Supporting Information

Sulfone-Rhodamines: A New Class of Near-Infrared Fluorescent Dyes for Bioimaging

Jing Liu, Yuan-Qiang Sun, Hongxing Zhang, Heping Shi, Yawei Shi, and Wei Guo*

[†]School of Chemistry and Chemical Engineering and [‡]Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.

*Corresponding Author: E-mail: guow@sxu.edu.cn

1. Supplementary Spectra

Figure S1. The frontier orbitals and energy levels of DiMe-OR, DiMe-CR, DiMe-MG,

 $\label{eq:Dimession} \textbf{DiMe-SiR}, \text{ and } \textbf{DiMe-SO}_2\textbf{R}, \text{ calculated by DFT at the B3LYP/6-31+} G(d,p) \text{ level of Gaussian}$

09. Ellipse regions show the p* orbital of O atom and σ^* orbitals of C–C or Si–C bond, all of which are in anti-phase with adjacent π^* orbital, indicating a repulsive interaction between them as well as the destabilizing effect of p*– π^* and $\sigma^*-\pi^*$ conjugations on LUMOs of **DiMe-OR**, **DiMe-CR** or **DiMe-SiR**. Rectangular regions show the $d^*-\pi^*$ conjugation between the d^* -orbital of Si or S atom (in sulfone group) with adjacent π^* orbital, where the d^* -orbital is in in-phase with π^* orbital, indicating the stabilizing effect of $d^*-\pi^*$ conjugation on LUMOs of **DiMe-SiR** and **DiMe-SO₂R**.

Figure S2. Normalized absorption and emission spectra of **SO₂R1–6** in CH₃CN (A) and PBS (20 mM, pH = 7.4, containing 0.25% CH₃CN) (B) at 25 °C. $\lambda_{ex} = 660$ nm; Slits: 10/10 nm; voltage: 600 V.

Figure S3. Solubility evaluation of SO_2R1-5 in PBS (20 mM, pH = 7.4) by absorption spectra. (A-E) Plots of absorption intensity *vs* dye concentrations for SO_2R1-5 , respectively.

Figure S4. Time-dependent absorption (A) and fluorescence spectra (B) changes of SO_2R1 (2.0 μ M) in PBS (20 mM, pH = 7.4). The data indicates that SO_2R1 is water unstable due to the nucleophilic attack of water molecule toward its electron-deficient and less steric 9-position that results in the disruption of its π -conjugation system (Inset in A).

Figure S5. Normalized time-dependent fluorescence spectra of **SO₂R2–5** (A-D), rhodamine B (E), Cy5.5 (F), and Alexa700 (G) in PBS (20 mM, pH = 7.4) under continuous irradiation by a 300 W Xe lamp for 30 min. These data correspond with those shown in Figure 3A in the text.

Figure S6. Fluorescence confocal images of HeLa cells costained with SO₂R4 (or SO₂R5) (5 μ M, 10 min) and nuclei dye DAPI (1 μ g/mL, 10 min) at 37 °C in DMEM medium. (A–C) HeLa cells costained with SO₂R4 and DAPI. (D–F) HeLa cells costained with SO₂R4 and DAPI. For SO₂R4 (or SO₂R5), emission was collected at 680–780 nm (λ_{ex} : 633 nm). For DAPI, emission was collected at 425–525 nm (λ_{ex} : 405 nm). Scale bar: 10 μ m.

Figure S7. The intracellular photostability assays. (A–D) Time-dependent confocal images of HeLa cells stained with **SO₂R4**, **SO₂R5**, LysoTracker Red DND-99, and LysoTracker Green DND-26, respectively, in DMEM medium under continuous irradiation by semiconductor laser (633 nm for **SO₂R4** and **SO₂R5**; 559 nm for LysoTracker Red DND-99; 488 nm for LysoTracker Green DND-26, voltage: 800 V) for 10 min. Images were obtained at indicated time point. Scale bar: 30 μ m. (E) The corresponding time-dependent fluorescence intensity changes in (A–D).

Figure S8. Percentage of viable Coca-2 cells after treatment with increasing concentrations of **SO₂R4** and **SO₂R5** after 12 h and 24 h, respectively.

