-heptene, and allylbenzene.

2. Isomerization of 1-octene using RhCl₃·nH₂O/BH₃-THF in THF in the Presence of Traces of D₂O [Labeling Studies].

A mixture of RhCl₃·nH₂O (10 mg, 0.048 mmol), 1-octene (0.5 mL, 3.19 mmol), D₂O (0.08 mL, 4.4 mmol) and THF (10 mL) was stirred in a three-necked round bottom flask, at room temperature (24°C) for 15 minutes, in an atmosphere of dry nitrogen. The RhCl₃·nH₂O was partially soluble in the THF, imparting a reddish color to the solution. Using a syringe, BH₃-THF (0.3 mL, 0.3 mmol) was injected into the reaction flask at a very slow rate, over a period of 15 minutes. Within a few minutes the RhCl₃·nH₂O completely dissolved resulting in a pale yellow solution, which slowly turned brownish-black. The reaction was allowed to continue for an additional 2 hrs, followed by alkaline peroxide oxidation, extraction and purification. The above procedure was adopted with styrene and cyclohexene. In yet another modification to the above procedure BD₃-THF (0.8 mL, 0.8 mmol) was used instead of BH₃-THF, under anhydrous conditions.

3. Migration Pattern

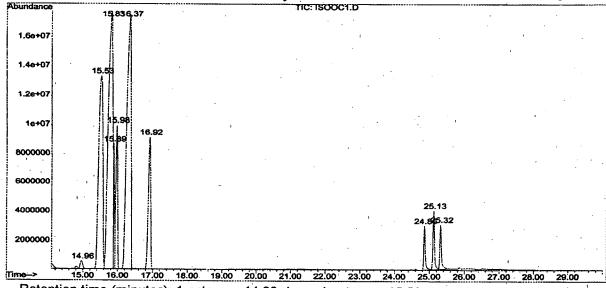
A mixture of RhCl₃·nH₂O (10 mg, 0.048 mmol), 1-heptene (1.5 mL, 10.65 mmol), and THF (30 mL) was stirred in a three-necked round bottom flask, at room temperature (24°C) for 15 minutes, in an atmosphere of dry nitrogen. The RhCl₃·nH₂O was partially soluble in the THF, imparting a reddish color to the solution. Using a syringe, BH₃ –THF (0.3 mL, 0.3 mmol) was injected into the reaction flask at a very slow rate. Within a few minutes the RhCl₃·nH₂O completely dissolved resulting in a pale yellow solution. At regular intervals 0.5 mL aliquots of the reaction mixture were extracted and quenched using a mixture of NaOH and H₂O₂. After 10 minutes the products were extracted using 3 mL of pentane and analyzed using GC-MS.

III. CALCULATIONS

Table 1. Calculated Product Distribution Based on Enthalpies of Formation of Liquid Heptenes

			. •	-			
Isomeric heptene	ΔH_{f}	$\Delta\Delta H_{f}$	Bf	D	$B_f \cdot D$	Calc.(%)	^a Expt.(%)
1-heptene	-23.35	2.8	0.0088	2	0.0176	0.427	0.728
c-2-heptene	-25.31	0.84	0.242	2	0.484	11.743	12.724
t-2-heptene	-26.15	0	1	2	2.000	48.525	43.254
c-3-heptene	-25.00	1.15	0.143	2	0.286	6.939	7.262
t-3-heptene	-25.91	0.24	0.667	2	1.334	32.366	36.032

 $[\]Delta H_f$ = Enthalpies of formation of isomeric heptenes in kcal/mol. ¹²


D = degeneracy. B_f = Boltzmann factor = exp[- $\Delta\Delta H_f$ 1000/RT].

Calc. (%) = $[B_rD / \Sigma B_rD] \times 100$.

^aProduct distribution after 24 hours.

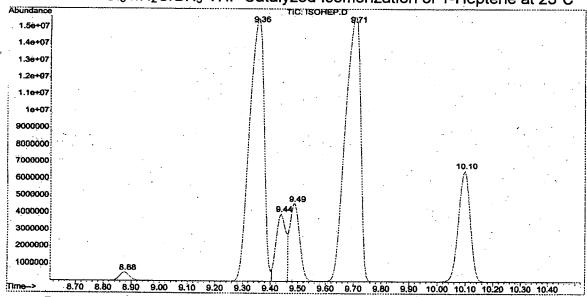

IV. CHROMATOGRAMS

Figure S1: Gas Chromatographic Separation of the Product Mixture of the RhCl₃·nH₂O/BH₃-THF Catalyzed Isomerization of 1-Octene at 25°C

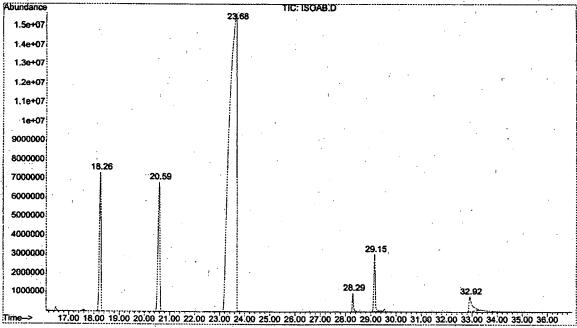

Retention time (minutes): 1-octene = 14.96; trans-4-octene = 15.53; trans-3-octene = 15.83; cis-4-octene = 15.89; octane = 15.98; trans-2-octene = 16.37; cis-2-octene = 16.92; 4-octanol = 24.86; 3-octanol = 25.13; 2-octanol = 25.32.

Figure S2: Gas Chromatographic Separation of the Product Mixture of the RhCl₃·nH₂O/BH₃-THF Catalyzed Isomerization of 1-Heptene at 23°C

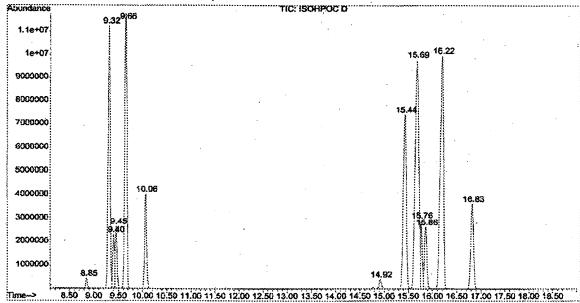

Retention time (minutes): 1-heptene = 8.88; trans-3-heptene = 9.36; heptane = 9.44; cis-3-heptene = 9.49; trans-2-heptene = 9.71; cis-2-heptene = 10.10.

Figure S3: Gas Chromatographic Separation of the Product Mixture of the RhCl₃-nH₂O/BH₃-THF Catalyzed Isomerization of Allylbenzene at 23°C

Retention time (minutes): propyl benzene = 18.26; *cis*-1-phenyl-1-propene = 20.59; *trans*-1-phenyl-1-propene = 23.68; 1-phenyl-2-propanol = 28.29; 1-phenyl-1-propanol = 29.15; 3-phenyl-1-propanol = 32.92.

Figure S4: Gas Chromatographic Separation of the Product Mixture of the RhCl₃·nH₂O/BH₃-THF Catalyzed Isomerization of 1-Heptene and 1-Octene at 28°C

Retention time (minutes): 1-heptene = 8.85; *trans*-3-heptene = 9.32; heptane = 9.40; *cis*-3-heptene = 9.45; *trans*-2-heptene = 9.66; *cis*-2-heptene = 10.06; 1-octene = 14.92; *trans*-4-octene = 15.44; *trans*-3-octene = 15.69; *cis*-4-octene = 15.76; octane = 15.86; *trans*-2-octene = 16.22; *cis*-2-octene = 16.83.