Figure S9. Fluorescence confocal images of HeLa cells stained with **SO₂R4** or **SO₂R5** (5 μ M, 10 min) and then MitoTracker green FM (0.5 μ M, 10 min) at 37 °C in DMEM medium. Lane 1: images of **SO₂R4** and **SO₂R5**; Lane 2: images of MitoTracker green FM; Lane 3: overlap images of Lane 1 and Lane 2; Lane 4: co-localization scatter plots and Pearson's co-localization coefficients; Lane 5: intensity profile of regions of interest (ROI) across HeLa cells. For Lane 1, emission was collected at 680–780 nm (λ_{ex} : 633 nm). For Lane 2, emission was collected at 500–600 nm (λ_{ex} : 488 nm). Scale bar: 10 μ m.

Figure S10. Fluorescence confocal images of HeLa cells stained with **SO₂R4** or **SO₂R5** (5 μ M, 10 min) and then ERTrackerTM Red (0.5 μ M, 10 min) at 37 °C in DMEM medium. Lane 1: images of **SO₂R4** and **SO₂R5**; Lane 2: pseudo-colored images of ERTrackerTM Red; Lane 3: overlap images of Lane 1 and Lane 2; Lane 4: co-localization scatter plots and Pearson's co-localization coefficients; Lane 5: intensity profile of regions of interest (ROI) across HeLa cells. For Lane 1, emission was collected at 680–780 nm (λ_{ex} : 633 nm). For Lane 2, emission was collected at 570–625 nm (λ_{ex} : 559 nm). Scale bar: 10 µm.

Figure S11. Fluorescence images of HeLa cells stained with **SO2R4** (5 μ M), **SO2R5** (5 μ M), and LysoTracker Green DND-26 (0.5 μ M), respectively, after chloroquine (10 μ M) stimulation for 0, 3, 6, 9, 12, and 15 min. Chloroquine, which can cause the leakage of protons out of lysosomes, is used to increase lysosomal pH.^{1,2} These results reveal that **SO₂R5** has more stable lysosome localization and stable fluorescence against chloroquine-induced lysosome lysosomal pH increase.

2. ¹H NMR, ¹³C NMR and HRMS charts of SO₂R1-6 and intermediates 2 and 3.

Figure S12. ¹H NMR chart of SO₂R1 (DMSO- d_6 , 600 MHz).

Figure S13. ¹³C NMR chart of SO₂R1 (CDCl₃, 150 MHz).

Figure S14. HRMS chart of SO₂R1.

Figure S15. ¹H NMR chart of SO₂R2 (CDCl₃, 600 MHz).

Figure S16. ¹³C NMR chart of SO₂R2 (CDCl₃, 150 MHz).

Figure S17. HRMS chart of SO₂R2.

Figure S18. ¹H NMR chart of SO₂R3 (CDCl₃, 600 MHz).

Figure S19. ¹³C NMR chart of SO₂R3 (CDCl₃, 150 MHz).

Figure S20. HRMS chart of SO₂R3.

Figure S21. ¹H NMR chart of SO₂R4 (CDCl₃, 600 MHz).

Figure S22. ¹³C NMR chart of SO₂R4 (CDCl₃, 150 MHz).

Figure S23. HRMS chart of SO₂R4.

Figure S24. ¹H NMR chart of SO₂R5 (CDCl₃, 600 MHz).

Figure S25. ¹³C NMR chart of SO₂R5 (CDCl₃, 150 MHz).

Figure S26. HRMS chart of SO₂R5.

Figure S27. ¹H NMR chart of SO₂R6 (CDCl₃, 600 MHz).

Figure S28. ¹³C NMR chart of SO₂R6 (CDCl₃, 150 MHz).

Figure S29. HRMS chart of SO₂R6.

Figure S30. ¹H NMR chart of compound **2** (CDCl₃, 600 MHz).

Figure S31. ¹³C NMR chart of compound 2 (CDCl₃, 150 MHz).

Figure S32. HRMS chart of compound 2.

Figure S33. ¹H NMR chart of compound 3 (DMSO- d_6 , 600 MHz).

Figure S34. ¹³C NMR chart of compound 3 (DMSO-*d*₆, 150 MHz).

Figure S35. HRMS chart of compound 3.

3. References

(1) Poole, B.; Ohkuma, S. J. Cell Biol., 1981, 90, 665–669.

(2) Zhang, X.; Wang, C.; Han, Z.; Xiao, Y. ACS Appl. Mater. Interfaces, 2014, 6, 21669–21676.